Вакуумная перегонка мазута. Технологическая схема типовой установки АВТ, получаемые продукты и их применение - Производство и технологии реферат

Вакуумная перегонка мазута. Технологическая схема типовой установки АВТ, получаемые продукты и их применение - Производство и технологии реферат




































Главная

Производство и технологии
Вакуумная перегонка мазута. Технологическая схема типовой установки АВТ, получаемые продукты и их применение

Типы промышленных установок. Блок атмосферной перегонки нефти установки. Особенности технологии вакуумной перегонки мазута по масляному варианту. Перекрестноточные посадочные колонны для четкого фракционирования мазута с получением масляных дистиллятов.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ
Государственное образовательное учреждение
высшего профессионального образования
Вакуумная перегонка мазута. Технологическая схема типовой установки АВТ, получаемые продукты и их применение.
Подготовка углеводородных газов к переработке.
Особенно велико современное экономическое значение нефти и газа. Нефть и газ - уникальные и исключительно полезные ископаемые. Продукты их переработки применяют практически во всех отраслях промышленности, на всех видах транспорта, в военном и гражданском строительстве, сельском хозяйстве, энергетике, в быту и т.д. За последние несколько десятилетий из нефти и газа стали вырабатывать в больших количествах разнообразные химические материалы, такие, как пластмассы, синтетические волокна, каучуки, лаки, краски, моющие средства, минеральные удобрения и многое другое. Не зря называют нефть «четным золотом», а XX век - веком нефти и газа. Нефть и газ определяют не только экономику и технический потенциал, но часто и политику государства.
При выборе технологической схемы и режима атмосферной перегонки нефти руководствуются главным образом ее фракционным составом и, прежде всего, содержанием в ней газов и бензиновых фракций.
Перегонку стабилизированных нефтей постоянного состава с небольшим количеством растворенных газов (до 1,2 % по С 4 включительно), относительно невысоким содержанием бензина (12-15 %) и выходом фракций до 350°С не более 45 % энергетически наиболее выгодно осуществлять на установках (блоках) AT по схеме с однократным испарением, то есть с одной сложной ректификационной колонной с боковыми отпарными секциями. Установки такого типа широко применяются на зарубежных НПЗ. Они просты и компактны, благодаря осуществлению совместного испарения легких и тяжелых фракций требуют минимальной температуры нагрева нефти для обеспечения заданной доли отгона, характеризуются низкими энергетическими затратами и металлоемкостью. Основной их недостаток - меньшая технологическая гибкость и пониженный (на 2,5 -3,0 %) отбор светлых, по сравнению с двухколонной схемой, требуют более качественной подготовки нефти.
Для перегонки легких нефтей с высоким содержанием раствори-мых газов (1,5 - 2,2 %) и бензиновых фракций (до 20 - 30 %) и фракций до 350°С (50-60%) целесообразно применять атмосферную перегонку двухкратного испарения, то есть установки с предварительной отбензинивающей колонной и сложной ректификационной колонной с боковыми отпарными секциями для разделения частично отбензиненной нефти на топливные фракции и мазут. Двухколонные установки атмосферной перегонки нефти получили в отечественной нефтепереработке наибольшее распространение. Они обладают достаточной технологической гибкостью, универсальностью и способностью перерабатывать нефти различного фракционного состава, так как первая колонна, в которой отбирается 50 - 60 % бензина от потенциала, выполняет функции стабилизатора, сглаживает колебания в фракционном составе нефти и обеспечивает стабильную работу основной ректификационной колонны. Применение отбензинивающей колонны позволяет также снизить давление на сырьевом насосе, предохранить частично сложную колонну от коррозии, разгрузить печь от легких фракций, тем самым несколько уменьшить требуемую тепловую ее мощность.
Недостатками двухколонной AT является более высокая температура нагрева отбензиненной нефти, необходимость поддержания температуры низа первой колонны горячей струей, на что требуются затраты дополнительной энергии. Кроме того, установка оборудована дополнительной аппаратурой: колонной, насосами, конденсаторами-холодильниками и т.д.
