Разработка устройства идентификации близлежащих объектов для автомобиля - Коммуникации, связь, цифровые приборы и радиоэлектроника дипломная работа

Разработка устройства идентификации близлежащих объектов для автомобиля - Коммуникации, связь, цифровые приборы и радиоэлектроника дипломная работа




































Главная

Коммуникации, связь, цифровые приборы и радиоэлектроника
Разработка устройства идентификации близлежащих объектов для автомобиля

Создание специального устройства для информирования водителя о преградах и обзора территории. Значение импульсной акустической локации. Проектирование сложного электронного устройства. Структурная схема устройства идентификации. Разработка печатной платы.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Министерство образования Республики Беларусь
Учреждение образования Гомельский государственный дорожно-строительный колледж имени Ленинского комсомола Белоруссии
Пояснительная записка дипломного проекта:
Разработка устройства идентификации близлежащих объектов для автомобиля
Консультант по экономическому: Исакович О.В.
Специальность 2-400202: Электронные вычислительные средства
1.1 Назначение и область применения
1.3 Разработка принципиальной схемы
1.4 Разработка блока (системы) электропитания
2 Конструкторско-технологический раздел
2.3 Поиск и устранение неисправностей
Дипломное проектирование - заключительный этап обучения учащихся технических специальностей в учреждении образования «Гомельский государственный дорожно-строительный колледж имени Ленинского комсомола Белоруссии», который имеет своей целью:
1. Систематизацию, закрепление, расширение теоретических знаний и практических навыков и применение их для решения конкретных профессиональных задач;
2. Овладение методикой проектирования, формирование навыков самостоятельной проектно-конструкторской работы;
3. Приобретение навыков обобщения и анализа результатов, полученных другими рахраюотчиками или исследователями;
4. Выявление уровня подготовленности учащихся для самостоятельной работы на производстве, в проектных организациях и учреждениях.
В соответствии с заданием на дипломный проект мне необходимо разработать устройство идентификации близлежащих объектов для автомобиля. Устройство должно идентифицировать наличие определённых предметов около автомобиля и выводить на ЖКИ полученную информацию, для чего используется микропроцессор MSP430F413.
1 . Расчетно-проектировочный раздел
1.1 Назначение и области применения
Тема моего дипломного проекта - «Разработка устройства идентификации близлежащих объектов для автомобиля ». Двигаясь задним ходом, водитель автомобиля не может видеть определённую зону дорожного пространства, это может создавать определённую опасность дорожного движения. Такая зона имеет протяжённость до двух метров, и в ней могут оказаться животные или люди, а также предметы, представляющие собой помеху для движения. Достижения современной техники позволяют создавать специальные устройства для обзора указанного пространства и информирования водителя в случае, если на пути автомобиля встречаются какие-либо объекты. Наиболее оптимально такая задача решается с помощью импульсной акустической локации.
Устройство идентифицирует наличие объектов в зоне покрытия ультразвукового датчика, вычисляет расстояние до ближайшего из них и передаёт полученную информацию водителю автомобиля. Это в свою очередь позволяет водителю принять оптимально необходимые действия для разрешения сложившейся ситуации.
Применяются данные устройства в автомобилях, хотя при соответствующей доработке программы и конструкции его можно использовать в качестве незаменимого помощника для слепых, устройств охраны помещений, портативного эхолота рыболова-любителя, бесконтактного индикатора уровня жидкости и т.п.
Проектирование сложного электронного устройства начинается с разработки его структурной схемы.
Структурной называется схема, которая определяет основные функциональные части изделия и связи между ними. Структурная схема должна показывать, из каких функциональных блоков состоит электронное устройство и каким образом эти блоки взаимодействуют между собой.
Составные части проектируемого устройства изображаются упрощенно в виде прямоугольников произвольной формы, т. е. с применением условно-графических обозначений. Внутри каждого прямоугольника, функционального узла устройства, указаны наименования, которые очень кратко описывают предназначение конкретного блока. Структурная схема разрабатываемого устройства показана на рисунке 1.2.1.
