Строительство соединительных линий между узлами коммутации г. Магнитогорска и г. Учалы - Коммуникации, связь, цифровые приборы и радиоэлектроника курсовая работа

Строительство соединительных линий между узлами коммутации г. Магнитогорска и г. Учалы - Коммуникации, связь, цифровые приборы и радиоэлектроника курсовая работа




































Главная

Коммуникации, связь, цифровые приборы и радиоэлектроника
Строительство соединительных линий между узлами коммутации г. Магнитогорска и г. Учалы

Выбор трассы для прокладки оптического кабеля. Расчет числа каналов и потоков. Выбор схемы организации связи и типа волоконно-оптической системы передачи. Расчет эксплуатационного запаса на кабельном участке. Требования к устройствам электропитания.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Телекоммуникации - область науки и техники, которая включает совокупность технологий, средств, способов и методов деятельности человека, направленных на создание условий для обмена информацией на расстоянии.
Стремительное развитие в последние десятилетия XX-го века различных систем связи, компьютерных технологий, а также систем, являющихся их синтезом, создали предпосылки для появления глобальной информационной инфраструктуры. Важнейшую роль в этом процессе играют оптико-волоконные системы передачи данных, поднявшие на невиданную раньше высоту скорость, надежность и объемы передаваемых данных. Развитие телекоммуникационных технологий и средств вычислительной техники обуславливает стремительные темпы развития новых связных направлений, в основе которых заложена концепция открытых систем: стандартизуемость, гибкость, масштабируемость, функциональность. Это - концепция интеллектуальной сети, которая объединяет телефонные и компьютерные сети, средства и технологии беспроводного доступа, высокоскоростные транспортные технологии, компьютерную телефонию, имеющую множество приложений, в том числе Internet - телефонию, сотовую телефонию. Идет постоянное развитие и расширение этой области. Поэтому специалисты, работающие в области разработок, проектирования, строительства и эксплуатации оптических линий связи, в настоящее время востребованы на российском и мировом рынке труда.
Мы даже это видим в недавнем Послание президента России Дмитрия Медведева Федеральному Собранию Российской Федерации. Он сказал следующие слова: «На территории всей нашей страны в течение пяти лет необходимо обеспечить широкополосный доступ в Интернет, осуществить переход на цифровое телевидение и мобильную связь четвёртого поколения. Национальная сетевая инфраструктура должна гарантировать доступ к современным средствам связи в любой точке и, конечно, по разумным ценам… На нашей территории будут проложены современные высокоскоростные оптические магистрали, установлено оборудование повышенной производительности и в полной мере задействован потенциал уже построенных линий. Это позволит обеспечить обмен всё возрастающими потоками информации, как между российскими регионами, так и между разными странами. Россия, простирающаяся на 11 часовых поясов, призвана стать ключевым звеном в глобальной информационной инфраструктуре».
1 . Постановка задачи и исходные данные
В ходе решения задачи должны быть выполнены следующие пункты:
Рассчитать число каналов и потоков.
Выбрать тип ВОСП, привести ее структурную схему и технические характеристики.
Выбрать тип оптического волокна, описать его конструкцию, привести параметры передачи.
Показать, что для выбранного варианта при длине элементарного кабельного участка (ЭКУ), равного заданному расстоянию L, коэффициент ошибок будет в норме. Для этого:
1) рассчитать эксплуатационный запас на ЭКУ;
2) рассчитать максимально допустимую длину ЭКУ;
3) рассчитать допустимое значение дисперсии на ЭКУ;
Выбрать тип оптического кабеля, привести его эксплуатационные характеристики, изобразить поперечный разрез.
Описать основные положения технологии прокладки ОК.
Описать основные требования к устройствам электропитания.
Описать организацию токораспределительной сети ЛАЦ.
Описать технологию защиты ВОЛС от внешних электромагнитных влияний.
