Реализация генетических алгоритмов нейрокомпьютерами - Программирование, компьютеры и кибернетика курсовая работа

Реализация генетических алгоритмов нейрокомпьютерами - Программирование, компьютеры и кибернетика курсовая работа




































Главная

Программирование, компьютеры и кибернетика
Реализация генетических алгоритмов нейрокомпьютерами

История появления эволюционных алгоритмов. Нейрокомпьютерные исследования в России. Реализация генетических алгоритмов. Расчет эффективности процедур поиска конкурирующей процедуры. Schema и теорема шим. Примеры использования нейросетевых технологий.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
f (x1, x2) = exp(x1x2), где 0 < x1< 1 и 0 < x2 < 1. (1)
Обычно, методика кодирования реальных переменных x1 и x2 состоит в их преобразовании в двоичные целочисленные строки достаточной длины - достаточной для того, чтобы обеспечить желаемую точность. Предположим, что 10-разрядное кодирование достаточно и для x1, и x2. Установить соответствие между генотипом и фенотипом закодированных особей можно, разделив соответствующее двоичное целое число - на 210-1. Например, 0000000000 соответствует 0/1023 или 0, тогда как 1111111111 соответствует 1023/1023 или 1. Оптимизируемая структура данных - 20-битная строка, представляющая конкатенацию кодировок x1 и x2. Переменная x1 размещается в крайних левых 10-разрядах, тогда как x2 размещается в правой части генотипа особи (20-битовой строке). Генотип - точка в 20-мерном хеммининговом пространстве, исследуемом генетическим алгоритмом. Фенотип - точка в двумерном пространстве параметров.
Чтобы оптимизировать структуру, используя генетический алгоритм, нужно задать некоторую меру качества для каждой структуры в пространстве поиска. Для этой цели используется функция приспособленности. В функциональной максимизации, целевая функция часто сама выступает в качестве функции приспособленности (например наш двумерный пример); для задач минимизации, целевую функцию следует инвертировать и сместить затем в область положительных значений.
Строящие блоки - это шимы обладающие:
Приспособленность шимы определяется как среднее приспособленностей примеров, которые ее содержат.
После процедуры отбора остаются только строки с более высокой приспособленностью. Следовательно строки, которые являются примерами шим с высокой приспособленностью, выбираются чаще. Кроссовер реже разрушает шимы с более короткой определенной длиной, а мутация реже разрушает шимы с низким порядком. Поэтому, такие шимы имеют больше шансов переходить из поколения в поколение. Голланд показал, что, в то время как генетический алгоритм явным образом обрабатывает n строк на каждом поколении, в тоже время неявно обрабатываются порядка таких коротких шим низкого порядка и с высокой приспособленностью (полезных шим, "useful schemata"). Он называл это явление неявным параллелизмом. Для решения реальных задач, присутствие неявного параллелизма означает, что большая популяция имеет больше возможностей локализовать решение экспоненциально быстрее популяции с меньшим числом особей.
Теорема шим показывает, что строящие блоки растут по экспоненте, в то время шимы с приспособленностью ниже средней распадаются с той же скоростью. В своих исследованиях теоремы шим Goldberg выдвигает гипотезу строящих блоков, которая состоит в том, что "строящие блоки объединяются, чтобы сформировать лучшие строки". То есть рекомбинация и экспоненциальный рост строящих блоков ведет к формированию лучших строящих блоков.
В то время как теорема шим предсказывает рост примеров хороших шим, сама теорема весьма упрощенно описывает поведение генетических алгоритмов. Прежде всего, f(H) и fср. не остаются постоянными от поколения к поколению. Приспособленности членов популяции знаменательно изменяются уже после нескольких первых поколений. Во-вторых, теорема шим объясняет потери шим, но не появление новых. Новые шимы часто создаются кроссовером и мутацией. Кроме того, по мере эволюции, члены популяции становятся все более и более похожими друг на друга так, что разрушенные шимы будут сразу же восстановлены. Наконец, доказательство теоремы шим построено на элементах теории вероятности и следовательно не учитывает разброс значений, в многих интересных задачах, разброс значений приспособленности шимы может быть достаточно велик, делая процесс формирования шим очень сложным. Существенная разница приспособленности шимы может привести к сходимости к неоптимальному решению.
Несмотря на простоту, теорема шим описывает несколько важных аспектов поведения генетических алгоритмов. Мутации с большей вероятностью разрушают шимы высокого порядка, в то время как кроссовера с большей вероятность разрушают шимы с большей определенной длиной. Когда происходит отбор, популяция сходится пропорционально отношению приспособленности лучшей особи, к средней приспособленности в популяции; это отношение - мера давления отбора. Увеличение или Pc, или Pм., или уменьшении давления отбора, ведет к увеличенному осуществлению выборки или исследованию пространства поиска, но не позволяет использовать все хорошие шимы, которыми располагает генетический алгоритм. Уменьшение или Pc, или Pм., или увеличение давления выбора, ведет к улучшению использования найденных шим, но тормозит исследование пространства в поисках новых хороших шим. Генетический алгоритм должен поддержать тонкое равновесие между тем и другим, что обычно известно как проблема "баланса исследования и использования".
Некоторые исследователи критиковали обычно быструю сходимость генетического алгоритма, заявляя, что испытание огромных количеств перекрывающихся шим требует большей выборки и более медленной, более управляемой сходимости. В то время как увеличить выборку шим можно увеличив размер популяции, методология управления сходимость простого генетического алгоритма до сих пор не выработана.
Трудности использования эволюционных алгоритмов. Построение вычислительных систем, основанных на принципах естественного отбора. Недостатки генетических алгоритмов. Примеры эволюционных алгоритмов. Направления и разделы эволюционного моделирования. реферат [187,4 K], добавлен 21.01.2014
Основные особенности эволюционных алгоритмов. Описание алгоритмов селекции, мутации, скрещивания, применяемых для реализации генетических алгоритмов. Вычисление функции приспособленности. Программная реализация. Тестирование и руководство пользователя. курсовая работа [1,3 M], добавлен 11.03.2014
Комплексное исследование истории развития, основных понятий, области применения и особенностей генетических алгоритмов. Анализ преимуществ генетических алгоритмов. Построение генетического алгоритма, позволяющего находить максимум целочисленной функции. курсовая работа [27,9 K], добавлен 23.07.2011
Описание генетических алгоритмов. Применение генетического алгоритма для решения задачи коммивояжера. Постановка задачи безусловной оптимизации. Изучение распространения генетических алгоритмов на модель с несколькими взаимодействующими популяциями. дипломная работа [979,1 K], добавлен 30.05.2015
Реализация комплекса программ поиска подстроки в тексте алгоритмом прямого поиска и алгоритмом Кнута-Морриса-Пратта. Сравнительный анализ теоретических и экспериментальных оценок эффективности алгоритмов. Разработка структуры программы, ее листинг. курсовая работа [2,8 M], добавлен 22.01.2015
Методы реализации алгоритмов сортировки и алгоритмов поиска на языках программирования высокого уровня. Программирование алгоритмов сортировки и поиска в рамках создаваемого программного средства на языке Delphi. Создание руководства пользователя. курсовая работа [1,7 M], добавлен 16.04.2012
Составление и программная реализация в среде Borland Delphi 7.0 алгоритмов итерационного и рекурсивного вариантов решения задачи поиска с возвращением. Исследование асимптотической временной сложности решения в зависимости от количества ячеек на плате. курсовая работа [57,5 K], добавлен 25.06.2013
Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д. PPT, PPTX и PDF-файлы представлены только в архивах. Рекомендуем скачать работу .

