Зональность земли - География и экономическая география курсовая работа

Зональность земли - География и экономическая география курсовая работа



































Общая характеристика, горизонтальная и поясно-зональная структура географической оболочки. Понятие зональности, содержание соответствующего периодического закона, формы проявления. Распределение тепла на Земле. Барический рельеф и система ветров.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Природная зональность - одна из наиболее ранних закономерностей в науке, представления о которой углублялись и совершенствовались одновременно с развитием географии. Зональность, наличие природных поясов на известной Ойкумене находили греческие ученые V в. до н.э. Геродот (485-425 гг. до н.э.) и Эвдоникс из Книда (400-347 до н.э.), различающий пять зон: тропическую, две умеренные и две полярные. А несколько позже римский философ и географ Посидоний (135-51 гг. до н.э.) еще более развернул учение о природных поясах, отличающихся один от другого климатом, растительностью, гидрографией, особенностями состава и занятий населения. Широта местности получила у него преувеличенное значение, вплоть до того, что она влияет якобы на «вызревание» драгоценных камней.
Велик вклад в учение о природной зональности немецкого естествоиспытателя А. Гумбольта. Главной особенностью его работ было то, что он каждое явление природы рассматривал как часть единого целого, связанную с остальной средой цепью причинных зависимостей.
Зоны Гумбольта - биоклиматические по своему содержанию. Наиболее полно его взгляды о зональности отражены в книге «География растений», благодаря чему он заслуженно считается одним из основоположников одноименной науки.
Зональный принцип был использован уже в ранний период физико-географического районирования России, относящейся ко второй половине XVIII - началу XIX столетия. Имеются в виду географические описания России А.Ф. Бишинга, С.И. Плещеева и Е.Ф. Зябловского. Зоны этих авторов имели комплексный, природохозяйственный характер, но вследствие ограниченности знаний были крайне схематичными.
Современные представления о географической зональности основываются на трудах В.В. Докучаева и Ф.Н. Милькова.
Широкому признанию взглядов В.В. Докучаева во многом способствовали труды его многочисленных учеников - Н.М. Сибирцева, К.Д. Глинки, А.Н. Краснова, Г.И. Танфильева и др.
Дальнейшие успехи в развитии природной зональности связаны с именами Л.С. Берга и А.А. Григорьева.
А.А. Григорьеву принадлежат теоретические изыскания о причинах и факторах географической зональности. Он приходит к заключению, что в формировании зональности наряду с величиной годового радиационного баланса и количества годовых осадков громадную роль играет их соотношение, степень их соразмерности. Им же была выполнена большая работа по характеристике природы основных географических поясов суши. В центре этих во многом оригинальных характеристик - физико-географические процессы, определяющие ландшафты поясов и зон.
Зональность - важнейшее свойство, выражение упорядоченности структуры географической оболочки Земли. Конкретные проявления зональности исключительно разнообразны и обнаруживаются как в физико-географических, так и в экономико-географических объектах. Ниже речь пойдет кратко о географической оболочке Земли, как о главном изучаемом объекте, а далее конкретно и подробно о законе зональности, его проявлениях в природе, а именно, в системе ветров, существовании климатических зон, зональности гидрологических процессов, почвообразования, растительности и т.д.
1.1 Общая характеристика географической оболочки
Географическая оболочка - наиболее сложная и разнообразная (контрастная) часть Земли. Ее специфические особенности сформировались в ходе длительного взаимодействия природных тел в условиях земной поверхности.
Одна из характерных особенностей оболочки - большое разнообразие вещественного состава, значительно превышающее разнообразие вещества, как недр Земли, так и верхних (внешних) геосфер (ионосферы, экзосферы, магнитосферы). В географической оболочке вещество встречается в трех агрегатных состояниях, обладает широким диапазоном физических характеристик - плотности, теплопроводности, теплоемкости, вязкости, раздробленности, отражательной способности и др.
Поражает большое разнообразие химического состава и активности вещества. Вещественные образования географической оболочки неоднородны по структуре. Выделяют косное, или неорганическое, вещество, живое (сами организмы), биокосное вещество.
Другая особенность географической оболочки - большое разнообразие поступающих в нее видов энергии и форм ее преобразования. Среди многочисленных трансформаций энергии особое место занимают процессы ее накопления (например, в виде органического вещества).