Блок атмосферной перегонки нефти высокопроизводительной, наиболее распространенной в нашей стране установки ЭЛОУ - АВТ - 6 функционирует по схеме двухкратного испарения и двухкратной ректификации. Это показано на рисунке 1.
Обезвоженная и обессоленная на ЭЛОУ нефть дополнительно подогревается в теплообменниках и поступает на разделение в колонну частичного отбензинивания 1. Уходящие с верха этой колонны угле-водородный газ и легкий бензин конденсируются и охлаждаются в аппаратах воздушного и водяного охлаждения и поступают в емкость орошения. Часть конденсата возвращается наверх колонны 1 в ка-честве острого орошения. Отбензиненная нефть с низа колонны 1 подается в трубчатую печь 4, где нагревается до требуемой темпера-туры и поступает в атмосферную колонну 2. Часть отбензиненной нефти из печи 4 возвращается в низ колонны 1 в качестве горячей струи. С верха колонны 2 отбирается тяжелый бензин, а сбоку через отпарные колонны 3 выводятся топливные фракции 180-220 (230), 220 (230)-280 и 280-350°С. Атмосферная колонна, кроме острого оро-шения, имеет 2 циркуляционных орошения, которыми отводится теп-ло ниже тарелок отбора фракций 180-220 и 220-280°С. В нижние части атмосферной и отпарных колонн подается перегретый водя-ной пар для отпарки легко кипящих фракций. С низа атмосферной колонны выводится мазут, который направляется на блок вакуум-ной перегонки. Ниже приведены материальный баланс, технологи-ческий режим и характеристика ректификационных колонн блока атмосферной перегонки нефти (типа самотлорской) В зависимости от типа перегоняемой нефти и структуры выпуска товарных нефтепродуктов на разных НПЗ получают фракции, несколько отличающиеся по температурным пределам выкипания. .
Основное назначение установки (блока) вакуумной перегонки мазута топливного профиля - получение вакуумного газойля широкого фракционного состава (350 - 500 °С), используемого как сырье установок каталитического крекинга, гидрокрекинга или пиролиза и в некоторых случаях - термического крекинга с получением дистиллятного крекинг - остатка, направляемого далее на коксование с целью получения высококачественных нефтяных коксов.
О четкости разделения мазута обычно судят по фракционному составу и цвету вакуумного газойля. Последний показатель косвенно характеризует содержание смолисто-асфальтеновых веществ, то есть коксуемость и содержание металлов. Металлы, особенно никель и ванадий, оказывают отрицательное влияние на активность, селективность и срок службы катализаторов процессов гидрооблагораживания и каталитической переработки газойлей. Поэтому при эксплуатации промышленных установок ВТ исключительно важно уменьшить унос жидкости (гудрона) в концентрационную секцию вакуумной колонны в виде брызг, пены, тумана и т.д. В этой связи вакуумные колонны по топливному варианту имеют при небольшом числе тарелок (или невысоком слое насадки) развитую питательную секцию: отбойники из сеток и промывные тарелки, где организуется рециркуляция затемненного продукта. Для предотвращения попадания металлоорганических соединений в вакуумный газойль иногда вводят в сырье в небольших количествах антипенную присадку типа силоксан.