Трассу для прокладки оптического кабеля выбирают исходя из следующих условий:
- минимальной длины между оконечными пунктами;
- выполнения наименьшего объема работ при строительстве;
-возможности максимального применения наиболее эффективных средств индустриализации и механизации строительных работ;
- удобства эксплуатации сооружений и надежности их работ.
В процессе ознакомления с трассой особое внимание должно быть обращено на сложные участки: речные переходы; пересечения автомобильных, железнодорожных и трамвайных путей, трубопроводов; прокладку кабеля по мостам, тоннелям, в заболоченных местах, на скальных и гористых участках, в населенных пунктах. На основании этих данных затем выбирают наиболее оптимальные планы прокладки ОК на различных участках трассы, детализируют технологию строительства ВОЛС, составляют календарный план производства работ по участкам с учетом трудоемкости операций, рассчитывают потребность машин и механизмов, определяют пункты возможного размещения кабельных площадок и помещений для проведения входного контроля ОК. Кроме того, решаются вопросы организации служебной связи с помощью радиостанций УКВ диапазона.
Таблица 1 Краткая характеристика каждого из возможных вариантов
Пересечения с автомобильными дорогами
В моем курсовом проекте, наиболее удобным для проектируемого направления будет третий вариант - это прокладка в грунт оптического кабеля вдоль автомобильной дороги Магнитогорск - Учалы. Почему?
Во-первых, создание наибольших удобств при эксплуатационном обслуживании;
Во-вторых, максимальное применение средств механизации при строительстве;
В-третьих, наикратчайшее протяжение трассы и наименьшее число препятствий, усложняющих и удорожающих стоимость строительства (реки, карьеры, дороги и прочие препятствия) в сравнение с путями 1 и 2, обозначенных на рисунке 1.
Число каналов, связывающих заданные оконечные пункты, в основном зависит от численности населения в этих пунктах и от степени заинтересованности отдельных групп населения во взаимосвязи.
Численность населения в любом районном центре и в районе в целом может быть определена на основании статистических данных последней переписи населения (город Учалы 32196 чел. на 2002 год; город Магнитогорск 409417 чел. на 2002 год). Количество населения в заданном пункте и его подчиненных окрестностях с учетом среднего прироста населения.
Сначала определим количество людей, проживающих в соответствующих районах к моменту реализации проекта:
где H -- коэффициент среднегодового прироста населения, H = 2 %;
t n -- расчётный год для организации проекта,
t o -- год, в который производилась перепись.
Н 0 -- количество народонаселения на момент переписи.
Н t = 32196·(1+ 2/100) 12 =40,832 тыс. человек;
Н t = 409417·(1 + 2/100) 12 = 519,239 тыс. человек.
Число телефонных каналов между двумя междугородними станциями заданных пунктов определяется по формуле:
где K T - коэффициент тяготения, который определяет степень заинтересованности отдельных групп населения во взаимосвязи, зависит от различных факторов, K T = 0,05.;
б, в -- коэффициенты, соответствующие фиксированной доступности и заданным потерям, б= 1,3; в= 5,6.;
у -- коэффициент Эрланга, у = 0,05 Эрл.;
m а , m b -- количество абонентов, обслуживаемых оконечными станциями.
В перспективе количество абонентов, обслуживаемых той или иной оконечной телефонной станции определяется в зависимости от численности населения, проживающего в зоне обслуживания. Принимая средний коэффициент оснащенности населения телефонными аппаратами равным 0,3, количество абонентов в зоне телефонной станции можно рассчитать по формуле:
количество абонентов в городе Учалы.
количество абонентов в городе Магнитогорск. Следовательно:
По проектной ВОЛС предполагается организация других видов связи, например, телеграфная связь, передача данных и т.д. Общее число каналов между двумя междугородними станциями заданных пунктов определяется по формуле:
где n тф -- количество телефонных каналов для двухсторонней связи;
n тв --количество телевизионных каналов;
n c от - число каналов для сотовой связи;
- количество мультимедийных каналов.
