Применение колтюбинговой технологии в бурении - Геология, гидрология и геодезия дипломная работа

Применение колтюбинговой технологии в бурении - Геология, гидрология и геодезия дипломная работа




































Главная

Геология, гидрология и геодезия
Применение колтюбинговой технологии в бурении

Применения колонны гибких труб (КГТ) при бурении скважин. Основные преимущества агрегатов для работы с КГТ. Основные узлы агрегатов, их расчет и конструирование. Мировой опыт применения КГТ; материалы, применяемые в изготовлении колонн. Буровые работы.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство образования Российской Федерации
ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
Доля каждого вида работ в общем балансе, %
в колонне НКТ электроцентробежного насоса
в затрубье установки штангового насоса
очистка забоя, продувка скважин азотом
Бурение горизонтальных участков ствола скважины и забуривание второго ствола
Примечание . Прочерки в графах означают, что эти виды работ с применением КГТ не освоены.
Характерной особенностью процесса совершенствования данной технологии ведения работ и оборудования для ее реализации является то, что освоение этой группы оборудования идет более высокими темпами, чем в целом всей группы машин для обслуживания скважин. Сейчас можно сказать, что нефтепромысловое оборудование, реализующее традиционные технологии, подошло очень близко к пределу своего совершенства. И оборудование для реализации технологий с использованием КГТ является "прорывом", обеспечивающим резкое повышение эффективности процессов ремонта и бурения скважин, особенно при проведении работ на месторождениях со сложными географическими и климатическими условиями, например, в Мексиканском заливе, Канаде, Северном море, Западной Сибири, на Аляске и побережье Ледовитого океана.
Поскольку в комплекс КГТ не входят мачты или вышки, являющиеся необходимой составляющей традиционного нефтепромыслового оборудования, его удобно применять на морских платформах и различных эстакадах с ограниченными размерами рабочих площадок.
Естественно, что с помощью рассматриваемого комплекса еще в определенной части не достигнуты параметры и режимы работ, которые обеспечивает традиционное оборудование. Однако преимущества КГТ и новые технические решения, способствующие их совершенствованию, позволяют постоянно расширять область применения данного оборудования и повышать эффективность ведения работ. Например, использование колонны гибких труб внесло радикальные положительные изменения в практику бурения нефтяных и газовых скважин, особенно при их заканчивании, а также в технологию выполнения каротажных исследований, работ по вскрытию пласта в сильно искривленных и горизонтальных скважинах.
Перспективы дальнейшего применения КГТ обусловлены, в частности, следующими факторами:
а) к настоящему времени создано оборудование, позволяющее работать с колоннами гибких труб практически всех необходимых диаметров и длин при высоких скоростях спуска и подъема;
б) обеспечена долговечность КГТ в условиях нейтральных и коррозионно-активных жидкостей.
Высокая эффективность работ, выполняемых с использованием КГТ, безусловно повлияет на стратегию и тактику разработки месторождений в будущем. Прежде всего это касается эксплуатации месторождений, расположенных в отдаленных и труднодоступных районах, а также тех, пластовая жидкость которых имеет аномальные свойства. Кроме того, при дальнейшем совершенствовании оборудования, обеспечивающего работу КГТ, можно достичь высокой эффективности проведения всего комплекса работ, связанных с бурением, освоением, эксплуатацией и ремонтом горизонтальных скважин.
Можно выделить основные ключевые направления развития данных технологий в России:
а) расширение класса типоразмеров установок;
б) повышение технического уровня оборудования, эксплуатационных характеристик агрегатов;
в) разработка систем автоматизированного контроля за функционированием узлов агрегатов и технологическими процессами;
г) создание установок с длинномерными безмуфтовыми трубами большого диаметра для забуривания вторых стволов и проходки горизонтальных участков скважин;
д) обеспечение комплектности поставок;
е) возможность сервисного обслуживания;
ОСНОВНЫЕ ПРИНЦИПЫ КОНСТРУИ РОВАНИЯ АГРЕГАТА
Разработка агрегата состоит из нескольких этапов.
