Защита каналов связи - Коммуникации, связь, цифровые приборы и радиоэлектроника курсовая работа

Защита каналов связи - Коммуникации, связь, цифровые приборы и радиоэлектроника курсовая работа



































Создание телекоммуникационной инфраструктуры, связывающей удаленные офисы фирм, обеспечение безопасности информационных потоков между ними. Защита информации, передаваемой по каналам связи, на базе сертифицированных криптошлюзов и протокола IPSec.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ОАНО «ВОЛЖСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Н. ТАТИЩЕВА»
ФАКУЛЬТЕТ «ИНФОРМАТИКА И ТЕЛЕКОММУНИКАЦИИ»
Кафедра «Информатика и системы управления»
по дисциплине: «Методы и средства защиты компьютерной информации»
1. Защита информации в каналах связи и создание защищённых телекоммуникационных систем
2. Удаленный доступ к информационным ресурсам. Защита информации, передаваемой по каналам связи
2.1 Решения на базе сертифицированных криптошлюзов
2.2 Решения на базе протокола IPSec
3. Технологии информационной безопасности в информационно-телекоммуникационных системах (ИТС)
Защита (безопасность) информации является неотъемлемой составной частью общей проблемы информационной безопасности, роль и значимость которой во всех сферах жизни и деятельности общества и государства на современном этапе неуклонно возрастают.
Производство и управление, оборона и связь, транспорт и энергетика, банковское дело, финансы, наука и образование, средства массовой информации всё больше зависят от интенсивности информационного обмена, полноты, своевременности, достоверности и безопасности информации.
В связи с этим проблема безопасности информации стала предметом острой озабоченности руководителей органов государственной власти, предприятий, организаций и учреждений независимо от их организационно-правовых форм и форм собственности.
Бурное развитие средств вычислительной техники открыло перед человечеством небывалые возможности по автоматизации умственного труда и привело к созданию большого числа разного рода автоматизированных информационно-телекоммуникационных и управляющих систем, к возникновению принципиально новых, так называемых информационных технологий.
При выработке подходов к решению проблемы компьютерной, информационной безопасности следует всегда исходить из того, что защита информации и вычислительной системы не является самоцелью. Конечной целью создания системы компьютерной безопасности является защита всех категорий субъектов, прямо или косвенно участвующих в процессах информационного взаимодействия, от нанесения им ощутимого материального, морального или иного ущерба в результате случайных или преднамеренных воздействий на информацию и системы ее обработки и передачи.
В условиях нарастающих интеграционных процессов и создания единого информационного пространства во многих организациях ЛАНИТ предлагает провести работы по созданию защищенной телекоммуникационной инфраструктуры, связывающей удаленные офисы фирм в единое целое, а также обеспечение высокого уровня безопасности информационных потоков между ними.
Применяемая технология виртуальных частных сетей позволяет объединять территориально распределенные сети как с помощью защищенных выделенных каналов, так и виртуальных каналов, проходящих через глобальные общедоступные сети. Последовательный и системный подход к построению защищенных сетей предполагает не только защиту внешних каналов связи, но и эффективную защиту внутренних сетей путем выделения замкнутых внутренних контуров VPN. Таким образом, применение технологии VPN позволяет организовать безопасный доступ пользователей в Интернет, защитить серверные платформы и решить задачу сегментирования сети в соответствии с организационной структурой.
Защита информации при передаче между виртуальными подсетями реализуется на алгоритмах асимметричных ключей и электронной подписи, защищающей информацию от подделки. Фактически данные, подлежащие межсегментной передаче, кодируются на выходе из одной сети, и декодируются на входе другой сети, при этом алгоритм управления ключами обеспечивает их защищенное распределение между оконечными устройствами. Все манипуляции с данными прозрачны для работающих в сети приложений.
При межсетевом взаимодействии между территориально удаленными объектами компании возникает задача обеспечения безопасности информационного обмена между клиентами и серверами различных сетевых служб. Сходные проблемы имеют место и в беспроводных локальных сетях (Wireless Local Area Network, WLAN), а также при доступе удаленных абонентов к ресурсам корпоративной информационной системы. В качестве основной угрозы здесь рассматривается несанкционированное подключение к каналам связи и осуществление перехвата (прослушивания) информации и модификация (подмена) передаваемых по каналам данных (почтовые сообщения, файлы и т.п.).