В процессах вакуумной перегонки, помимо проблемы уноса жид-кости усиленное внимание уделяется обеспечению благоприятных условий для максимального отбора целевого продукта без заметного его разложения. Многолетним опытом эксплуатации промышленных установок ВТ установлено, что нагрев мазута в печи выше 420-425°С вызывает интенсивное образование газов разложения, закоксовывание и прогар труб печи, осмоление вакуумного газойля. При этом, чем тяжелее нефть, тем более интенсивно идет газообразование и термодеструкция высокомолекулярных соединений сырья. Вследствие этого при нагреве мазута до максимально допустимой температуры уменьшают время его пребывания в печи, устраивая многопоточные змеевики (до четырех), применяют печи двустороннего облучения, в змеевик печи подают водяной пар и уменьшают длину трансферного трубопровода (между печью и вакуумной колонной). Для снижения температуры низа колонны организуют рецикл (квенчинг) частично охлажденного гудрона. С целью снижения давления на участке испарения печи концевые змеевики выполняют из труб большего диаметра и уменьшают перепад высоты между вводом мазута в колонну и выходом его из печи. В вакуумной колонне применяют ограниченное количество тарелок с низким гидравлическим сопротивлением или насадку; используют вакуумсоздающие системы, обеспечивающие достаточно глубокий вакуум. Количество тарелок в отгонной секции также должно быть ограничено, чтобы обеспечить малое время пребывания нагретого гудрона. С этой целью одновременно уменьшают диаметр куба колонн.
В процессах вакуумной перегонки мазута по топливному варианту преимущественно используют схему однократного испарения, применяя одну сложную ректификационную колонну с выводом дистиллятных фракций через отпарные колонны или без них. При использовании отпарных колонн по высоте основной вакуумной колонны организуют несколько циркуляционных орошений.
Принципиальная схема блока вакуумной перегонки мазута установки ЭЛОУ-АВТ-6 приведена на рисунке 2.
Мазут, отбираемый с низа атмосферной колонны блока AT (см. рис.1), прокачивается параллельными потоками через печь 2 в вакуумную колонну 1. Смесь нефтяных и водяных паров, газы разложения (и воздух, засасываемый через неплотности) с верха вакуумной колонны поступают в вакуумсоздающую систему. После кон и охлаждения в конденсаторе-холодильнике она разделяется в газосепараторе на газовую и жидкую фазы. Газы отсасыва-ются трехступенчатым пароэжекторным вакуумным насосом, а конденсаты поступают в отстойник для отделения нефтепродукта от водного конденсата. Верхним боковым погоном вакуумной колонны отбирают фракцию легкого вакуумного газойля (соляр). Часть его после охлаждения в теплообменниках воз-вращается наверх колонны в качестве верхнего циркуляционного орошения.
Вторым боковым погоном отбирают широкую газойлевую (масляную) фракцию. Часть ее после охлаждения используется как среднее циркуляционное орошение вакуумной колонны. Балансовое количество целевого продукта вакуумного газойля после теплообменников и холодильников выводится с установки и направляется на дальнейшую переработку.
С нижней тарелки концентрационной части колонны выводиться затемненная фракция, часть которой используется как нижнее циркуляционное орошение, часть - может выводиться с установки или использоваться как рецикл вместе с загрузкой вакуумной печи.
С низа вакуумной колонны отбирается гудрон и после охлаждения в теплообменнике возвращается в низ колонны в качестве квенчинга. В низ вакуумной колонны и змеевик печи подается водяной пар.
Материальный баланс блока вакуумной перегонки
Прямогонные бензины после предварительной стабилизации не могут быть использованы непосредственно как автомобильные бензины ввиду их низкой детонационной стойкости. Для регулирования пусковых свойств и упругости паров, товарных автобензинов обычно используется только головная фракция бензина н.к. - 62 (85°С), которая обладает к тому же достаточно высокой детонационной стойкостью.
Для последующей переработки стабилизированные бензины подвергаются вторичной перегонке на фракции, направляемые как сырье процессов каталитического риформинга с целью получения высокооктанового компонента автобензинов или индивидуальных ароматических углеводородов -- бензола, толуола и ксилолов. При производстве ароматических углеводородов исходный бензин разделяют на следующие фракции с температурными пределами выкипания: 62 -85 °С (бензольную), 85-105 (120°С) (толуольную) и 105 (120)-140°С (ксилольную). При топливном направлении переработки прямогонные бензины достаточно разделить на 2 фракции: н.к.-85°С и 85-180°С.