Вначале определяют набор операций, выполняемых агрегатом. Для решения этой задачи необходимо проанализировать объемы работ, проводимых при подземных ремонтах скважин, как с точки зрения их количества, так и номенклатуры. В результате должны быть выделены группы близких по составу операций. Затем в соответствии с их содержанием устанавливают требования к узлам агрегатов, при выполнении которых реализуется проведение операций. При этом основными факторами, определяющими эти требования, являются характеристики фонда скважин, для обслуживания которых предназначен данный агрегат. Этот этап работ может быть выполнен на уровне объединения, региона и в целом нефтедобывающей отрасли, что обусловливается масштабом решаемых задач.
Полученные данные служат основой для выполнения следующего этапа работ - выбора соответствующих конструктивных схем и проработки основных узлов агрегата, что в итоге позволяет определять их габариты, весовые характеристики и мощность, необходимую для приведения их в действие.
Дальнейшие этапы включают предварительную компоновку необходимых узлов агрегата и выбор соответствующей транспортной базы. Одновременно устанавливают тип приводного двигателя (ходовой или палубный) и его характеристики.
Наиболее ответственными являются начальные этапы, поскольку именно на этих стадиях определяют облик создаваемого агрегата и его параметры, а также концепцию проектируемой машины - создание многопрофильной либо узкоспециализированной установки. Желательно, чтобы эти проблемы решались не для одного типоразмера, а для параметрического ряда в целом, что позволяет оптимальным образом определить тираж изготовления машин с заданными техническими характеристиками. При этом упрощается унификация отдельных узлов и выбор комплектующих изделий.
Особенностью разработанной нами методики построения параметрического ряда оборудования является отказ от создания машин с геометрически подобными кинематическими схемами. При этом каждый тип схемы установки имеет вполне определенную область оптимального применения, выход за пределы которой в сторону увеличения приводит к ухудшению ее технико-экономических показателей (прогрессирующему увеличению массы и стоимости), а уменьшения - к снижению эксплуатационных характеристик (усложнению обслуживания и ремонта). Поэтому в качестве основного принципа создания ряда агрегатов с заданными параметрами принято проектирование отдельных установок с различными принципиальными схемами, но при обеспечении максимальной унификации деталей, изнашивающихся в процессе эксплуатации.
1.4. Требования к конструкции агрегата
Установки с использованием колонны гибких труб следует создавать компактными и монтировать на автомобильном шасси с проходимостью, обеспечивающей передвижение в условиях намывных кустов и дорог без твердого покрытия. Оборудование агрегата должно работать при температуре окружающей среды от -45 до +45 С и быть стойким к агрессивным средам. Необходимо, чтобы монтаж-демонтаж установки на устье скважины проводился без привлечения дополнительной грузоподъемной техники.
Агрегат должен обеспечивать выполнение следующих технологических операций:
а) очистку эксплуатационных колонн от гидратопарафиновых пробок путем промывки горячим солевым раствором с плотностью до 1200 кг/м 3 и температурой до 150 С;
в) извлечение бурового раствора из скважины;
г) ловильные работы при капитальном ремонте скважин (КРС);
д) цементирование скважин под давлением;
е) кислотные обработки под давлением;
Основное оборудование должно состоять из набора блоков.
- инжектор - устройство, транспортирующее КГТ;
- насосную (компрессорную) станцию для очистки гибкой трубы от технологической жидкости.
- емкость для технологической жидкости (8 - 10 м 3 ), снабженную теплоизоляцией;
- нагревательное устройство для технологической жидкости. В конструкции следует предусматривать устройства, обеспечивающие ликвидацию отложений на стенках теплообменника нагревателя;
- насос объемного действия для перекачивания технологической жидкости с максимальной подачей 30 л/с и давлением до 70 МПа. Привод насоса осуществляется от ходового двигателя агрегата.