Рис.1.2.1 - Структурная схема разрабатываемого устройства
Структурная схема разрабатываемого устройства состоит из следующих блоков:
- жидкокристаллический индикатор(ЖКИ);
- ультразвуковой излучатель(УЗ-излучатель);
- ультразвуковой приёмник(УЗ-приёмник);
- Блок «МП» предназначен для программного управления функциональными блоками, осуществляет отправку двенадцати 40-килогерцовых импульсов на «УЗ-излучатель», принимает полученный от «УЗ-приёмника» сигнал, обрабатывает его, вычисляя расстояние до объекта, и также выводит информацию на «ЖКИ» благодаря имеющемуся встроенному драйверу жк-индикаторов на 96 сегментов.
- «ЖКИ» является 2-х цифровым LCD индикатором, выводящим данные от «МП» к водителю в салон.
- «ГЧ» задаёт частоту работы «МП» (40 кГц).
- «Согласующий каскад» является преобразователем уровня сигнала между блоками «МП» и «Выходной драйвер раскачки».
- «Выходной драйвер раскачки» обеспечивает размах сигнала в 18 В, необходимые для работы «УЗ-излучателя».
- «УЗ-излучатель» осуществляет посылку сигнала в среду.
- «УЗ-приёмник» принимает отражённый от объекта сигнал.
- «Усилитель» обеспечивает усиление и фильтрацию по 40 кГц полученного от «УЗ-приёмника» сигнала.
- Через блок «JTAG» осуществляется программирование «МК».
1.3 Разработка принципиальной схемы
Структурная схема разрабатываемого устройства
Главным элементом схемы является микропроцессор MSP430F413. Средний ток, потребляемый им, составляет 2,1 мкА, а рабочее напряжение - 3,6 В.
В качестве светодиода я выбираю АЛ307А, который имеет ток во включенном состоянии I пр = 20 мА и прямое напряжение U пр = 2 В, выполню расчет токоограничивающего резистора R7:
В схеме транзистор КТ315Д согласует работу микроконтроллера MSP430F413 и микросхемы К561ЛН2. Транзистор включен по схеме транзисторного ключа:
Рисунок 1.3.1.1 - Транзисторная схеме
Определяем напряжение в базовой цепи:
Выбираем R8 из условия обеспечения запертого состояния транзистора при максимальной рабочей температуре:
Сопротивление R7 выбираем из условия насыщенности транзистора:
R5 и R6 создают смещение на неинвертирующем входе ОУ для корректной работы с однополярным источником питания. Величина тока, протекающего через них, составляет примерно 40 мкА. Произведём расчет величины сопротивления этих резисторов:
Резистор R3 задаёт напряжение в цепи обратной связи для операционного усилителя TLV2771, резистор R2 регулирует величину смещения на неинвертирующем входе операционного усилителя. Величина резисторов R6, R5 и R4, а также конденсаторов C4, C2 и С1 выбирается по типовой схеме подключения операционного усилителя TLV2771.
Величина резисторов R3, R2 равна 100 кОм, а величина резистора R1равна 1,8 кВ, конденсаторатора С2 - в 22 пФ, конденсатора С7 - в 0,1 мФ.
R4 является «подтягивающим» резистором для вывода Reset. Ток, протекающий через него примерно равен 35 мкА. Рассчитаем величину данного сопротивления:
Конденсатор C3 обеспечивает фильтрацию питания и дожжен быть расположен как можно ближе к выводам питания. Его величину выбираем из типовой схемы подключения выводов микропроцессора MSP430F413: С3=0,1 мкФ.
Микропроцессор главным элементом устройства. Для работы устройства я выбрал микроконтроллер MSP430F413 ( DА1), т. к. он имеет такие встроенные периферийные устройства, как аналоговый компаратор Comparator_A, 16-битный таймер Timer_A с аппаратными регистрами захвата-сравнения, базовый таймер Basic Timer1 и драйвер ЖКИ, что значительно упрощает разработку устройства и обеспечивает однокристальное решение. Средний потребляемый ток этого микроконтроллера составляет примерно 2,1 мкА с учётом постоянно включенного ЖКИ. Это стало возможным благодаря использованию преимуществ функций ультранизкого потребления MSP430. Основное время MSP430F413 находится в режиме пониженного энергопотребления LPM3, при котором ресурсы ЦПУ используются всего лишь на 5,6 %. Микропроцессор принадлежит фирме Texas Instruments.