Неравномерное распределение энергии на земной поверхности, вызванное шарообразностью Земли, сложным распределением суши и океана, ледников, снегов, рельефа земной поверхности, и разнообразие типов вещества определяют неравновесность географической оболочки, что служит основой для возникновения разнообразных движений: потоков энергии, циркуляции воздуха, воды, почвенных растворов, миграции химических элементов, химических реакций и т.д. Движения вещества и энергии связывают все части географической оболочки, обусловливая ее целостность. [9, 13]
В ходе развития географической оболочки как материальной системы происходило усложнение ее структуры, увеличение разнообразия вещественного состава и энергетических градиентов. На определенном этапе развития оболочки появилась жизнь - наиболее высокая форма движения материи. Возникновение жизни - закономерный результат эволюции географической оболочки. Деятельность живых организмов привела к качественному изменению природы земной поверхности.
Существенное значение для возникновения и развития географической оболочки имеет совокупность планетарных факторов: масса Земли, расстояние до Солнца, скорость вращения вокруг оси и по орбите, наличие магнитосферы, обеспечивших определенную термодинамическую взаимодействий - основы географических процессов и явлений. Изучение ближайших космических объектов - планет Солнечной системы - показало, что только на Земле сложились условия, благоприятные для возникновения достаточно сложной материальной системы.
В ходе развития географической оболочки возрастала ее роль как фактора собственного развития (саморазвития). Большое самостоятельное значение имеют состав и масса атмосферы, океана и ледников, соотношение и размеры площадей суши, океана, ледников и снегов, распределение суши и моря по земной поверхности, положение и конфигурация форм рельефа различного масштаба, различных типов природной среды и т.д.
На достаточно высоком уровне развития географической оболочки, ее дифференциации и интеграции возникли сложные системы - природные территориальные и аквальные комплексы.
Перечислим некоторые важнейшие параметры географической оболочки и ее крупных структурных элементов.
Площадь земной поверхности 510,2 млн. км 2 . Океан занимает 361,1 млн. км 2 (70,8%), суша - 149,1 млн. км 2 (29,2%). [10, 21] Выделяют шесть крупных массивов суши - материков, или континентов: Евразию, Африку, Северную Америку, Южную Америку, Антарктиду и Австралию, а также многочисленные острова.
Средняя высота суши 870 м, средняя глубина океана 3704 м. Океаническое пространство обычно подразделяют на четыре океана: Тихий, Атлантический, Индийский и Северный Ледовитый. [10, 23]
Существует мнение о целесообразности выделения приантарктических вод Тихого, Индийского и Атлантического океанов в особый Южный океан, так как этот регион отличается особым динамическим и термическим режимом.
Распределение материков и океанов по полушариям и широтам неравномерно, что служит объектом специального анализа.
Для природных процессов важное значение имеет масса объектов. Массу географической оболочки точно определить невозможно вследствие неопределенности ее границ.
1.2 Горизонтальная структура географической оболочки
Дифференциация географической оболочки в горизонтальном направлении выражается в территориальном распределении геосистем, которые представлены тремя уровнями размерности: планетарным, или глобальным, региональным и локальным. Важнейшими факторами, определяющими структуру геосистем на глобальном уровне, являются шарообразность Земли и замкнутость пространства географической оболочки. Они определяют поясно-зональный характер распределения физико-географических характеристик и замкнутость, кругообразность движений (круговороты).
Распределение суши, океана и ледников также является важным фактором, обусловливающим известную мозаичность не только внешнего облика земной поверхности, но и типов процессов.
Динамическим фактором, воздействующим на направление движений вещества в географической оболочке, является сила Кориолиса.
Перечисленные факторы определяют общие особенности атмосферной и океанической циркуляции, которая зависит от планетарной структуры географической оболочки. [4, 82]
На региональном уровне на первый план выступают различия в местоположениях и очертаниях материков и океанов, рельефе поверхности суши, определяющие особенности распределения тепла и влаги, типов циркуляции, особенности расположения географических зон и другие отклонения от общей картины планетарных закономерностей. В региональном плане существенно положение территории относительно береговой линии, центра или осевой линии материка или акватории и т.д.