В состав вспомогательного оборудования , которым должна укомплектовываться установка, входят:
- уплотнительный элемент устьевой гибкой трубы;
- четырехсекционный противовыбросовый превентор;
- комплект быстроразборного манифольда для технологической жидкости;
- прибор, регистрирующий нагрузку от веса колонны труб;
- комплект внутрискважинного инструмента (локаторы конца трубы, шарнирные отклонители, разъединитель с извлекающим устройством, центраторы колонны, обратные клапаны, струйные насадки, ясы и акселераторы и т.п.).
В комплект оборудования входит инструмент :
- полный комплект инструмента, необходимого для выполнения технологических операций и технического обслуживания агрегата;
- запасные части, которыми установка должна быть обеспечена на три года ее эксплуатации.
Необходимо, чтобы конструкция агрегата соответствовала требованиям техники безопасности, действующим в нефтяной и газовой промышленности:
а) система освещения установки должна быть защищена от взрывов и обеспечивать освещенность на устье скважины, равную 26 лк;
б) уровень звукового давления на рабочих местах не должен быть выше 85 дБ;
в) площадки, расположенные на высоте более 1 м, должны иметь перильные ограждения высотой не менее 1 м;
г) для подъема на платформу агрегата нужны маршевые лестницы с перильными ограждениями шириной не менее 0,75 м;
д) выхлопную систему двигателей агрегатов следует снабжать искрогасителями;
е) пост управления агрегатом нужно размещать с учетом хорошей видимости рабочих мест как у скважины, так и на других участках;
ж) расположение центра тяжести агрегата должно обеспечивать его устойчивое положение при перемещении по дорогам с уклоном до 25 в осевом направлении и до 15 в боковом;
з) агрегат необходимо снабжать электрической панелью с выходом 220/50 В для освещения, зарядным устройством и трансформатором-выпрямителем на 24 В постоянного тока для подзарядки аккумуляторов и аварийным освещением.
Габаритные размеры агрегата в транспортном положении не должны превышать по высоте 4,5 м, а по ширине - 3,2 м.
Принимаемая идеология унификации узлов и деталей машин обусловливается серийностью их производства и числом типоразмеров.
Тираж агрегатов, работающих с колонной гибких труб, по сравнению с количеством машин массового производства относительно мал. При этом разброс параметров отдельных типоразмеров установок весьма велик. Следовательно, нецелесообразно унифицировать их металлоконструкции, элементы шасси и другие части, ремонт которых не запланирован, а срок службы соответствует сроку службы всего агрегата.
В данной ситуации важнее унифицировать узлы, сложные в кинематическом отношении, составляющие, обеспечивающие быструю перенастройку при необходимости перехода во время работы с одного диаметра труб на другой, а также узлы, непосредственно не связанные с величиной параметров агрегатов, например, пульты управления, элементы оборудования кабин операторов и другие, а также сложные комплектующие изделия, прежде всего элементы гидропривода.
При выборе комплектующих следует ориентироваться на изделия, применяемые для агрегатов, работающих в аналогичных условиях, к которым прежде всего относятся дорожные и строительные машины, а также транспортная техника. В настоящее время для них освоена широкая гамма комплектующих изделий гидропривода - насосы, моторы, управляющая и регулирующая аппаратура, элементы гидросистем. Эти изделия обладают наибольшей надежностью по сравнению с имеющимися аналогами в других отраслях. Для них создана ремонтная база, система приобретения этих изделий достаточно хорошо отработана.
Что касается унификации уникальных узлов специализированного назначения, то ее следует проводить прежде всего для тех составляющих, параметры которых либо вообще несущественно зависят от их характеристик, либо это прослеживается лишь на определенном интервале. Эта задача должна решаться при проектировании конкретных узлов типа транспортеров гибкой трубы, ее укладчиков, элементов барабанов и уплотнений устья.
2. Устройство агрегатов для работы с колонной
2.1. Основные типы компоновок агрегатов
К настоящему времени сформировалось несколько определенных и отличающихся друг от друга направлений в проектировании и изготовлении комплексов оборудования для работы с использованием колонны гибких труб.