Принимая во внимание, что один телевизионный канал составляет 170 каналов тональной частоты, то общее количество каналов рассчитывается по следующей формуле:
n общ = 4n тф + 2n тв = 4·42 + 2•170 = 508.
Рассчитаем необходимое число потоков Е1:
Так как волоконно-оптические линии связи включены в кольцевую структуру, а все кольца имеют двойное резервирование,
Таким образом, для организации связи между городом Учалы и городом Магнитогорск необходимо передавать информацию со скоростью 69,632 Мбит/с. То есть необходим поток STM-1 155,52 Мбит/с (63 потока Е1).
1.3 Выбор схемы организации связи
Существует четыре основных схемы организации связи:
Рисунок 1 Схема организации связи №1
В схеме №1 входящие и исходящие соединительные линии организуются по отдельным волокнам и работают на одной длине волны.
В схеме №2 входящие и исходящие СЛ тоже организуются по отдельным волокнам и работают на сетке длин волн (используется до 80 оптических несущих). То есть здесь применяется технология DWDM (плотное оптическое мультиплексирование).
В схеме №3 входящие и исходящие СЛ организуются по одному волокну и работают на одной длине волны. Для разделения входящих и исходящих потоков используют ответвители.
Рисунок 4 Схема организации связи №4
В схеме №4 входящие и исходящие СЛ организуются по одному волокну и работают на двух различных длинах волн.
Для выбора схемы организации связи необходимо учитывать расстояние между узлами коммутации и объем передаваемой информации. Например, при небольших расстояниях и маленьком объеме информации выгодно использовать схему №3. А при обратной ситуации - схему №2.
В данном проекте целесообразно использовать схему №1 длиной волны либо 1310 нм, либо 1550 нм, так как передается небольшой объем информации В=155,52 Мбит/c на расстояние L=112 км.
1.4 Выбор типа волоконно-оптической системы передачи
Выбор системы передачи определяется числом каналов, организуемых на данном направлении, видами передаваемой информации, требованиями к качественным показателям каналов передачи и соображениями экономической эффективности. Как правило, существует несколько вариантов выбора системы передачи и предпочтение отдается такой системе, которая обеспечивает возможность качественной передачи требуемого объема информации и одновременно требует меньших затрат на строительство и последующую эксплуатацию. Выбор наиболее рациональной системы определяется технико-экономическим сравнением вариантов. При этом следует также учитывать возможность использования существующих сооружений связи. В данном проекте выбран мультиплексор уровня STM-1 Оптический мультиплексор «Транспорт S1».
«Транспорт-S1» - полнофункциональный SDH-мультиплексор, предназначенный для построения транспортных сетей SDH уровня STM-1. Мультиплексор может работать по одному или двум одномодовым или многомодовым оптическим волокнам.
Аппаратура стандарта СТМ-1 “Транспорт S1” состоит из 1U базового модуля, в который может быть установлено до 3х модулей расширения. Также может быть установлен один модуль служебной связи. Базовый модуль содержит 2 оптических приёмопередатчика, каждый со скоростью группового потока 155,52 Мбит/с, блок питания AC и DC, обеспечивает подключение хронирующей частоты 2048, аварийной сигнализации, канал управления и предоставление дополнительного канала Fast Ethernet для использования сторонним оборудованием. Модуль расширения подключается к базовому модулю со скоростью передачи данных 51,84 Мбит/с. Модули могут быть разных типов, они обеспечивают подключение к потокам E1 2048кбит/с, Fast Ethernet, V.35 . В настоящее время доступны модули расширения на 21e1, 6FE, 1FE. Модуль служебной связи устанавливается в отведенное для него место и не занимает место модуля расширения. Служебная связь возможна в следующих режимах:
АК - АК (телефонный аппарат - телефонный аппарат );
АК - СК (телефонный аппарат - линия);
- Надежность - средний срок наработки на отказ более 20 лет, гарантия - 3 года.
- Блоки питания и тракты E1 выдерживают разряды статического электричества 50 кВ без изменения параметров.