Для стабилизации и вторичной перегонки прямогонных бензинов с получением сырья каталитического риформинга топливного направления применяют в основном двухколонные схемы, включающие колонну стабилизации и колонну вторичной перегонки бензина на фракции н.к. - 85 и 85 - 180°С. Как наиболее экономически выгодной схемой разделения стабилизированного бензина на узкие ароматикообразующие фракции признана последовательно-параллельная схема соединения колонн вторичной перегонки, как это при-нято в блоке стабилизации и вторичной перегонки установки ЭЛОУ-АВТ - 6 на рисунке 3. В соответствии с этой схемой прямогонный бензин после стабилизации разделяется сначала на 2 промежуточные фракции (н.к. - 105°С и 105-180°С), каждая из которых затем направляется на последующее разделение на узкие целевые фракции.
Как видно из рисунке 3, нестабильный бензин из блока AT после нагрева в теплообменнике поступает в колонну стабилизации (дебутанизатор) 1. С верха этой колонны отбирают сжиженные газы С 2 -С 4 , которые проходят конденсатор-холодильник и поступают в газосепаратор. Часть конденсата возвращается в колонну 1 в качестве острого орошения, а балансовое количество выводится с установки. Подвод тепла в низ дебутанизатора осуществляется горячей струей подогретого в печи стабильного бензина. Из стабильного (дебетированного) бензина в колонне 2 отбирают фракцию С 5 -105°С. Пары этой фракции конденсируют в аппарате воздушного охлаждения. Часть конденсата возвращают в колонну 2 в качестве острого орошения, а балансовую часть направляют в колонну 3. Кроме того, часть паров верха колонны 2 подают без конденсации в колонну 3. С верха колонны 3 отбирают фракцию С 5 - 62°С, с куба - 62-105 0 С. которая может выводиться с установки как целевая направляться в колонну 4 для разделения на фракции 62-85°С (бензольную) и 85-105°С (толуольную).
Остаток колонны 2 - фракцию 105-180°С -направляют на разделение в колонну 5 на фракции 105-140 °С и 140-180 °С.
Тепло в низ колонны 4 подводится через кипятильник, а остальных колонн вторичной перегонки (2,3 и 5) - с горячей струей подогретого в печи
Материальный баланс блока стабилизации и вторичной перегонки бензина
Технологический режим и характеристика ректификационных колонн блока стабилизации и вторичной перегонки бензина
Температура, °С 1 2 3 4 5
питания 145 154 117 111 150
верха 75 134 82 96 132
низа 190 202 135 127 173
в емкости орошения 55 97 60 80 110
Кратность орошения, кг/кг 3,5:1 1,3:1 4:1 2,2:1 2,4:1
Давление, МПа 1,1 0,45 0,35 0,20 0,13
верхняя часть 2,8 3,6 3,6 2,8 4,0
нижняя часть 3,6 - - - -
Число тарелок Тип тарелок - клапанные перекрестно-прямоточные. 40 60 60 60 60
Расходные показатели установки ЭЛОУ-АВТ-6 на 1 т перерабатываемой нефти: топливо жидкое - 33,4 кг; электроэнергия 10,4 кВт*ч; вода оборотная - 4,3 м 3 ; водяной пар (1,0 МПа) со стороны -1,1 кг, собственной выработки - 48 кг. Ниже, на рисунке 4, представлен общий вид установки ЭЛОУ-АВТ-6.
Основное назначение процесса вакуумной перегонки мазута масляного профиля (ВТМ) - получение узких масляных фракций заданной вязкости, являющихся базовой основой для получения товарных масел путем последующей многоступенчатой очистки от нежелательных компонентов (смолистых, асфальтеновых соединений, полициклических ароматических углеводородов, твердых парафинов).