а) транспортные операции по доставке оборудования на место проведения работ;
б) спуск и подъем колонны гибких труб;
в) подготовка технологической жидкости, применяемой при ремонте скважины, - доставка жидкости, ее подогрев и т.д.;
г) собственно подземный ремонт - промывка пробок, сбивка клапана и т.д. К этой же группе операций относится и закачка жидкости в скважину;
д) операции по восстановлению свойств технологической жидкости, использованной в процессе подземного ремонта, - дегазация, очистка и подогрев. При определенной организации работ эта группа операций может не выполняться.
Все элементы, входящие в комплекс рассматриваемого оборудования, выполняются мобильными. Отличаются они лишь количеством единиц, входящих в комплекс, типами транспортных средств, используемых для их перемещения, и компоновками основных узлов на последних. Столь пристальное внимание к средствам транспортирования обусловлено тем, что именно они в значительной степени определяют общую компоновку машин и их основные показатели.
Рассмотрим наиболее характерные и достаточно хорошо отработанные в настоящее время конструктивные решения.
Комплекс оборудования, размещенный на двух специализированных
Наиболее типичным из описываемых комплексов является оборудование фирмы "Dreco". Оно представляет собой два агрегата, один из которых осуществляет операции с трубой, второй обеспечивает подачу технологической жидкости.
Агрегат, обеспечивающий работу с КГТ (рис.1), смонтирован на специализированном шасси с формулой "10 10". Оно включает два передних и три задних моста, которые все
являются ведущими. В конструкции используют серийно изготавливаемые мосты, установленные на раму, специально спроектированную для данного агрегата. Для перемещения последнего и привода его механизмов во время работы служит дизельный двигатель, расположенный за кабиной водителя. Крутящий момент от двигателя передается карданным валом к раздаточной коробке, находящейся в средней части рамы, а от нее - к группе передних и задних мостов. Над двигателем смонтирована кабина управления агрегатом, которая может перемещаться вертикально по специальным направляющим на высоту около 1 м.
В средней части рамы агрегата находится барабан с колонной гибких труб, на нем смонтирован укладчик трубы. В кормовой части агрегата установлен гидроприводной манипулятор, предусмотрено место для перевозки транспортера, превентора и инструментов. Рядом с ними располагается катушка с гибкими трубопроводами, служащими для соединения транспортера с агрегатом.
Рис.1. Агрегат для работы с колонной гибких труб фирмы "Dreco":
1 - кабина водителя; 2 - силовой агрегат; 3 - кабина оператора; 4 - барабан с КГТ; 5 - катушки с гибкими шлангами; 6 - направляющая дуга; 7 - транспортер; 8 - монтажное устройство; 9 - задняя тележка шасси; 10 - раздаточная коробка шасси; 11 - передняя тележка шасси
Последний в рабочем положении на скважине опирается на четыре гидравлических домкрата. Для обслуживания оборудования агрегат имеет удобные лестницы и трапы, позволяющие безопасно перемещаться и работать на нем.
Агрегат, обеспечивающий нагрев и закачивание технологической жидкости, показан на рис.2. Его оборудование смонтировано на специализированном автошасси с формулой "6 4", конструкция кабины управления которого аналогична применяемой в агрегате для работы с колонной гибких труб. И так же за кабиной водителя расположен двигатель. Кабина для обслуживающего персонала здесь отсутствует, а управление узлами агрегата осуществляется со специального пульта, расположенного в средней части установки. На агрегате имеется печь для нагрева технологической жидкости, насос для закачивания ее в колонну гибких труб, емкость для хранения, топливные баки и контрольно-измерительная аппаратура.
Нагретая жидкость подается от насоса к агрегату с КГТ по металлическому трубопроводу, снабженному быстроразборными соединениями.
Необходимо отметить, что кабины управления транспортными базами не только описанного оборудования, но и всех других импортных агрегатов хорошо спроектированы. Они удобны при управлении машинами в дорожных условиях и обеспечивают достаточный обзор в рабочем положении при установке их на скважинах.