- Удобство монтажа - все разъемы, включая предохранители и болт заземления, выведены на переднюю панель.
- Реализация трактов E1 обладает пониженным значением джиттера, что обеспечивает соблюдение норм для E1 при дрейфе синхронизации и даже при нарушении синхронизации системы SТМ-1 . Система коммутации сохраняет работоспособность даже при нарушении синхронизации. Например, вполне работоспособным будет вариант из нескольких пунктов связи, в каждом из которых изделие будет работать со своей частотой.
- Возможно конструктивное исполнение мультиплексора для работы по одному волокну.
Таблица 2. Технические характеристики мультиплексора Транспорт S1
Основные линейные интерфейсы базового модуля :
Ethernet 10/100BaseT Дополнительный
Основные линейные интерфейсы плат расширения:
Программное обеспечение «Центр управления S1» разработки ОАО «Русская телефонная компания». Используя интерфейс нижнего уровня, пользователь может адаптировать «Транспорт-S1» к своей системе управления или написать собственное программное обеспечение
DCCM и VC-12/E1, поддерживает режим прозрачности каналов DCCM и DCCR
L1.1, L1.2, любой поток Е, вход внешней синхронизации 2048 кГц
2048 кГц, рек. ITU-T G.703.10 (120 Ом сбалансированный)
2048 кГц, рек. ITU-T G.703.10 (120 Ом сбалансированный)
Поддержка SSM, автоматическое предотвращение петли.
Обслуживание станционной сигнализации:
1 вход для внешних аварийных сигналов
Гальванически развязанный датчик напряжения
Абонентский, станционный или канал ТЧ, выбираемый программно
-60 В (диапазон -36 ... 72 В) постоянного тока и 220 В переменного тока 50Гц. Возможность включения двух источников одновременно.
От 15 до 45 Вт в зависимости от комплектации.
Таблица 3 Характеристика оптического интерфейса STM-1 в соответствии с рек. ITU-T G.957 и G.958
Чувствительность приемника при коэффициенте ошибок 10-10, дБм
Максимальный уровень, допустимый на входе, дБм
Длина волоконно-оптической линии связи (ВОЛС), включая 2 дБ на соединения и запас на восстановление волоконно-оптического кабеля (ВОК), км
Таблица 4. Характеристика оптического интерфейса STM-1 с модулем WDM (работа по одному волокну)
Средняя мощность передачи, включая запас на старение: максимум, дБм минимум, дБм
Чувствительность приемника при коэффициентe ошибок 10-10, дБм
Максимальный уровень, допустимый на входе, дБм
Длина волоконно-оптической линии связи (ВОЛС), включая 2 дБ на соединения и запас на восстановление волоконно-оптического кабеля (ВОК), км
оптический кабель трасса электропитание
Правильный выбор ОВ является ответственной и требующей должного анализа задачей при проектировании ВОЛС. Определяющими параметрами одномодовых волокон являются: тип волокна по дисперсионному параметру, рабочие окна прозрачности, затухание в рабочем диапазоне, прирост затухания и ряд других параметров. В данном курсовом проекте я выбрал одномодовое волокно Corning Inc. SMF 28e.
Волокно Corning Inc. SMF 28e судя по техническим характеристикам, ( www.lightwave-russia.com ) является обычным SMF волокном по рекомендации G.652.
Таблица 5 Технические характеристики оптического волокна Corning Inc. SMF 28e
Диаметр модового поля на длине волны
Коэффициент затухания на опорной длине волны
Коэффициент ПМД, индивидуальные волокна
Эффективный групповой показатель преломления
1.6 Расчет эксплуатационного запаса на элементарном кабельном участке
Расчет бюджета мощности производится по следующей формуле:
где Э - энергетический потенциал аппаратуры, т.е. разность между уровнем мощности на выходе источника излучения и минимальным уровнем оптической мощности на входе фотоприемника, при котором еще обеспечивается требуемое качество передачи. Э = 34 дБ .