Многие показатели качества (вязкость, индекс вязкости, нагарообразующая способность, температура вспышки и др.) товарных масел, а также технико-экономические показатели процессов очистки масляного производства во многом предопределяются качеством исходных нефтей и их масляных фракций. Поэтому в процессах ВТМ, по сравнению с вакуумной перегонкой топливного профиля, предъявляются более строгие требования к четкости погоноразделения и выбору сырья. Наиболее массовым сырьем для производства масел в нашей стране являются смеси западно-сибирских (самотлорская, усть-балыкская, сосниская) и волго-уральских (туймазинская, ромашкинская, волгоградская) нефтей. Для получения масел высокого качества из таких нефтей рекомендуется получать узкие 50-градусные масляные фракции (350-400; 400-450 и 450-500°С) с минимальным налеганием температур кипения смежных дистиллятов (не более 30-60°С). Для обеспечения требуемой четкости погоноразделения на ректификационных колоннах ВТМ устанавливают большее число тарелок (до 8 на каждый дистиллят), применяют отпарные секции; наряду с одноколонными широко применяют двухколонные схемы (двухкратного испарения по дистилляту) перегонки (рисунок 5 (а, б)).
Следует отметить, что одноколонные ВТМ превосходят двухколонные по капитальным и эксплуатационным затратам, но уступают по четкости погоноразделения: обычно налегание температур кипения между смежными дистиллятами достигает 70-130°С. В то же время желаемое повышение четкости ректификации путем увеличения числа тарелок не достигается из-за снижения при этом глубины вакуума в секции питания колонны. При работе установки ВТМ по схеме рис. 5,а давление в секции питания колонны поддерживается порядка 13-33 кПа при давлении вверху 6-10 кПа и температуре нагрева мазута не выше 420 °С. В низ колонны подается 5-10 % водяного пара (на гудрон). При работе ВТМ по схеме рис. 5,б необязательно иметь во второй колонне глубокий вакуум, больший эффект разделения в ней достигается увеличением общего числа тарелок. Температура нагрева мазута на входе в первую колонну 400 -420°С и широкой масляной фракции во второй ступени вакуумной перегонки - 350-360 °С.
На рисунке 6 представлена принципиальная конструкция вакуумной насадочной колонны противоточного типа фирмы Гримма (ФРГ). Она предназначена для глубоковакуумной перегонки мазута с отбором вакуумного газойля с температурой конца кипения до 550°С. Отмечаются следующие достоинства этого процесса:
- высокая производительность - до 4 млн. т/год по мазуту;
- возможность получения глубоковакуумного газойля с температурой конца кипения более 550°С с низкими коксуемостью (менее 0,3 % масс. по Конрадсону) и содержанием металлов (V+10Ni + Na) менее 2,5 ppm;
- пониженная (на 10-15 °С) температура нагрева мазута после печи;
- более чем в 2 раза снижение потери давления в колонне;
- существенное снижение расхода водяного пара на отпарку.
На Шведском НХК (ФРГ) эксплуатируются две установки этой фирмы производительностью по 2 млн. т/г по мазуту. Вакуумная колонна оборудована регулярной насадкой типа «Перформ-Грид». Давление вверху и зоне питания колонны поддерживается соответственно 7 и 36 гПа (5,2 и 27 мм рт. ст.).
На ряде НПЗ развитых капиталистических стран эксплуатируются аналогичные высокопроизводительные установки вакуумной (глубоковакуумной) перегонки мазута, оборудованные колоннами с регулярными насадками типа «Глитч-Грид».
На некоторых отечественных НПЗ внедрена и успешно функционирует принципиально новая высокоэффективная технология вакуумной перегонки мазута в перекрестноточных насадочных колоннах Разработчики - профессор Уфимского государственного нефтяного технического университета К.Ф.Богатых с сотрудниками. .