Для защиты данных, передаваемых по указанным каналам связи, необходимо использовать соответствующие средства криптографической защиты. Криптопреобразования могут осуществляться как на прикладном уровне (или на уровнях между протоколами приложений и протоколом TCP/IP), так и на сетевом (преобразование IP-пакетов).
В первом варианте шифрование информации, предназначенной для транспортировки по каналу связи через неконтролируемую территорию, должно осуществляться на узле-отправителе (рабочей станции - клиенте или сервере), а расшифровка - на узле-получателе. Этот вариант предполагает внесение существенных изменений в конфигурацию каждой взаимодействующей стороны (подключение средств криптографической защиты к прикладным программам или коммуникационной части операционной системы), что, как правило, требует больших затрат и установки соответствующих средств защиты на каждый узел локальной сети. К решениям данного варианта относятся протоколы SSL, S-HTTP, S/MIME, PGP/MIME, которые обеспечивают шифрование и цифровую подпись почтовых сообщений и сообщений, передаваемых с использованием протокола http.
Второй вариант предполагает установку специальных средств, осуществляющих криптопреобразования в точках подключения локальных сетей и удаленных абонентов к каналам связи (сетям общего пользования), проходящим по неконтролируемой территории. При решении этой задачи необходимо обеспечить требуемый уровень криптографической защиты данных и минимально возможные дополнительные задержки при их передаче, так как эти средства туннелируют передаваемый трафик (добавляют новый IP-заголовок к туннелируемому пакету) и используют различные по стойкости алгоритмы шифрования. В связи с тем, что средства, обеспечивающие криптопреобразования на сетевом уровне полностью совместимы с любыми прикладными подсистемами, работающими в корпоративной информационной системе (являются «прозрачными» для приложений), то они наиболее часто и применяются. Поэтому, остановимся в дальнейшем на данных средствах защиты информации, передаваемой по каналам связи (в том числе и по сетям общего доступа, например, Internet). Необходимо учитывать, что если средства криптографической защиты информации планируются к применению в государственных структурах, то вопрос их выбора должен решаться в пользу сертифицированных в России продуктов.
Для реализации второго варианта и обеспечения конфиденциальности и достоверности информации, передаваемой между объектами компании по каналам связи, можно использовать сертифицированные криптошлюзы (VPN-шлюзы). Например, Континент-К, VIPNet TUNNEL, ЗАСТАВА-Офис компаний НИП «Информзащита», Инфотекс, Элвис+. Эти устройства обеспечивают шифрование передаваемых данных (IP-пакетов) в соответствии с ГОСТ 28147-89, а также скрывают структуру локальной сети, защищают от проникновения извне, осуществляют маршрутизацию трафика и имеют сертификаты Гостехкомиссии РФ и ФСБ (ФАПСИ).
Криптошлюзы позволяют осуществить защищенный доступ удаленных абонентов к ресурсам корпоративной информационной системы (рис. 1). Доступ производится с использованием специального программного обеспечения, которое устанавливается на компьютер пользователя (VPN-клиент) для осуществления защищенного взаимодействия удаленных и мобильных пользователей с криптошлюзом. Программное обеспечение криптошлюза (сервер доступа) проводит идентификацию и аутентификацию пользователя и осуществляет его связь с ресурсами защищаемой сети.
Рисунок 1. - «Удаленный доступ по защищенному каналу с
С помощью криптошлюзов можно формировать виртуальные защищенные каналы в сетях общего пользования (например, Internet), гарантирующие конфиденциальность и достоверность информации и организовывать виртуальные частные сети (Virtual Private Network - VPN), которые представляют собой объединение локальных сетей или отдельных компьютеров, подключенных к сети общего пользования в единую защищенную виртуальную сеть. Для управления такой сетью обычно используется специальное программное обеспечение (центр управления), которое обеспечивает централизованное управление локальными политиками безопасности VPN-клиентов и криптошлюзов, рассылает для них ключевую информацию и новые конфигурационные данные, обеспечивает ведение системных журналов. Криптошлюзы могут поставляться как программные решения, так и как аппаратно-программные комплексы. К сожалению, большинство из сертифицированных криптошлюзов не поддерживает протокол IPSec и, поэтому они функционально не совместимы с аппаратно-программными продуктами других производителей.