- затухание на разъемных соединениях. = 0,5 дБ.
- число неразъемных соединений. Определяется по следующей формуле:
где - расстояние между узлами коммутации ( = 112 км ) , - строительная длина кабеля (= 5 км).
- затухание на неразъемных соединениях. = 0,1 дБ .
- коэффициент затухания. = 0,19 дБ/км .
- затухание дополнительных пассивных элементов, включенных в линейный тракт. =0, т.к. дополнительных пассивных элементов нет.
= 34 - 4•0,5 - 22•0,1 - 0,19•112 = 8,52 дБ.
Но для корректной работы значение эксплуатационного запаса не должно быть больше 6 дБ. Отсюда берем 6 дБ.
1.6. 1 Расчет м аксимально допустимой длины ЭКУ
Максимально допустимую длину можно рассчитать по следующей формуле:
где Э - энергетический потенциал аппаратуры. Э = 34 дБ.
- затухание на разъемных соединениях. = 0,5 дБ.
- затухание на неразъемных соединениях = 0,1 дБ.
- коэффициент затухания. = 0,19 дБ/км.
- строительная длина кабеля.= 5 км.
Рассчитаем максимально допустимую длину:
L max = (34 - 4•0,5 - 0,1 - 6)/(0,19 + 0,1/5) = 123 км.
Так как расстояния между оконечными пунктами (112км) не больше L max для соответствующей длины волны, то регенерационные пункты не нужны.
Расчет дисперсии для одномодового волокна производится по следующей формуле:
где - ширина полосы излучения источника. = 0.5 нм .
- коэффициент хроматической дисперсии. =16,89 пс/нм•км.
Расчет нормативного значения дисперсии производится по следующей формуле:
Рассчитаем нормативное значение дисперсии:
Прогнозируемое значение дисперсии оптического волокна не превышает нормативное значение: . Следовательно, проектируемая система передач будет работать с заданным уровнем ошибок.
При проектировании оптических цифровых линий передачи необходимо принять оптимальные решения по выбору типа оптического кабеля. Выбор оптического кабеля (ОК) обуславливается условием прокладки ОК, типом волокна, а также числом волокон.
Для прокладки в грунте был выбран оптический кабель ОКБ производства ОАО «Сарансккабель» на основе оптического волокна фирмы «CORNING Inc.», США SMF-28e.
Кабель предназначен для прокладки ручным или механизированным способом в грунтах всех категорий, кроме подверженных мерзлотным деформациям, в кабельной канализации, в трубах, блоках, коллекторах, в воде при пересечении рек и болот.
Таблица 6 Основные технические характеристики кабеля
Допустимое растягивающее усилие, кН
1. 8 Основные положения прокладки оптического кабеля
Прокладка оптического кабеля в грунт
Прокладка кабеля в грунт производится при температуре окружающего воздуха не ниже -10°С. Кабель прокладывают в грунтах всех категорий, кроме подверженных мерзлотным деформациям, в воде при пересечении неглубоких болот, несудоходных и несплавных рек со спокойным течением (с обязательным заглублением). Способы прокладки ОК через болота и водные преграды должны определяться отдельными проектными решениями.
Возможны два способа прокладки OK в грунт: ручной в ранее отрытую траншею или бестраншейный с помощью ножевых кабелеукладчиков. Кроме того, ОК может прокладываться с применением защитного трубопровода. При этом различают два способа. При первом способе сначала в грунт укладывается защитный трубопровод (полиэтиленовая труба с внешним диаметров до 34 мм), а затем в него затягивается ОК. Второй способ-это прокладка защитного трубопровода с заранее уложенным в него ОК.