Гидродинамические условия контакта паровой и жидкой фаз в перекрестноточных насадочных колоннах (ПНК) существенно отличаются от таковых при противотоке. В противоточных насадочных колоннах насадка занимает все поперечное сечение колонны, а пар и жидкость движутся навстречу друг другу. В ПНК насадка занимает только часть поперечного сечения колонны (в виде различных геометрических фигур: кольцо, треугольник, четырехугольник, многоугольник и т.д.). Перекрестноточная регулярная насадка изготавливается из традиционных для противоточных насадок материалов: плетеной или вязаной металлической сетки (так называемые рукавные насадки), просечно-вытяжных листов, пластин и т.д. Она проницаема для пара в горизонтальном направлении и для жидкости в вертикальном направлении. По высоте ПНК разделена распределительной плитой на несколько секций (модулей), представляющих собой единую совокупность элемента регулярной насадки с распределителем жидкостного орошения. В пределах каждого модуля организуется перекрестноточное (поперечное) контактирование фаз, то есть движение жидкости по насадке сверху вниз, а пара - в горизонтальном направлении. Следовательно, в ПНК жидкость и пары проходят различные независимые сечения, площади которых можно регулировать (что дает проектировщику дополнительную степень свободы), а при противо-токе - одно и то же сечение. Поэтому перекрестноточный контакт фаз позволяет регулировать в оптимальных пределах плотность жидкого и парового орошений изменением толщины и площади поперечного сечения насадочного слоя и тем самым обеспечить почти на порядок превышающую при противотоке скорость паров (в расчете на горизонтальное сечение) без повышения гидравлического сопротивления и значительно широкий диапазон устойчивой работы колонны при сохранении в целом по аппарату принципа и достоинств противотока фаз, а также устранить такие дефекты, как захлебывание, образование байпасных потоков, брызгоунос и другие, характерные для противоточных насадочных или тарельчатых колонн.
Экспериментально установлено, что перекрестноточный насадочный блок конструкции Уфимского государственного нефтяного университета (УГНТУ), выполненный из металлического сетчатовязаного рукава, высотой 0,5 м, эквивалентен одной теоретической тарелке и имеет гидравлическое сопротивление в пределах всего 1 мм рт. ст. (133,3 Па), то есть в 3-5 раз ниже по сравнению с клапанными тарелками. Это достоинство особенно важно тем, что позволяет обеспечить в зоне питания вакуумной ПНК при ее оборудовании насадочным слоем, эквивалентным 10-15 тарелкам, остаточное давление менее 20-30 мм рт. ст. (27-40 ГПа) и, как следствие, значительно углубить отбор вакуумного газойля и тем самым существенно расширить ресурсы сырья для каталитического крекинга или гидрокрекинга. Так, расчеты показывают, что при глубоковакуумной перегонке нефтей типа западно-сибирских выход утяжеленного вакуумного газойля 350-690°С составит 34,1 % на нефть), что в 1,5 раза больше по сравнению с отбором традиционного вакуумного газойля 350-500°С (выход которого составляет 24,2 %) С другой стороны, процесс в насадочных колоннах можно осуществить в режиме обычной вакуумной перегонки, но с высокой четкостью погоноразделения, например, масляных дистиллятов. Низкое гидравлическое сопротивление регулярных насадок позволяет «вместить» в вакуумную колонну стандартных типоразмеров в 3-5 раза большее число теоретических тарелок. Возможен и такой вариант эксплуатации глубоковакуумной насадочной колонны, когда перегонка мазута осуществляется с пониженной температурой нагрева или без подачи водяного пара.
Отмеченное выше другое преимущество ПНК - возможность организации высокоплотного жидкостного орошения - исключительно важно для эксплуатации высокопроизводительных установок вакуумной или глубоковакуумной перегонки мазута, оборудованных колонной большого диаметра. Для сравнения сопоставим потребное количество жидкостного орошения применительно к вакуумным колоннам противоточного и перекрестноточного типов диаметром 8 м (площадью сечения ?50 м 2 ). При противотоке для обеспечения даже пониженной плотности орошения ?20 м 3 /м 2 ч требуется на орошение колонны 50x20=1000 м 3 /ч жидкости, что технически не просто осуществить. При этом весьма сложной проблемой становится организация равномерного распределения такого количества орошения по сечению колонны.