Основным недостатком рассматриваемого комплекса является ограниченная проходимость, обусловленная прежде всего малым диаметром колес шасси.
Для полноты обзора конструкций агрегатов следует отметить, что существуют различные варианты размещения комплекса оборудования на транспортном средстве и его прицепе, один из которых представлен на рис.3. Они интересны тем, что кабина оператора располагается в кормовой части за барабаном. При этом оператор имеет хороший обзор устьевого оборудования, однако наблюдение за процессом намотки трубы на барабан затруднено.
Рис.2. Агрегат для подготовки и закачки технологической жидкости фирмы "Dreco":
1 - кабина водителя; 2 - силовой агрегат; 3 - нагреватель; 4 - плунжерный насос для нагнетания технологической жидкости; 5 - емкость для технологической жидкости
Рис.3. Размещение комплекса оборудования на автомобильном шасси и прицепе:
1 - кабина водителя; 2 - барабан с колонной гибких труб; 3 - укладчик КГТ; 4 - кабина оператора; 5 - рама агрегата; 6 - направляющая дуга; 7 - транспортер; 8 - механизм установки транспортера в рабочее положение; 9 - насос для нагнетания технологической жидкости
Агрегаты, смонтированные на серийных
Использование оригинальных либо изготавливаемых малыми сериями шасси приводит к существенному удорожанию агрегата и оправдано лишь в тех случаях, когда стандартное серийное шасси не обеспечивает заданных требований по грузоподъемности или габаритам. В то же время применение серийных образцов, хотя и приводит к удешевлению транспортной базы в 5 - 7 раз по сравнению с оригинальными конструкциями, создает ряд трудностей при проектировании агрегата. В первую очередь к ним относится обеспечение необходимых транспортных габаритов установки и распределения нагрузки на колеса. Кроме того, приходится планировать мощности, потребляемые отдельными узлами, и режимы их работы в соответствии с мощностью, которую можно отбирать от ходового двигателя.
Как правило, для описываемых агрегатов используют автомобильные шасси "КамАЗ" и "УралАЗ", обладающие грузоподъемностью не менее 12 т и имеющие достаточно длинную раму. Достаточно широко для монтажа нефтепромыслового оборудования применяются автошасси "КрАЗ". Однако к их отдельным недостаткам в настоящее время прибавилась и сложность поставки машин и запасных частей к ним, поскольку завод-изготовитель находится в ближнем зарубежье.
Наиболее характерными конструкциями с использованием различных решений являются следующие агрегаты: КПРС, изготавливаемый заводом "Рудгормаш" (рис. 4), и "Скорпион", выпускаемый заводом "Брянский Арсенал" (рис. 5).
Агрегат КПРС имеет традиционную компоновку. Кабина оператора расположена за кабиной водителя, барабан с колонной гибких труб - в средней части шасси, а в кормовой его части - транспортер и устройство для монтажа-демонтажа. В этой конструкции манипулятор для проведения монтажных работ выполнен в виде рычажного механизма, несущего транспортер.
Кабина управления агрегатом жестко закреплена на раме шасси. Ниже нее располагаются коробка отбора мощности от ходового двигателя и гидропривод.
В рабочем положении агрегата на скважине рессоры задней тележки автошасси разгружаются посредством двух гидравлических домкратов.
Компоновка агрегата "Скорпион" отличается от традиционной. В этой конструкции ось барабана для колонны гибких труб расположена вдоль оси автомобильного шасси, кабина оператора в транспортном положении размещена за кабиной водителя, но в рабочем положении она поворачивается на кронштейне относительно вертикальной оси. При этом справа от оператора находится устье скважины, а перед лобовым стеклом кабины - барабан с колонной гибких труб. Для монтажа транспортера на устье скважины используют мачту, в верхней части которой расположена направляющая для гибкой трубы. Транспортер с герметизатором устья в транспортном положении располагается на мачте.