Протокол IP Security (IPSec) является базовым для построения систем безопасности сетевого уровня, представляет собой набор открытых международных стандартов и поддерживается большинством производителей решений по защите сетевой инфраструктуры. Протокол IPSec позволяет организовать на сетевом уровне потоки защищенных и аутентичных данных (IP-пакетов) между различными взаимодействующими принципалами, включая компьютеры, межсетевые экраны, маршрутизаторы, и обеспечивает:
· аутентификацию, шифрование и целостность передаваемых данных (IP-пакетов);
· защиту от повторной передачи пакетов (replay attack);
· создание, автоматическое обновление и защищенное распространение криптографических ключей;
· использование широкого набора алгоритмов шифрования (DES, 3DES, AES) и механизмов контроля целостности данных (MD5, SHA-1). Существуют программные реализации протокола IPSec, использующие российские алгоритмы шифрования (ГОСТ 28147-89), хеширования (ГОСТ Р 34.11-94), электронной цифровой подписи (ГОСТ Р 34.10-94);
· аутентификацию объектов сетевого взаимодействия на базе цифровых сертификатов.
Текущий набор стандартов IPSec включает в себя базовые спецификации, определенные в документах RFC (RFC 2401-2412, 2451). Request for Comments (RFC) - серия документов группы Internet Engineering Task Force (IETF), начатая в 1969 году и содержащая описания набора протоколов Internet. Архитектура системы определена в RFC 2401 «Security Architecture for Internet Protocol», а спецификации основных протоколов в следующих RFC:
· RFC 2402 «IP Authentication Header» - спецификация протокола AH, обеспечивающего целостность и аутентификацию источника передаваемых IP-пакетов;
· RFC 2406 «IP Encapsulating Security Payload» - спецификация протокола ESP, обеспечивающая конфиденциальность (шифрование), целостность и аутентификацию источника передаваемых IP-пакетов;
· RFC 2408 «Internet Security Association and Key Management Protocol» - спецификация протокола ISAKMP, обеспечивающего согласование параметров, создание, изменение, уничтожение защищенных виртуальных каналов (Security Association - SA) и управление необходимыми ключами;
· RFC 2409 «The Internet Key Exchange» - спецификация протокола IKE (включает в себя ISAKMP), обеспечивающего согласование параметров, создание, изменение и уничтожение SA, согласование, генерацию и распространение ключевого материала, необходимого для создания SA.
Протоколы AH и ESP могут использоваться как совместно, так и отдельно. Протокол IPSec для обеспечения безопасного сетевого взаимодействия использует симметричные алгоритмы шифрования и соответствующие ключи. Механизмы генерации и распространения таких ключей предоставляет протокол IKE.
Защищенный виртуальный канал (SA) - важное понятие в технологии IPSec. SA - направленное логическое соединение между двумя системами, поддерживающими протокол IPSec, которое однозначно идентифицируется следующими тремя параметрами:
· индексом защищенного соединения (Security Parameter Index, SPI - 32-битная константа, используемая для идентификации различных SA c одинаковыми IP-адресом получателя и протоколом безопасности);
· IP-адресом получателя IP-пакетов (IP Destination Address);
· протоколом безопасности (Security Protocol - один из AH или ESP протоколов).
В качестве примера, на рисунке 2 приводится решение удаленного доступа по защищенному каналу компании Cisco Systems на базе протокола IPSec. На компьютер удаленного пользователя устанавливается специальное программное обеспечение Cisco VPN Client. Существуют версии данного программного обеспечения для различных операционных систем - MS Windows, Linux, Solaris.