В ПНК, в отличие от противоточных колонн, насадочный слой занимает только часть ее горизонтального сечения площадью на порядок и более меньшую. В этом случае для организации жидкостного орошения в вакуумной ПНК аналогичного сечения потребуется 250 м 3 /ч жидкости, даже при плотности орошения 50 м3/м 2 ч, что энергетически выгоднее и технически проще. На рисунке 7 представлена принципиальная конструкция вакуумной перекрестноточной насадочной колонны, внедренной на АВТ-4 ПО «Салаватнефтеоргсинтез». Она предназначена для вакуумной перегонки мазута арланской нефти с отбором широкого вакуумного газойля - сырья каталитического крекинга. Она представляет собой цилиндрический вертикальный аппарат (ранее бездействующая вакуумная колонна) с расположением насадочных модулей внутри колонны по квадрату. Диаметр колонны 8 м, высота укрепляющей части около 16 м. В колонне смонтирован телескопический ввод сырья, улита, отбойник и шесть модулей из регулярной насадки УГНТУ. Четыре верхних модуля предназначены для конденсации вакуумного газойля, пятый является фракционирующим, а шестой служит для фильтрации и промывки паров. Для снижения крекинга в нижнюю часть колонны вводится охлажденный до 320°С и ниже гудрон в виде квенчинга. Поскольку паровые и жидкостные нагрузки в ПНК различны по высоте, насадочные модули выполнены различными по высоте и ширине в соответствии с допустимыми нагрузками по пару и жидкости. Предусмотрены циркуляционное орошение, рецикл затемненного продукта, надежные меры против засорения сетчатых блоков механическими примесями, против вибрации сетки и проскока брызгоуноса в вакуумный газойль.
Давление в зоне питания колонны составило 20-30 мм рт. ст. (27-40 ГПа), а температура верха - 50-70 °С; конденсация вакуумного газойля была почти полной: суточное количество конденсата легкой фракции (180-290 °С) в емкости - отделителе воды - составило менее 1 т. В зависимости от требуемой глубины переработки мазута ПНК может работать как с нагревом его в вакуумной печи, так и без нагрева за счет самоиспарения сырья в глубоком вакууме, а также в режиме сухой перегонки. Отбор вакуумного газойля ограничивался из-за высокой вязкости арланского гудрона и составлял 10-18 % на нефть.
На одном из НПЗ России («Орскнефтеоргсинтез») проведена реконструкция вакуумного блока установки АВТМ, где ранее отбор масляных дистиллятов осуществлялся по типовой двухколонной схеме с двухкратным испарением по дистилляту (см. рис. 5,б) с переводом ее на одноколонный вариант четкого фракционирования мазута в ПНК. Принципиальная конструкция этой колонны представлена на рисунке 8.
При реконструкции вакуумной колонны было смонтировано 20 перекрестноточных насадочных блоков (из просечно-вытяжного листа конструкции УГНТУ с малым гидравлическим сопротивлением), в т.ч. 17 из которых - в укрепляющей части, что эквивалентно 10.8 теоретическим тарелкам (вместо 5,6 до реконструкции).
При эксплуатации реконструированной установки АВТМ были получены следующие результаты по работе ПНК и качеству продуктов разделения:
Производительность, т/ч 46--48 55
на верху колонны 40-70 40-60
в зоне питания 96-126 53-73
I масляный погон 175-178 184-190
II масляный погон 213-217 214 -221
гудрон 247-268 260-290
I масляный погон 10,5-14 11,7-17
II масляный погон 35-59 39-60
Конденсационно-вакуумсоздающая система современных установок АВТ состоит из системы конденсации, системы вакуумных насосов, барометрической трубы, газосепаратора и сборника конденсата.
Для конденсации паров на практике применяются следующие два способа (рис. 9):
1) конденсация с ректификацией в верхней секции вакуумной колонны посредством
- верхнего циркуляционного орошения (ВЦО) или (и)
2) конденсация без ректификации вне колонны в выносных конденсаторах-холодильниках:
- поверхностного типа (ПКХ) теплообменом с водой или воздухом;
- барометрического типа (БКС) смешением с водой или газойлем, выполняющим роль хладоагента и абсорбента;
- в межступенчатых конденсаторах водой, устанавливаемых непосредственно в пароэжекторных насосах (ПЭК).