От этих пространственных факторов зависит характер взаимодействия между региональными геосистемами (морской или континентальный климат, муссонная циркуляция или преобладание западного переноса и т.д.).
Существенное значение имеют конфигурация региональной геосистемы, границы ее с другими геосистемами, степень контрастности между ними и т.д.
На локальном уровне (малые части региона площадью от десятков квадратных метров до десятков квадратных километров) факторами дифференциации являются различные детали строения рельефа (мезо- и микроформы - речные долины, водоразделы и т.п.), состав горных пород, их физические и химические свойства, форма и экспозиция склонов, тип увлажнения и другие частные особенности, придающие земной поверхности дробную неоднородность.
Многие физико-географические явления распределяются на земной поверхности в форме вытянутых преимущественно вдоль параллелей или субширотно (т.е. под некоторым углом к ним) полос. Это свойство географических явлений называется зональностью. Такая пространственная структура свойственна, прежде всего, климатическим показателям, растительным группировкам, типам почв; она проявляется в гидрологических и геохимических явлениях, как производная от первых. В основе зональности физико-географических явлений находится известная закономерность поступления на земную поверхность солнечной радиации, приход которой убывает от экватора к полюсам по закону косинуса. Если бы не особенности атмосферы и подстилающей поверхности, то приход солнечной радиации - энергетической основы всех процессов в оболочке - в точности определялся бы этим законом. Однако земная атмосфера имеет различную прозрачность в зависимости от облачности, а также запыленности, количества водяного пара и других компонентов и примесей. Распределение прозрачности атмосферы имеет, в числе прочих, зональную составляющую, что легко заметить на космическом снимке Земли: на нем полосы облаков образуют пояса (в особенности вдоль экватора и в умеренных и полярных широтах). Таким образом, на правильное закономерное убывание прихода солнечной радиации от экватора к полюсам накладывается более пестрая картина прозрачности атмосферы, выступающей в качестве дифференцирующего фактора солнечной радиации. [7, 105]
От солнечной радиации зависит температура воздуха. Однако на характер ее распределения влияет еще один дифференцирующий фактор - термические свойства земной поверхности (теплоемкость, теплопроводность), обусловливающий еще большую мозаичность распределения температур (по сравнению с солнечной радиацией). На распределение тепла, а, следовательно, и температуры поверхности влияют океанические и воздушные течения, образующие системы переноса тепла.
Еще более сложно распределяются на земном шаре атмосферные осадки. Они имеют две четко выраженные составляющие: зональную и секторную, связанные с положением на западной или восточной части континента, на суше или на море. Закономерности пространственного распределения перечисленных климатических факторов представлены на картах Физико-географического атласа мира. [7, 106]
Совместное воздействие тепла и влаги является тем основным фактором, который определяет большинство физико-географических явлений. Поскольку в распределении влаги и, особенно, тепла сохраняется поширотная ориентация, то и все производные от климата явления ориентированы соответствующим образом. Создается сопряженная пространственная система, имеющая поширотную структуру. Она называется географической поясностью. Поясная структура природных явлений на земной поверхности впервые достаточно отчетливо была отмечена А. Гумбольдтом, хотя о тепловых поясах, т.е. основе географической поясности, знали еще в Древней Греции. [7, 113] В конце прошлого века В.В. Докучаевым был сформулирован мировой закон зональности. В первой половине нашего века ученые стали говорить о географических зонах - вытянутых территориях с однотипным характером многих физико-географических явлений и их взаимодействий.
Помимо территориальной дифференциации вообще, характернейшей структурной чертой географической оболочки Земли является особая форма этой дифференциации - зональность, т.е. закономерное изменение всех географических компонентов и географических ландшафтов по широте (от экватора к полюсам). Основные причины зональности - форма Земли и положение Земли относительно Солнца, а предпосылка - падение солнечных лучей на земную поверхность под углом, постепенно уменьшающимся в обе стороны от экватора. Не будь этой космической предпосылки, не было бы и зональности. Но очевидно также, что если бы Земля была не шаром, а плоскостью, как угодно ориентированной к потоку солнечных лучей, лучи падали бы на нее всюду одинаково и, следовательно, нагревали бы плоскость одинаково во всех ее точках. Есть на Земле черты, внешне напоминающие широтную географическую зональность, например последовательная смена с юга на север поясов конечных морен, нагроможденных отступавшим ледниковым покровом. Говорят иногда о зональности рельефа Польши, потому, что здесь с севера на юг сменяют друг друга полосы приморских равнин, конечноморенных гряд, ореднепольских низменностей, возвышенностей на складчато-глыбовом основании, древних (герцинских) гор (Судеты) и молодых (третичных) складчатых гор (Карпаты). Говорят даже о зональности мегарельефа Земли. Однако, только то, что прямо или косвенно обусловлено изменением угла падения солнечных лучей на земную поверхность, и может относиться к подлинно зональным явлениям. То, что похоже на них, но возникает по другим причинам, надо называть иначе.