Трассовая прокладка кабелей связи является сложным процессом в техническом и организационном плане. Этот процесс еще более усложняется для ОК, имеющих большие строительные длины. Он требует от линейного персонала тщательного изучения местности и условий трассы, четкой и продуманной подготовительной работы, технологически обоснованного проекта производства работ и строгой исполнительской дисциплины. Особое внимание уделяется сбору трассы, способов и средств прокладки OK на каждом участке трассы. Для обеспечения безопасности прокладки и минимальной вероятности его замены в будущем необходима учитывать, такие факторы, как топографическая карта местности, типы грунтов, возможность доступа к кабелю при любых погодных условиях, простота выполнения возможного ремонта, удаление трассы кабеля от подземных коммуникаций и т. д.
Особую важность имеет рекультивация земли на трассе прокладки. Восстановительные работы должны производиться с особой тщательностью, чтобы гарантировать надежную защиту кабеля, сводя к минимуму явление эрозий почвы и обеспечивая восстановление травяного покрова и стабилизацию разрыхленного слоя грунта.
Учитывая трудности определения трассы прокладки ОК и мест их повреждения в дальнейшем, значительно большее внимание по электрическими кабелями должно быть уделено точности привязок трассы кабеля к местным условиям.
Прокладка оптического кабеля через водные преграды
В данном разделе подводная прокладка рассматривается как часть или отрезок подземной прокладки, когда приходится пересекать реки, ручьи, болота, озера, искусственные водоемы, каналы. По действующим нормам прокладка кабеля связи через судоходные реки, сплавные и несудоходные реки глубиной до 3 м проводится с минимальным заглублением до 1 м. Без заглубления прокладка допускается при глубине водоемов более 8 м по согласованию с организациями, эксплуатирующими водоем. Практически целесообразность заглубления кабеля и его величина определяются проектом.
Указанные требования распространяются также на OK связи и соответственно на способы и приемы производства прокладочных работ: укладку кабелей с буксирных или самоходных судов, понтонов, барж в подводные траншеи. Для такой прокладки используются ОК с металлическими упрочняющими элементами и металлическими оболочками. Эти кабели более герметичны, и их механические характеристики позволяют использовать традиционные технические средства прокладки. В процессе прокладки подводных кабелей вертикальный угол кабеля, когда он сходит с горизонтальной плоскости плавательные средства, во избежание чрезмерного натяжения должен быть в пределах 30…60.При этом, чем больше глубина подводной прокладки, тем больше этот угол.
Кабелеукладчики рекомендуется только на мелководье, так как на больших глубинах невозможно проконтролировать процесс прокладки кабеля. Грунты при этом не должны быть выше третьей категории.
Опыт прокладки традиционных электрических кабелей связи через горные и сплавные реки показывает, что существующая технология (устройство вантовых переходов, значительное заглубление в дно рек с проведением дополнительных мер защиты) применима лишь, для высокопрочных конструкций ОК.
Прокладка OK без металлических элементов через отдельные водные преграды вызывает определенные трудности. Например, не исключается возможность всплывания кабеля при небольших перемещениях донных грунтов. При сильном течения кабель находится под дополнительной нагрузкой и нужно контролировать, чтобы уровень этой нагрузки не превысил допустимый. Поэтому прокладку кабеля рекомендуется выполнять с применением укладки защитного трубопровода и его заглублением в дно. Полиэтиленовые трубки, а на опасных участках стальные трубы могут прокладываться (как подземный кабель) на глубине до 1,2 м. Преимуществом применения трубок является то, что при встрече с неожиданным препятствием (даже при пропарке грунта) возможные повреждения ограничиваются трубкой, а не кабелем.
При прокладке магистральных OK первичной сети на переходах через внутренние водные путисудоходные и сплавные реки, водохранилища осуществляется резервирование кабельного перехода путем прокладки кабелей по двум створам (верхнему и нижнему), расположенным на расстоянии не менее 300 м друг от друга. При наличии на трассе мостов автомобильных дорог общегосударственного и республиканского значения допускается прокладка одного из кабелей по мосту. При этом в основном и резервном кабелях включается по 50 ОВ.