Для создания достаточно глубокого вакуума в колонне не обязательно использование одновременно всех перечисленных выше способов конденсации. Так, не обязательно включение в КВС обоих способов конденсации паров с ректификацией в верхней секции колонны: для этой цели вполне достаточно одного из двух способов. Однако ВЦО значительно предпочтительнее и находит более широкое применение, поскольку по сравнению с ОО позволяет более полно утилизировать тепло конденсации паров, поддерживать на верху вакуумной колонны оптимально низкую температуру в пределах 60-80°С, тем самым значительно уменьшить объем паров и газов. Из способов конденсации паров без ректификации вне колонны на установках АВТ старых поколений применялись преимущественно барометрические конденсаторы смешения, характеризующиеся низким гидравлическим сопротивлением и высокой эффективностью теплообмена, кроме того, при этом отпадает необходимость в использовании газосепаратора. Существенный недостаток БКС - загрязнение нефтепродуктом и сероводородом оборотной воды при использовании последней как хладоагента. В этой связи более перспективно использование в качестве хладоагента и одновременно абсорбента охлажденного вакуумного газойля. По экологическим требованиям в КВС современных высокопроизводительных установок АВТ, как правило, входят только поверхностные конденсаторы-холодильники в сочетании с газосепаратором.
В качестве вакуум-насосов в настоящее время применяют струйные насосы - одно- и преимущественно двух- или трехступенчатые эжекторы на водяном паре и промежуточной его конденсацией (ПЭН). Пароэжекционные вакуумные насосы обладают рядом принципиальных недостатков (низкий коэффициент полезного действия, значительный расход водяного пара и охлажденной воды для его конденсации, загрязнение охлаждающей воды и воздушного бассейна и т.д.).
По признаку связи с окружающей средой различают сборники конденсата открытого типа - барометрические колодцы (БК) и закрытого типа - емкости-сепараторы (Е). Вместо широко использовавшихся ранее барометрических колодцев на современных установках АВТ применяют сборники преимущественно закрытого типа, обеспечивающие более высокую экологическую безопасность для обслуживающего персонала.
КВС установок АВТ обязательно включают барометрическую трубу (БТ) высотой не менее 10 м, которая выполняет роль гидрозатвора между окружающей средой и вакуумной колонной.
Глубина вакуума в колоннах при прочих идентичных условиях зависит в значительной степени от температуры хладоагента,
Вакуумная перегонка мазута. Технологическая схема типовой установки АВТ, получаемые продукты и их применение реферат. Производство и технологии.
Контрольная работа по теме Виртуальная машина VMware на основе ОС GNU/Linux
Современная Реферат
Доклад по теме Эндоплазматическая сеть. Ядро
Сочинение Нравственный Выбор 8 Класс
Доклад: Культура XVI века
Спорт Явление Культурной Жизни Реферат
Экология Луговых Растений Реферат
Дипломная работа по теме Хромирование стальных изделий
Курсовая работа по теме Воздух как экологический фактор
Курсовая работа по теме Проблема алкоголизма в России
Реферат Генная Инженерия И Ее Методы
Реферат: Классические исследования подросткового возраста. Скачать бесплатно и без регистрации
Контрольная Работа По Истории 20 Век
Дипломная работа по теме Совершенствование сферы общего образования Российской Федерации на примере Зарайского муниципального района
Реферат По Биологии Ткани Растений И Животных
Дипломная работа по теме Формирование универсальных учебных действий у учащихся младших классов
Слово О Полку Игореве Аргументы Для Сочинения
Курсовая Работа По Конструированию Швейных Изделий
Стали Специального Назначения Реферат
Стихи Эссе Геннадия
Моделирование операции умножения - Программирование, компьютеры и кибернетика курсовая работа
Организация подтверждения соответствия продовольственных товаров сертификации по материалам органов по сертификации - Маркетинг, реклама и торговля дипломная работа
Повышение эффективности управленческих решений - Менеджмент и трудовые отношения курсовая работа


Report Page