Рисунок 2. - «Удаленный доступ по защищенному каналу с
Cisco VPN Client взаимодействует с Cisco VPN Series 3000 Concentrator и создает защищенное соединение, которое называется IPSec-туннелем, между компьютером пользователя и частной сетью, находящейся за VPN-концентратором. VPN-концентратор представляет собой устройство, которое терминирует IPSec-туннели от удаленных пользователей и управляет процессами установки защищенных соединений с VPN-клиентами, установленными на компьютерах пользователей. К недостаткам такого решения можно отнести отсутствие поддержки компанией Cisco Systems российских алгоритмов шифрования, хеширования и электронной цифровой подписи.
3 . Технологии информационной безопасности в информационно-
телекоммуникационных системах (ИТС)
телекоммуникационный защита информация канал связь
Эффективная поддержка процессов государственного управления с использованием средств и информационных ресурсов (ИИР) возможна только в том случае, если система будет обладать свойством «защищенности», которое обеспечивается реализацией комплексной системы защиты информации, включающей базовые компоненты защиты - систему управления доступом на объекты ИТС, систему видеонаблюдения и систему безопасности информации.
Краеугольным камнем комплексной системы защиты является система безопасности информации, концептуальные положения которой вытекают из особенностей построения системы и составляющих ее подсистем и понятия «защищенной» системы, которое может быть сформулировано следующим образом:
Защищенная ИТС - информационно-телекоммуникационная система, обеспечивающая устойчивое выполнение целевой функции в рамках заданного перечня угроз безопасности и модели действий нарушителя.
Перечень угроз безопасности и модель действий нарушителя определяется широким спектром факторов, включающих эксплуатационный процесс ИТС, возможные ошибочные и несанкционированные действий обслуживающего персонала и пользователей, отказы и сбои оборудования, пассивные и активные действия нарушителей.
При построении ИТС органам государственной власти (ОГВ) целесообразно рассматривать три базовые категории угроз безопасности информации, которые могут привести к нарушению выполнения основной целевой функции системы - эффективная поддержка процессов государственного управления:
· отказы и сбои в аппаратных средствах системы, аварийные ситуации и т.п. (события без участия человека);
· ошибочные действия и непреднамеренные несанкционированные действия обслуживающего персонала и абонентов системы;
· несанкционированные действия (пассивные и активные) нарушителей.
Несанкционированные действия нарушителя могут относиться к пассивным действиям (перехват информации в канале связи, перехват информации в технических каналах утечки) и к активным действиям (перехват информации с носителей информации с явным нарушением правил доступа к информационным ресурсам, искажение информации в канале связи, искажение, включая уничтожение, информации на носителях информации с явным нарушением правил доступа к информационным ресурсам, введение дезинформации).
Со стороны нарушителя могут осуществляться также активные действия, направленные на анализ и преодоление системы защиты информации. Данный тип действия целесообразно выделить в отдельную группу, поскольку, преодолев систему защиты, нарушитель может выполнять действия без явного нарушения правил доступа к информационным ресурсам.
В указанном выше типе действий целесообразно выделить возможные действия, направленные на внедрение аппаратно-программных закладок в оборудование ИТС, что в первую очередь определяется использованием зарубежного оборудования, элементной базы и программного обеспечения.
На основе анализа архитектуры ИТС и угроз может быть сформирована общая архитектура системы безопасности информации, включающая следующие основные подсистемы:
· подсистему управления системой безопасности информации;
· подсистему безопасности в информационной подсистеме;
· подсистему безопасности в телекоммуникационной подсистеме;
· подсистему безопасности при межсетевом взаимодействии;
· подсистему выявления и противодействия активным действиям нарушителей;
· подсистему выявления и противодействия возможным аппаратно-программным закладкам.
Следует отметить, что последние три подсистемы, в общем случае, являются компонентами второй и третьей подсистем, но с учетом сформулированных выше особенностей, целесообразно их рассматривать как отдельные подсистемы.