Г.Д. Рихтер, следуя А.А. Григорьеву, предлагает различать понятия зональности и поясности, подразделяя при этом пояса на радиационные и тепловые. Радиационный пояс определяется количеством поступающей солнечной радиации, закономерно убывающим от низких широт к высоким. [4, 82]
На поступление это влияет форма Земли, но не влияет характер земной поверхности, оттого границы радиационных поясов совпадают с параллелями. Формирование тепловых поясов контролируется уже не только солнечной радиацией. Здесь имеют значение и свойства атмосферы (поглощение, отражение, рассеяние лучистой энергии), и альбедо земной поверхности, и перенос тепла морскими и воздушными течениями, вследствие чего границы тепловых поясов нельзя совместить с параллелями. Что касается географических зон, то их существенные черты обусловлены соотношением тепла и влаги. Соотношение это зависит, конечно, от количества радиации, но также и от факторов, лишь частично привязанных к широте (количество адвективного тепла, количество влаги в виде осадков и стока). Вот почему зоны не образуют непрерывных полос, и простирание их вдоль параллелей скорее частный случай, чем общий закон.
Если суммировать приведенные выше соображения, то их можно свести к тезису: свое конкретное содержание зональность приобретает в особых условиях географической оболочки Земли. [7, 118]
Для понимания самого принципа зональности довольно безразлично, назовем ли мы пояс зоной или зону поясом; эти оттенки имеют больше таксономическое, чем генетическое значение, ибо количество солнечной радиации одинаково образует фундамент существования и поясов, и зон.
2.2 Периодический закон географической зональности
Открытие В. Докучаевым географических зон как целостных природных комплексов было одним из крупнейших событий в истории географической науки. [6, 15] После этого на протяжении почти полувека географы занимались конкретизацией и как бы «вещественным наполнением» этого закона: уточнялись границы зон, делались их подробные характеристики, накопление фактического материала позволило выделить внутри зон подзоны, установлена была неоднородность зон по простиранию (выделение провинций), исследовались причины выклинивания зон и отклонения их направления от теоретического, разрабатывалась группировка зон в пределах более крупных таксономических подразделений - поясов и т.д.
Принципиально новый шаг в проблеме зональности был сделан А.А. Григорьевым и М.И. Будыко, которые подвели под явления зональности физический и количественный базис и сформулировали периодический закон географической зональности, лежащий в основе структуры ландшафтной оболочки Земли.
Закон опирается на учет трех тесно взаимосвязанных факторов. Один из них - годовой радиационный баланс (R) земной поверхности, т.е. разница между количеством тепла, поглощаемого этой поверхностью, и количеством тепла, отдаваемого ею. Второй - это годовая сумма атмосферных осадков (r). Третий, получивший название радиационного индекса сухости (К), представляет отношение первых двух:
Размерность: R в ккал/см 2 в год, r - в г/см 2 , L - в ккал/г в год, - в ккал/см 2 . [1, 47]
Оказалось, что одно и то же значение К повторяется в зонах, относящихся к разным географическим поясам. При этом величина К определяет тип ландшафтной зоны, а величина R - конкретный характер и облик зоны (таблица I). Например, К>3 во всех случаях указывает на тип пустынных ландшафтов, но в зависимости от величины R, т.е. от количества тепла, облик пустыни меняется: при R = 0-50 ккал/см 2 в год - это пустыня умеренного климата, при R = 50-75 - пустыня субтропическая и при R>75 - пустыня тропическая.