В кормовой части агрегата имеется емкость для хранения технологической жидкости с теплообменником для подачи пара, а вдоль левого борта (по ходу автомобиля) размещены два винтовых насоса для нагнетания жидкости. Два последних узла позволяют говорить о данном агрегате как о комплексе, обеспечивающем не только перемещение колонны гибких труб, но и закачивание технологической жидкости.
В обоих рассмотренных агрегатах ходовой двигатель используют в качестве приводного при работе на скважине.
Рис. 4. Агрегат КПРС, изготавливаемый заводом "Рудгормаш", в транспортном положении:
1 - кабина оператора; 2 - укладчик гибкой трубы; 3 - барабан с КГТ; 4 - механизм установки транспортера в рабочее положение; 5 - направляющая дуга; 6 - транспортер; 7 - автомобильное шасси; 8 - рама агрегата.
Рис. 5. Агрегат "Скорпион" в транспортном положении:
1 - герметизатор устья; 2 - транспортер; 3 - монтажное устройство; 4 - барабан; 5 - укладчик КГТ; 6 - направляющая дуга; 7 - колонна гибких труб; 8 - кабина оператора в транспортном положении; 9 - автомобильное шасси; 10 - раздаточный редуктор насосов гидропривода; 11 - винтовые насосы для подачи технологической жидкости; 12 - рама агрегата.
Агрегаты, смонтированные на прицепах
Монтаж оборудования агрегата на прицепе (типа трейлера) позволяет значительно сократить долю стоимости транспортной базы в общем балансе стоимости агрегата, значительно упростить компоновку последнего, обеспечить реализацию необходимых параметров при меньших весовых и габаритных ограничениях. Такие фирмы, как "Dowell" (рис. 6.), "Newsco Well Service Ltd.", применяют подобные решения. В этом случае привод агрегата осуществляют от палубного двигателя.
Рис. 6. Компоновка агрегата на полуприцепе в рабочем положении на скважине:
1 - автомобиль-буксировщик; 2 - кабина оператора; 3 - барабан с КГТ; 4 - укладчик КГТ; 5 - колонна гибких труб; 6 - направляющая дуга; 7 - транспортер; 8 - герметизатор устья; 9 - превентор; 10 - опора транспортера; 11 - оборудование устья скважины; 12 - устье скважины; 13 - насосная установка; 14 - рама агрегата
транспортирование колонны гибких труб
Одним из наиболее ответственных узлов агрегата является транспортер. Он должен обеспечивать перемещение колонны гибких труб в заданном диапазоне без проскальзывания рабочих элементов и повреждений наружной поверхности трубы и ее геометрии. Необходимо, чтобы транспортер при перемещении КГТ и вверх, и вниз работал одинаково надежно.
К настоящему времени сложились два направления в конструировании транспортеров - с одной и двумя тяговыми цепями, снабженными плашками, взаимодействующими с колонной гибких труб. Плашки прижимаются к гибкой трубе с помощью гидравлических цилиндров.
Принципиальная схема транспортера с двумя цепями приведена на рис.7, а. На корпусе 1 слева и справа от гибкой трубы 3 расположены две двухрядные цепи 5, состоящие из пластин 14 и втулок 13. Звенья цепей соединены пальцами 15 и снабжены плашками 16. Плашки расположены между звеньями цепей (рис.7, б). Каждая плашка установлена на двух пальцах, которые друг с другом соединены "в замок", в результате чего их тыльные поверхности 18 образуют непрерывную плоскость. Каждая плашка выполнена с возможностью небольшого (порядка 3 - 5) углового перемещения относительно одного из пальцев (верхнего) цепи. Это позволяет плашкам проводить самоустановку рабочей поверхности 17 относительно гибкой трубы.
Рис. 7. Принципиальная схема транспортера с двумя цепями (а) и поперечное сечение его узла плашек (б):
a, b, c, f - точки подвода жидкости от вторичных регуляторов к цилиндрам прижима
Тыльные поверхности плашек взаимодействуют с роликами 12, которые не более чем по три штуки закреплены в каретках 11. Последние прижимаются к цепи посредством гидравлических цилиндров 10. Жидкость в полости последних поступает от регуляторов давления 6, к которым попарно присоединены цилиндры, находящиеся слева и справа от гибкой трубы. К регуляторам давления рабочая жидкость гидропривода поступает от насосной станции 7. Для обеспечения постоянного соотношения усилий прижима плашек диаметры d 1 - d 4 гидроцилиндров 10 могут быть различными.