Основой системы безопасности информации в ИТС и каждой из ее подсистем является Политика безопасности в ИТС и ее подсистемах, ключевыми положениями которой являются требования использования следующих базовых механизмов и средств обеспечения безопасности информации:
· идентификация и аутентификация абонентов ИТС, оборудования ИТС, обрабатываемой информации;
· контроль информационных потоков и жизненного цикла информации на базе меток безопасности;
· управление доступом к ресурсам ИТС на основе сочетания дискреционной, мандатной и ролевой политик и межсетевого экранирования;
· криптографическая защита информации;
Приведенный перечень механизмов защиты определяется целями системы защиты информации в ИТС, среди которых будем выделять следующие пять основных:
· управление доступом к информационным ресурсам ИТС;
· обеспечение конфиденциальности защищаемой информации;
· контроль целостности защищаемой информации;
· неотрицаемость доступа к информационным ресурсам;
· готовность информационных ресурсов.
Реализация указанных механизмов и средств защиты базируется на интеграции аппаратно-программных средств защиты в аппаратно-программные средства ИТС и обрабатываемую информацию.
Отметим, что под термином «информация» в ИТС понимаются следующие виды информации:
· пользовательская информация (информация, необходимая для управления и принятие решений);
· служебная информация (информация, обеспечивающая управлением оборудованием ИТС);
· специальная информация (информация, обеспечивающая управление и работу средств защиты);
· технологическая информация (информация, обеспечивающая реализацию всех технологий обработки информации в ИТС).
При этом защите подлежат все перечисленные виды информации.
Важно отметить, что без применения автоматизированных средств управления системой безопасности информации невозможно обеспечить устойчивую работу системы безопасности в территориально-распределенной системе обработки информации, взаимодействующей как с защищенными, так и не защищенными системами в контуре ИТС и обрабатывающей информацию различного уровня конфиденциальности.
Основными целями подсистемы управления безопасностью информации являются:
· формирование, распределение и учет специальной информации, используемой в подсистемах защиты (ключевая информация, парольная информация, метки безопасности, права доступа к информационным ресурсам и т.п.);
· конфигурирование и управление средствами обеспечения безопасности информации;
· согласование политик безопасности во взаимодействующих системах, включая специальную информацию;
· актуализация Политики безопасности в ИТС с учетом различных периодов эксплуатации, внедрения в ИТС новых технологий обработки информации.
Реализация подсистемы управления безопасностью информации требует создания единого центра управления, взаимодействующего с локальными центрами управления безопасностью телекоммуникационной и информационной подсистемам ИТС, центрами управления безопасностью информации во взаимодействующих сетях и агентами безопасности информации на объектах системы.
Архитектура системы управления безопасностью информации должна быть фактически идентична архитектуре самой ИТС, а с точки зрения ее реализации должны выполняться следующие принципы:
· центр управления безопасностью информации и локальные центры управления должны реализовываться на выделенных аппаратно-программных средствах с использованием отечественных средств;
· агенты управления безопасностью должны интегрироваться в аппаратно-программные средства рабочих мест системы с возможностью независимого от них управления со стороны центра и локальных центров.
Подсистема безопасности информации в информационной подсистеме ИТС - одна из наиболее сложных подсистем как с точки зрения механизмов защиты, так и их реализации.
Сложность этой подсистемы определяется тем, что именно в данной подсистеме выполняется основной объем обработки информации, при этом в ней сосредоточены основные ресурсы по доступу к информации абонентов системы - абоненты непосредственно имеют санкционированный доступ как к информации, так и к функциям ее обработки. Именно поэтому основу данной подсистемы составляет система управления доступом к информации и функциям ее обработки.
Базовым механизмом реализации санкционированного доступа к информации и функциям ее обработки является механизм защиты информационных ресурсов от несанкционированных действий, основными компонентами которого являются:
· организационно-технические средства управления доступом к объектам системы, информации и функциям ее обработки;
· система регистрации и учета работы системы и абонентов системы;
· подсистема обеспечения целостности;
Основой реализации отмеченной защиты является архитектурное построение информационной составляющей ИТС - создание логически и информационно выделенных объектов информационного компонента ИТС (банки данных, информационно-справочные комплексы, ситуационные центры). Это позволит реализовать криптографически независимые изолированные объекты, функционирующие по технологии клиент-сервер и не предоставляющие непосредственного доступа к хранилищам информации и функциям ее обработки - вся обработки производится по санкционированного запросу пользователей на базе предоставленных им полномочий.