Если К близок к единице, это значит, что между теплом и влагой существует соразмерность: осадков выпадает столько, сколько может испариться. Такой индекс обеспечивает биокомпонентам бесперебойность процессов испарения и транспирации, а также аэрации грунтов. Отклонение К в обе стороны от единицы создает диспропорции: при недостатке влаги (К>1) нарушается бесперебойное течение процессов испарения и транспирации, при избытке влаги (К<1) - процессов аэрации; и то и другое сказывается на биокомпонентах отрицательно.
Значение работ М.И. Будыко и А.А. Григорьева двоякое: 1) подчеркнута характерная черта зональности - ее периодичность, что может быть сопоставимо с важностью открытия Д.И. Менделеевым периодического закона химических элементов; 2) установлены ориентировочные количественные показатели для проведения границ ландшафтных зон.
Современные представления о связях и взаимодействии отдельных компонентов ландшафтной оболочки Земли позволяют построить теоретическую модель ландшафтных зон на суше на примере так называемого однородного идеального материка (рис. 1). Размеры его соответствуют половине площади суши земного шара, конфигурация - ее расположению по широтам, а поверхность - невысокая равнина; на месте горных систем типы зон экстраполированы. [8, 116]
Из схемы гипотетического материка необходимо сделать два основных вывода: 1) большинство географических зон не имеет западно-восточного простирания и, как правило, не опоясывает земной шар и 2) у каждого пояса свои наборы зон.
Объяснение этого в том, что суша и море на Земле размещены неравномерно, берега континентов омываются в одних случаях холодными, в других - теплыми морскими течениями, а рельеф суши весьма разнообразен. Распределение зон зависит также и от циркуляции атмосферы, т.е. от направления адвекции тепла и влаги. Если господствует меридиональный перенос (т.е. совпадает с широтным изменением количества радиационного тепла), зональность будет чаще широтная, в случае западного или восточного (т.е. зонального) переноса широтная зональность скорее исключение, зоны приобретают различное простирание и очертания (полосы, пятна и т.п.) и не очень протяженны. При этом существенные особенности природных зон складываются под воздействием увлажнения и адвекции тепла (или холода) в теплое время года. [7, 121]
Анализу действительной картины географической зональности должно предшествовать разделение земной поверхности на географические пояса. Сейчас обычно выделяют пояса: полярные, субполярные, умеренные, тропические, субтропические, субэкваториальные и экваториальный. Иными словами, под географическим поясом понимают широтное подразделение географической оболочки, обусловленное климатом. Однако главный смысл выделения географических поясов заключается в обрисовке лишь самых общих черт распределения первичного фактора зональности, т.е. тепла, чтобы на этом общем фоне можно было наметить и первые самые крупные детали (тоже достаточно общего характера) - ландшафтные зоны. Этому требованию вполне удовлетворяет деление каждого полушария на пояса холодный, умеренный и жаркий. Границы этих поясов проводятся по изотермам, которые в конкретных величинах отображают влияние на распределение тепла всех факторов - инсоляции, адвекции, степени континентальности, высоты стояния Солнца над горизонтом, продолжительности освещения и т.д. По мнению В.Б. Сочавы, основными звеньями планетарной зональности надо считать всего три пояса: северный внетропический, тропический и южный внетропический.
В последнее время в географической литературе проступает тенденция к увеличению не только числа географических поясов, но и числа ландшафтных зон. В.В. Докучаев в 1900 г. говорил о семи зонах (бореальная, северная лесная, лесостепная, черноземная, сухих степей, аэральная, латеритная), Л.С. Берг (1938) - о 12, П.С. Макеев (1956) описывает уже около трех десятков зон. В Физико-географическом атласе мира выделено 59 зональных (т.е. укладывающихся в зоны и подзоны) типов ландшафтов суши. [11, 154]
Ландшафтная (географическая, природная) зона есть крупная часть географического пояса, характеризующаяся господством какого-нибудь одного зонального типа ландшафта.
Названия ландшафтных зон даются чаще всего по геоботаническому признаку, так как растительный покров - чрезвычайно чуткий индикатор разнообразных природных условий. Необходимо, однако, иметь в виду два положения. Первое: ландшафтная зона не идентична ни геоботанической, ни почвенной, ни геохимической и никакой другой зоне, объективно выделяемой по отдельному компоненту ландшафтной оболочки Земли. В ландшафтной зоне тундр есть не только тип тундровой растительности, но и леса по долинам рек. В ландшафтную зону степей почвоведы укладывают и зону черноземов, и зону каштановых почв и т.п. Второе: облик любой ландшафтной зоны создается не только совокупностью современных природных условий, но и историей их формирования. В частности, систематический состав флоры и фауны сам по себе не дает представления о зональности. Черты зональности растительности и животному миру сообщает адаптация их представителей (а еще более - их сообществ, биоценозов) к экологической обстановке и как следствие выработка в процессе эволюции комплекса жизненных форм, отвечающего географическому содержанию ландшафтной зоны.