Цепи с плашками перекинуты через звездочки ведущие 2, 4 и направляющие 8, 9. Для обеспечения синхронности перемещения цепей валы ведущих звездочек кинематически связаны синхронизирующими шестернями (на схеме не показаны). Каждая верхняя звездочка через редуктор соединена с гидравлическим мотором (на схеме не показаны), приводящим ее в действие. Питание гидромоторов осуществляется от насосной станции агрегата подземного ремонта, в состав которого входит описываемое устройство. Конструкция осей, на которых установлены нижние звездочки 8 и 9, предусматривает возможность их вертикального перемещения и с помощью натяжных гидроцилиндров (на схеме не показаны).
Характерные размеры каретки, плашки и цепи следующие: расстояния между осями роликов на каретке и между осями роликов соседних кареток равно шагу цепи, а длина рабочей поверхности плашки меньше или равна шагу цепи.
Работа транспортера для перемещения колонны гибких непрерывных труб агрегата подземного ремонта скважин происходит следующим образом.
При движении трубы 3 гидроцилиндры 10 прижимают каретки 11 с роликами 12 к тыльной поверхности 18 плашек 16, а они, в свою очередь, рабочей поверхностью 17 соприкасаются с поверхностью гибкой трубы 3. Крутящий момент от гидромоторов передается редукторами к ведущим звездочкам 2 и 4, которые обеспечивают перемещение цепей 5 и соединенных с ними плашек в нужном направлении. При движении плашек 16 ролики 12 катятся по их тыльной поверхности 18.
Геометрические соотношения размеров плашек и кареток обеспечивают гарантированное приложение нагрузки, создаваемой гидроцилиндром, к какой-либо плашке в любом ее положении. Заданный размер рабочей части плашки исключает деформирование поверхности трубы в периоды вхождения в контакт с плашкой и выхода из него.
При наличии каких-либо дефектов гибкой трубы (например, местное смятие, вспучивание, нарушение правильной геометрии) отклоняется от своего нормального положения и плашка, контактирующая с поверхностью трубы в этой зоне.
Необходимый закон изменения тягового усилия по длине контакта плашек с трубой устанавливается регуляторами давления 6 и изменениями диаметров цилиндров 10.
Принципиальная схема транспортера с одной цепью приведена на рис. 8. В данном случае перемещение трубы осуществляется посредством одной цепи, несущей на себе шарнирно соединенные плашки (по существу используются две параллельно установленные однорядные цепи, между которыми располагаются плашки). Устройство состоит из корпуса, в верхней части которого размещен вал ведущей звездочки, а в нижней - ведомой. Вращение ведущего вала обеспечивается с помощью цепного редуктора, приводимого в действие от гидромотора. Как и в ранее рассмотренной схеме, в конструкции нижнего вала предусмотрена возможность перемещения его в вертикальном направлении, что позволяет регулировать натяжение цепи. Гидравлические цилиндры находятся на внешней стороне корпуса.
Плашки, захватывающие трубу (рис. 9), выполнены таким образом, что ось пальцев цепей пересекается с осью гибкой трубы и перпендикулярна ей. Это обеспечивает передачу на цепи только вертикально направленных сил без эксцентриситета относительно оси каждой из них. В результате цепь передает только растягивающую нагрузку, изгибающие моменты в любых плоскостях отсутствуют. Внутри корпуса каждой плашки расположены два шарнирно закрепленных захвата, в средней части они снабжены сменными плашками, взаимодействующими с трубой, а на конце, противоположном шарниру, имеют ролики. Именно они взаимодействуют с прижимным устройством в той зоне, где должен быть обеспечен контакт плашек и трубы. На рис. 9 плашки, находящиеся в верхних положениях в зоне звездочек, показаны раскрытыми. При подходе к рабочему участку плашки закрываются и плотно охватывают гибкую трубу.