Для санкционированного предоставления информационных ресурсов абонентам применяются следующие методы и механизмы:
· идентификация и аутентификация абонентов и оборудования системы;
· криптографическая защита информации при хранении;
· криптографический контроль целостности информации при хранении.
При реализации подсистемы безопасности в телекоммуникационном компоненте ИТС необходимо учитывать наличие каналов связи как на контролируемой, так и на не контролируемой территории.
Обоснованным способом защиты информации в каналах связи является криптографическая защита информации в каналах связи на не контролируемой территории в сочетании с организационно-техническими средствами защиты информации в каналах связи на контролируемой территории, с перспективой перехода на криптографическую защиту информации во всех каналах связи ИТС, в том числе с использованием методов технологии VPN. Ресурсом защиты информации в телекоммуникационной подсистеме (с учетом наличия нарушителей с легальным доступом к телекоммуникационным ресурсам) является разграничение доступа к телекоммуникационным ресурсам с регистрацией потоков информации и регламента работы абонентов.
Типовым решением защиты информации в каналах связи является применение абонентского и линейного контуров защиты в сочетании с алгоритмическими и техническими средствами защиты, обеспечивающих (как напрямую, так и косвенно), следующие механизмы защиты:
· защита от утечки информации в каналы связи и в технические каналы;
· контроль сохранности информации при передаче по каналам связи;
· защита от возможных атак нарушителя по каналам связи;
· идентификация и аутентификация абонентов;
· управление доступом к ресурсам системы.
Подсистема безопасности при межсетевом обмене в ИТС основывается на следующих механизмах безопасности:
· управлении доступом к ресурсам межсетевого обмена (межсетевое экранирование);
· идентификации и аутентификации абонентов (включая криптографические способы аутентификации);
· идентификации и аутентификации информации;
· криптографической защиты информации в каналах связи на неконтролируемой территории, а в перспективе - во всех каналах связи;
· криптографической изоляции взаимодействующих систем.
Важное значение в рассматриваемой подсистеме имеет реализация технологии виртуальных частных сетей (VPN), свойства которых во многом решают вопросы как защиты информации в каналах связи, так и противодействия атакам нарушителей со стороны каналов связи.
Существенным также для данной подсистемы является реализация механизмов идентификации и аутентификации информации и абонентов, основным средством которой является цифровая подпись, что объясняется следующими факторами:
· одной из функций ИТС является принятие решений по управлению как отдельными ведомствами и предприятиями, так и государством в целом на основе аналитической обработки информации;
· не исключается существование нарушителей среди абонентов, взаимодействующих с ИТС систем.
Подсистема выявления и противодействия активным действиям нарушителя реализуется на двух основных компонентах: аппаратно-программных средствах выявления и противодействия возможным атакам нарушителей по каналам связи и архитектуре защищенной сети.
Первый компонент - компонент выявления возможных атак, предназначен для защиты в тех подсистемах ИТС, в которых принципиально возможны действия нарушителя в части атак на информационные ресурсы и оборудование ИТС, второй компонент - предназначен для исключения таких действий или существенное их затруднение.
Основными средствами второго компонента являются аппаратно-программные средства, обеспечивающие реализацию методов защиты в соответствии с технологией виртуальных частных сетей (VPN) как при взаимодействии различных объектов ИТС в соответствии с их структурой, так внутри отдельных объектов и подсетей на базе межсетевых экранов или межсетевых экранов со встроенными средствами криптографической защиты.
Подчеркнем, что наиболее эффективное противодействие возможным атакам обеспечивают криптографические средства линейного контура защиты и межсетевого криптографического шлюза для внешних нарушителей и средства управления доступом к информационным ресурсам для легальных пользователей, относящихся к категории нарушителя.
Подсистема выявления и противодействия возможным аппаратно-программным закладкам реализуется комплексом организационно-технических мероприятий при изготовлении и эксплуатации оборудования ИТС, включающем следующие основные мероприятия:
· специальную проверку оборудования и элементной базы зарубежного производства;
· эталонирование программного обеспечения;
· проверка свойств элементной базы, влияющих на эффективность системы защиты;
· проверку целостности программного обеспечения с использованием криптографических алгоритмов.