На первых этапах изучения зональности полагали как нечто само собой разумеющееся, что зональность южного полушария всего лишь зеркальное отражение зональности северного полушария, несколько ущербленное меньшими размерами материковых пространств. Как будет видно из дальнейшего, подобные предположения не оправдались, и от них приходится отказаться.
Опытам подразделения земного шара на ландшафтные зоны и описанию зон посвящена обширная литература. Схемы деления, несмотря на некоторые различия, во всех случаях убедительно доказывают реальность ландшафтных зон.
По причине зонального распределения солнечной лучистой энергии на Земле зональны: температуры воздуха, воды и почвы, испарение и облачность, атмосферные осадки, барический рельеф и системы ветров, свойства воздушных масс, климаты, характер гидрографической сети и гидрологические процессы, особенности геохимических процессов, выветривания и почвообразования, типы растительности и жизненные формы растений и животных, скульптурные формы рельефа, в известной степени типы осадочных пород, наконец, географические ландшафты, объединенные в связи с этим в систему ландшафтных зон. [12, 183]
Зональность тепловых условий известна была еще географам античного времени; у некоторых из них можно найти и элементы представлений о природных зонах Земли. А. Гумбольдт установил зональность и высотную поясность растительности. Но честь и заслуга подлинного научного открытия географической зональности принадлежит В.В. Докучаеву. Оно привело к огромным сдвигам в содержании географии и ее теоретического базиса. В.В. Докучаев называл зональность мировым законом. Однако было бы ошибкой понимать это буквально, так как ученый имел, конечно, в виду универсальность проявления зональности лишь на поверхности земного шара.
По мере удаления от земной поверхности (вверх или вниз) зональность постепенно затухает. Например, в абиссальной области океанов повсеместно господствует постоянная и довольно низкая температура (от -0,5 до +4°), солнечный свет сюда не проникает, растительных организмов нет, водные массы практически остаются почти в полном покое, т.е. нет причин, которые могли бы вызвать на океаническом дне возникновение и смену зон. Некоторый намек на зональность можно было бы усмотреть в распределении морских осадков: коралловые отложения приурочены к тропическим широтам, диатомовые илы - к полярным. Но это лишь пассивное отражение на морском дне тех зональных процессов, которые свойственны поверхности океана, где ареалы коралловых колоний и диатомовых водорослей действительно располагаются по законам зональности. Остатки же скорлупок диатомей и продукты разрушения коралловых построек попросту «спроектированы» на дно моря безотносительно к тем условиям, какие там существуют.
Размывается зональность и в высоких слоях атмосферы. Источник энергии нижней атмосферы - освещаемая Солнцем земная поверхность. Следовательно, солнечная радиация играет тут косвенную роль, и процессы в нижней атмосфере регулируются поступлением тепла от земной поверхности. Что касается верхней атмосферы, то наиболее существенные для нее явления - следствие прямого воздействия Солнца. Причина убывания температуры с высотой в тропосфере (в среднем 6° на каждый километр) - удаление от основного для тропосферы энергетического источника (Земли). Температура же высоких слоев от земной поверхности не зависит и определяется балансом лучистой энергии самих частиц воздуха. По-видимому, рубеж влияний лежит на высоте около 20 км, потому что выше (вплоть до 90-100 км) действует динамическая система, независимая от тропосферной. [7, 143]
Быстро исчезают зональные различия в земной коре. Сезонные и суточные колебания температуры охватывают слой горных пород толщиной не более 15-30 м; на этой глубине устанавливается постоянная температура, одинаковая круглый год и равная средней годовой температуре воздуха данной местности. Ниже постоянного слоя температура с глубиной нарастает. И ее распределение, как в вертикальном, так и в горизонтальном направлении дальше связано уже не с солнечной радиацией, а с источниками энергии земных недр, поддерживающей, как известно, азональные процессы.