При невозможности бестраншейной прокладки ОК кабелеукладчиками кабели на переходах через водные преграды прокладываются в предварительно разработанные подводные траншеи. Траншеи разрабатываются техническими средствами специализирующихся на подводных работах организаций. На судоходных реках подводные траншеи в русле при глубине 0,8 м можно разрабатывать экскаваторами. При больших глубинах экскаваторы необходимо устанавливать на понтонах, перемещаемых по створу перехода с помощью тросов лебедками.
Весьма эффективным и простым средством разработки траншей для прокладки ОК в несвязных и мало связных грунтах являются гидромониторы, с помощью которых размывается грунт. Гидромониторы используются для размывания траншей глубиной до 2 метров на водных преградах глубиной 8…12 метров обслуживаются водолазами.
Разработанные на заданную глубину подводные траншеи должны приниматься по акту комиссией. Акт приемки готовой траншеи является единственным документом, разрешающим прокладку кабелей на водных преградах.
Прокладка ОК на размываемых берегах, имеющих уклон более 30, на подъемах и спусках должна производиться вручную зигзагообразно (змейкой) с отклонением от оси наклонения прокладки на 1,5 м на участке длиной 5 м. При прокладке ОК на крутых берегах и в скальных грунтах вырубают штробу. В скальных грунтах кабель прокладывают на песчаной подушке с толщиной верхнего и нижнего слоев не менее 15 см.
Для избежания повреждений подводных ОК зона выполнения подводных кабельных переходов ограждается на судоходных водных путях предостерегающими створными знаками судоходной обстановки”Подводный переход”. Эти створные знаки (створные столбы) устанавливают на обоих берегах в 100 метрах выше по течению от мест расположения кабельного перехода. Они должны быть хорошо видны с судов, иметь на своих вершинах диски диаметром 1,2 м, на которых изображается перечеркнутый полосой якорь.
1.9 Требования к устройствам электропитания
Современная аппаратура МСП PDH и SDH предъявляет высокие требования к системам и устройствам электропитания, составляющим до 25 % объема аппаратуры ТКС. По мере микроминиатюризации аппаратуры передачи намечается тенденция роста этой величины. В аппаратуре транспортных систем SDH обычно используется два блока питания, работающих параллельно на общую нагрузку. В случае выхода из строя одного блока питания другой берет на себя всю нагрузку.
С увеличением объема передаваемой информации и повышением ее роли в автоматизированных системах управления к электропитанию аппаратуры ТКС предъявляется все более жесткие требования.
К числу основных требований, которым должны отвечать системы и устройства электропитания, следует отнести бесперебойность подачи напряжения к аппаратуре связи, стабильность основных параметров во времени, электромагнитную совместимость с питаемой аппаратурой, высокие экономические показатели, устойчивость к внешним механическим и климатическим воздействиям и минимальный объем работы при эксплуатационном обслуживании.
Чтобы системы и устройства электропитания отвечали изложенным выше требованиям, они должны базироваться на следующих принципах:
максимальное использование энергосистем центральных и местных электростанций в качестве основных и наиболее дешевых источников электроэнергии. Эти источники должны практически мгновенно замещать отключившийся основной источник и иметь большой коэффициент готовности. Кроме того, они должны обеспечивать автономный режим работы предприятия в течение длительного времени. В настоящее время наибольшее распространение получили собственные электростанции на обслуживаемых пунктах, оборудованные автоматизированными дизель-генераторными агрегатами, и аккумуляторные батареи, а на необслуживаемых регенерационных пунктах - аккумуляторные батареи, работающие в буфере с выпрямительными устройствами;
применение установок гарантированного питания постоянного и переменного тока, в состав которых входят преобразовательные устройства;
автоматизация электропитаюших установок, предусматривающая выполнение основных функций электропитающих устройств без вмешательства эксплутационного персонала;
применение современных полупроводниковых приборов, а также введение избыточности элементов, что существенно повышает надежность электропитания;
построение систем и устройств электропитания с максимальной унификацией оборудования;
возможное использование дистанционного питания НРП аппаратуры PDH по медным жилам ОК. В связи с резким увеличением длин РУ в последнее время аппаратуру НРП стремятся располагать в узлах связи населенных пунктов, где имеется гарантированное питание. В этом случае используются ОК, не содержащих металлических элементов.