Одновременно с другими задачами вопрос противодействия возможным аппаратно-программным закладкам обеспечивают и другие средства защиты:
· линейный контур криптографической защиты, обеспечивающий защиту от активизации возможных программных закладок по каналам связи;
· резервирование (дублирование аппаратных средств).
Средствами ИТС на различных объектах системы пользователям ОГВ могут предоставляться различные услуги по передаче информации и информационному обслуживанию, включая:
· защищенную подсистему документооборота;
· защищенную подсистему передачи телефонной информации, данных и организации видеоконференции;
· защищенную подсистему официального информирования, включая создание и обслуживание официальных сайтов руководителей федерального и регионального уровней.
Отметим, что защищенная подсистема документооборота жестко связана с удостоверяющими центрами, обеспечивающими реализацию механизма цифровой подписи.
Рассмотрим более подробно интеграцию средств обеспечения безопасности информации в систему электронного документооборота, в подсистему передачи телефонной информации, подсистему официального информирования и официальный сайт руководителей различного уровня.
Базовым механизмом защиты информации в системе электронного документооборота является цифровая электронная подпись, обеспечивающая идентификацию и аутентификацию документов и абонентов, а также контроль их целостности.
Поскольку особенности системы документооборота ИТС определяются наличием информационного обмена между различными объектами и ведомствами (включая возможный информационный обмен между защищенными и незащищенными системами), а также использованием различных технологий обработки документов в различных ведомствах, то реализация защищенного документооборота с учетом сформулированных факторов требует выполнения следующих мероприятий:
· унификации формата документов в различных ведомствах;
· согласование политик безопасности в различных ведомствах.
Разумеется, что отмеченные требования могут быть решены частично и использованием шлюзов между взаимодействующими системами.
Удостоверяющие центры по своей сути представляют собой распределенную базу данных, обеспечивающих реализацию цифровой подписи в системе документооборота. Несанкционированный доступ к информационным ресурсам этой базы данных полностью разрушает свойство защищенности электронного документооборота. Отсюда вытекают основные особенности системы защиты информации на удостоверяющих центрах:
· управление доступом к ресурсам базы данных удостоверяющих центров (защита от НСД к ресурсам);
· обеспечение устойчивой работы удостоверяющих центров в условиях возможных отказов и сбоев, аварийных ситуациях (защита от разрушения информации баз данных).
Реализация указанных механизмов может быть выполнена в два этапа: на первом этапе механизмы защиты реализуются с использованием организационно-технических мер защиты и режимных мероприятий, включая использование отечественной сертифицированной операционной системы, а на втором - производится интеграция криптографических способов защиты в аппаратно-программные средства при хранении и обработке информации на удостоверяющих центрах.
Особенности защи
Защита каналов связи курсовая работа. Коммуникации, связь, цифровые приборы и радиоэлектроника.
Упражнение Для Глаз Эссе
Отчет по практике: Структура туристической фирмы "Турист" и специфика ее работы
Стиль Жизни Сочинение На Английском
Контрольная Работа На Тему Логистика На Предприятии
Конкурсы Сочинений Для Студентов Колледжей С Сертификатом
Реферат: Венчание на царство
Спилберг Тест Тревожность Курсовая
Реферат: Николай II: реформы или революция
Дипломная работа по теме Система нормативного регулирования бухгалтерского учета и аудита в РФ
Реферат по теме Византия после смерти Феодосия II. Халкидонский собор
Курсовая Работа На Тему Институт Заочного Решения В Гражданском Процессе
Вещные Права На Жилые Помещения Реферат
Сочинение Эссе Егэ
Сочинение По Картине Маковского Дети
Реферат по теме История развития источников права в России
Положительная Курсовая Разница В Бухгалтерском Учете
Эни Турында Сочинение Татарча 4 Класс
Гост Правила Оформления Диссертаций
Курсовая Работа На Тему Методика Анализа Кредитоспособности Заемщиков Коммерческого Банка
Сочинение: Активное противление злу (по произведениям Василя Быкова)
Крайняя необходимость - Государство и право курсовая работа
Правовое регулирование и осуществление контрольно-счетной деятельности - Государство и право реферат
Синергетика безопасной жизнедеятельности - Безопасность жизнедеятельности и охрана труда статья


Report Page