Зональность во всех случаях затухает по мере приближения к границам ландшафтной оболочки, и это может послужить вспомогательным диагностическим признаком для установления этих границ.
Немалое значение в явлениях зональности имеют положение Земли в Солнечной системе и отчасти размеры Земли. На Плутоне, самом окраинном из членов Солнечной системы, получающем от Солнца в 1600 раз меньше тепла, чем Земля, нет никаких зон: его поверхность - сплошная ледяная пустыня. Луна вследствие своих малых размеров не смогла удержать вокруг себя атмосферу. Оттого на нашем спутнике нет ни воды, ни организмов, нет и видимых следов зональности. Зачаточная видимая зональность есть на Марсе: две полярные шапки и пространство между ними. Здесь причина эмбрионального характера зон не только расстояние от Солнца (оно в полтора раза больше земного), но и малая масса планеты (0,11 земной), вследствие чего сила тяжести меньше (0,38 земной) и атмосфера крайне разрежена: при 0° и давлении 1 кг/см 2 она «спрессовалась» бы в слой толщиной всего 7 м, и крыша любого нашего городского дома оказалась бы в этих условиях за пределами воздушной оболочки Марса. [5, 14]
Закон зональности встречал и встречает у отдельных авторов возражения. В 1930-х годах некоторые советские географы, главным образом почвоведы, взялись за «пересмотр» докучаевского закона зональности, а учение о климатических зонах даже объявлено было схоластическим. Реальное существование зон отрицалось таким соображением: земная поверхность в своем облике и строении настолько сложна и мозаична, что выделить на ней зональные черты можно только путем большой генерализации. Иными словами, конкретных зон в природе нет, они - плод абстрактно логического построения. Беспомощность подобной аргументации бросается в глаза, потому что: 1) любой общий закон (природы, общества, мышления) устанавливается методом генерализации, отвлечения от частностей, причем именно при помощи абстракции наука переходит от познания явления к познанию его сущности; 2) никакая генерализация не в состоянии выявить то, чего на самом деле нет.
Впрочем, «поход» против зональной концепции принес и положительные плоды: он послужил серьезным толчком к более подробной, чем у В.В. Докучаева, разработке проблемы внутренней разнородности природных зон, к формированию понятия об их провинциях (фациях). Отметим попутно, что многие противники зональности вскоре вновь вернулись в лагерь ее сторонников.
Другие ученые, не отрицая зональности вообще, отрицают лишь существование ландшафтных зон, полагая, что зональност
Зональность земли курсовая работа. География и экономическая география.
Реферат: Влияние на почки неспецифических веществ. Скачать бесплатно и без регистрации
Курсовая Работа На Тему Аддиктивные Формы Поведения Личности И Их Профилактика
Посмотреть Диссертации
Доклад: Экологические проблемы государств Средней Азии и Казахстана . Скачать бесплатно и без регистрации
Реферат по теме О соотношении детерминистического и вероятностного в живой и неживой природе
Итоговая Контрольная Работа 5 Класс Разумовская
Курсовая работа по теме Особенности производства дознания
Контрольная работа по теме Инвестиционные модели интернационализации бизнеса
Реферат: Перечень сокращений
Дипломная работа по теме Разработка и практическое выполнение коллекции причесок из длинных волос
Реферат: The Rise Of The Super Power Essay
Дипломная работа: Расчет и проектирование дискового долбяка и участка инструментального цеха
Реферат по теме Организационно-экономический механизм взаимодействия участников сферы управления объектами жилой нед...
Реферат: Новая экономическая политика. Скачать бесплатно и без регистрации
Сочинение Про Юрия Долгорукого Егэ
Реферат На Тему Медицина И Педагогика На Пути Интеграции
Эссе На Тему Принцип Разделения Властей
Контрольная Работа На Тему Социальные Пенсии
Ремхе Ирина Николаевна Диссертация Доктора Наук
Реферат: Анализ ТСО, достоинства и недостатки
Место и роль бухгалтерского подразделения на предприятии - Бухгалтерский учет и аудит реферат
Управленческий учет вознаграждений работников торговли - Бухгалтерский учет и аудит дипломная работа
Строение организма человека: клетки, ткани, органы, нервная система и мозг - Биология и естествознание реферат


Report Page