1.10 Организация токораспределительной сети ЛАЦ
Токораспределительная сеть для питания проектируемой аппаратуры по напряжению минус 24 В (или -48 В, -60 В) рассчитывается по методике, разработанной ЦНИИСом «Методика расчёта токораспределительной сети с учётом проекта допустимых норм нестандартных изменений напряжения».
Необходимость расчёта токораспределительной сети вызвана тем, что к устанавливаемой аппаратуре ВОСП, выполненной на микросхемах средней и большой степени интеграции, предъявляются жесткие требования по допустимым изменениям напряжения, возникающим при нестационарных процессах в системе электропитания.
Наибольшие изменения напряжения питания аппаратуры возникают при резких изменениях тока нагрузки в электропитающей установке и токораспределительной сети. Также изменения нагрузки могут иметь место в аварийных ситуациях, главным образом, при коротких замыканиях (К.З.) в токораспределительной сети (ГРС), на входных клеммах питания аппаратуры и т.п.
В этом случае ток К.З. может достигать нескольких тысяч ампер и, протекая по ТРС, создает запас энергии в её индуктивности. В результате этого после срабатывания защиты, отсекающей участок с К.З., возникают опасные перенапряжения.
Ограничением напряжения на входе электропитающего устройства (ЭПУ), в ТРС и аппаратуре можно обеспечить сохранность и работоспособность аппаратуры. В качестве мер ограничения перенапряжения используются включение автоматических выключателей в рядовой минусовой фидер, резко уменьшающих время протекания процесса К.З., увеличение сопротивления рядовой минусовой проводки путём включения в эту проводку дополнительных резисторов, ограничивающих величину тока К.З., и снижение индуктивности ТРС путём максимального сближения разнополярных питающих фидеров, что также снижает запасенную энергию, а следовательно, и перенапряжения. С целью максимального снижения перенапряжения используется магистрально-радиальная проводка от существующей электропитающей установки токораспределительного оборудования.
Не подвержены эл. магнитным влияниям и ударам молнии
Отсутствие жил ДП, электропитание от внешних источников
Возможность организации ДП по медным жилам
Необходимость защиты от внешних эл. М
Строительство соединительных линий между узлами коммутации г. Магнитогорска и г. Учалы курсовая работа. Коммуникации, связь, цифровые приборы и радиоэлектроника.
Концептуальные Основы Логопсихологии Реферат
Реферат: Методы определения экономического ущерба от загрязнения окружающей среды. Скачать бесплатно и без регистрации
Контрольная работа по теме Методи тестування у дидактичних дослідженнях
Реферат Титульный Лист Образец Омгпу
Алимов 10 Кл Контрольные Работы
Эсса Пиво Сколько Мл
Инфляция И Безработица Реферат
Кого Можно Назвать Настоящим Другом Сочинение Рассуждение
Реферат: Экологическая ситуация в городе Тольятти. Скачать бесплатно и без регистрации
Реферат по теме Антенные решетки
Курсовая работа по теме Организация поточного производства с применением однопредметных прерывно-поточных линий в ОАО "Белгородасбестоцемент"
Реферат: Лыжи
Темы Декабрьского Сочинения 2022 2022 Фипи
Реферат: Управление психологической войной в системе государственной информационной политики
Реферат Меры Безопасности При Пожаре В Офисе
Дипломная работа по теме Анализ института права собственности как центрального института гражданского права
Контрольная работа по теме Поддержка многодетных семей в РФ
Реферат: Проблема культурологического метода. История культуры
Сочинение На Тему Актовый Зал 6 Класс
Курсовая работа по теме Конституционно-правовое регулирование роспуска ГД ФС РФ
Административная ответственность - Государство и право контрольная работа
Путешествие к центру Земли - География и экономическая география разработка урока
Правовые основы государственного регулирования предпринимательства - Государство и право контрольная работа


Report Page