© 2000 — 2021



Реализация генетических алгоритмов нейрокомпьютерами курсовая работа. Программирование, компьютеры и кибернетика.
Аварии При Работе Буровых Станков Реферат
Курсовая работа: Анализ формирования финансовой политики РФ в 90-х годах XX столетия
Реферат: Экологические правонарушения и экологические преступления
Отчет По Геологической Практике Мгсу
Реферат по теме Кодирование товаров
Книга: Дорогою ціною
Курсовая работа по теме Технологии механической обработки деталей класса 'Втулки и диски'
Мотивация Курсовая
Реферат по теме Система охлаждения автомобиля
Реферат Репродуктивное Здоровье Человека
Реферат На Тему Развитие Психиатрии В Социалистических И Капиталистических Странах
Курсовая работа: Кредитний портфель банку
Гостеприимство Казахского Народа Эссе
Правосознание Понятие И Проблемы Формирования Курсовая Молдовка
Реферат Искусственный Интеллект Замена Судей В Арбитраже
Роль Словарей В Жизни Человека Реферат
Эссе Красное Сухое
Контрольная работа: Новые производные инструменты на российском рынке американские и глобальные депозитарные распис
Курсовая работа по теме Значение знака и символа в культуре
Реферат: Политические воззрения Сперанского.. Скачать бесплатно и без регистрации
Основы политологии - Политология практическая работа
Дослідження функції серцево-судинної системи. Фізіологія судин - Медицина методичка
Обстоятельства, влияющие на назначение наказания по Уголовному кодексу Российской Федерации - Государство и право курсовая работа


Report Page