Рис. 8. Принципиальная схема транспортера с одной цепью
1 - узел раскрывающихся плашек; 2 - ведущий вал со звездочками; 3 - цепная понижа ю щая передача; 4 - гидравлические цилиндры натяжения цепей; 5 - ведомый вал со звездо ч ками; 6 - опора транспортера; 7 - герметизатор устья; 8 - гидромотор; 9 - корпус
Рис. 9. Поперечное сечение узла плашек, захватывающих трубу:
1 - ось вращения плашек; 2 - каретка; 3, 4 - соответственно вкладыш и корпус плашки; 5 - цепь привода; 6 - стопор; 7 - ролик.
2.3. УЗЛЫ ДЛЯ ХРАНЕНИЯ КОЛОННЫ гибких труб
Колонна гибких труб или ее часть, не находящаяся в скважине, располагается на барабане, конструкция которого имеет вид цилиндрической бочки, как правило, подкрепленной изнутри ребрами и снабженной по бокам ребордами или радиально расположенными стержнями. Если используют последние, то между ними чаще всего натягивают металлическую сетку, исключающую попадание между витками посторонних предметов. Барабан вращается на валу, установленном на подшипниках качения. Для фиксации "мертвого" конца гибкой трубы, намотанной на барабан, его бочка имеет зажимы.
Диаметр последней в зависимости от диаметра гибкой трубы изменяется от 1,6 до 2 м, а ширина составляет в среднем 1,8 - 2,5 м. "Мертвый" конец гибкой трубы соединяется через задвижку, а в ряде случаев и через обратный клапан с каналом, просверленным в валу барабана. У выхода из отверстия на торце вала размещают вертлюг, обеспечивающий подачу технологической жидкости от насосов в полость вала и далее в колонну гибких труб.
Необходимость установки задвижки обусловлена требованиями безопасности - в случае потери герметичности вертлюга или трубопроводов манифольда она обеспечивает герметичность внутренней полости колонны гибких труб, находящихся в скважине, и исключает неконтролируемое истечение жидкости в окружающее пространство. Наиболее предпочтительной является конструкция узла с за
Применение колтюбинговой технологии в бурении дипломная работа. Геология, гидрология и геодезия.
Презентация На Тему Организационная Структура Предприятия
Реферат На Тему Димеризация Олефинов.Кислотный Катализ
Доклад: Матецкий Владимир Леонардович
Реферат: Практика по делопроизводству
Отчет по практике: Финансы и их сущность
Практика В Банке Дневник Заполненный
Курсовая работа: Защита сельскохозяйственных культур от вредителей болезней и сорняков
Контрольная работа по теме Взаимосвязь физической и умственной деятельностей человека
Сочинение по теме Женщина и море
Изложение: Брэдбери Рэй: 451° по Фаренгейту
Курсовая работа: Договора аренды. Скачать бесплатно и без регистрации
Реферат: “Калина красная” В. М. Шукшина. Скачать бесплатно и без регистрации
Пролежни Причины Профилактика Лечение Реферат
Курсовая работа по теме Организация производственного процесса пункта технического обслуживания дорожных машин в мастерской 'МилСтрой' Щелковского района Московской области
Реферат: Великая победа в битве на Волге. Скачать бесплатно и без регистрации
Сочинение По Картине Левитана Тишина
Дипломная работа по теме Вскрытие, подготовка и отработка с производительностью 3 млн. т в год четвертого калийного горизонта 3-го РУ
Опера Князь Игорь Сочинение По Музыке
Реферат: Holiday On Mackinaw Island Essay Research Paper
Доклад по теме Динамика реального эффективного обменного курса рубля в 2003 - начале 2004 г.
Выделение. Физиология почки - Биология и естествознание контрольная работа
Основы аудита - Бухгалтерский учет и аудит контрольная работа
Учет расчетов с персоналом по оплате труда - Бухгалтерский учет и аудит дипломная работа


Report Page