· Контроллер падения напряжения: есть
· Напряжение питания ядра: 1.8...3.6В
· Ток потребления в активном режиме: 0.2мкА(1 МГц, 2.2 В)
· Дежурный режим: 0.7 мкАРежим выключения (поддержание ОЗУ): 0.1 мкА
· Встроенный драйвер LCD для 96 сегментов / Контроллер TFT: LCD 4x24
-Пять режимов понижения потребления
-Выход из дежурного режима не более 6 мкс
-Встроенная схема автоподстройки частоты ( FLL)
-16-разрядная RISC-архитектура, время выполнения инструкции 125 нс
-16-разрядный таймер (Timer_A) с тремя регистрами захвата_фронтов/сравнения
-Встроенный внутрисхемный последовательный программатор, программирование не требует внешнего напряжения, возможность настройки
степени защиты программы специальными программируемыми битами
-Сектор начальной загрузки во флэш-памяти
Серия фирмы Texas Instruments MSP430 - семейство микроконтроллеров со сверхмалым потреблением энергии, состоящие из нескольких устройств с различной конфигурацией периферийных модулей для различной области применения. Микроконтроллер разработан для применения в автономных батарейных системах для продления срока их службы. За счет 16-разрядной RISC архитектуры, 16-разрядных регистров интегрированных в ЦПУ и стабильности генератора MSP430 достигает максимальной эффективности кода. Генератор с цифровым управлением обеспечивает быстрый выход из экономичных режимов за время не более 6 мкс. Серия микроконтроллеров MSP430x41x конфигурируется одним 16-разрядным таймером, компаратором, 96 сегментным драйвером и 48 линиями ввода-вывода.
К типичной области применения относятся контролирующие системы, которые фиксируют аналоговые сигналы, преобразуют их в цифровой код и после обработки отображают или передают главной системе. Совместное применение компаратора и таймера делает данные устройства идеальными для промышленных измерений, счетчиков, портативных измерительных устройств и т.
RISC-архитектура RISC(Reduced Instruction Set Computer) - архитектура процессора с сокращенным набором команд. Наиболее важные отличительные особенности RISC архитектуры: архитектура регистр-регистр, простые способы адресации, простые команды и большой регистровый файл. Микроконтроллер MSP430 имеет 27 основных инструкций и 24 дополнительных инструкции, что значительно упрощает процесс генерации команд. Отсутствуют специальные команды обращения к аккумулятору, памяти или к периферийным устройствам. Это существенно повышает эффективность работы процессора. Ядро процессора - 16-битовое RISC ALU и шестнадцать 16-битовых регистров. Четыре регистра выполняют функции программного счетчика (PC), регистра статуса (SR), указателя стека (SP) и регистра констант (CG). Остальные двенадцать 16-битовых регистра - полностью в распоряжении пользователя. Регистры общего назначения используются для хранения переменных, указателей и для операций с данными. Процессор обращается к этим регистрам непосредственно, что содействует высокой эффективности работы микроконтроллера MSP430. Время выполнения команд 1-4 машинных цикла (1-4 мксек).
Для эффективного использования энергии батареи семейство микроконтроллеров MSP430 использует пять режимов энергосбережения: LPM0, LPM1, LPM2, LPM3 и LMP4. На рисунке 2 показаны три основных режима энергосбережения LPM из пяти(Low Power Mode). Ток, потребляемый микроконтроллером MSP430, в нормальном (рабочем) режиме составляет 250 - 400 mкA. Процессор (CPU) и все встроенные периферийные устройства работают в обычном режиме. Основная особенность семейства микроконтроллеров MSP430 заключается в том, что периферия ( модуль ЖКИ, АЦП, таймеры, порты I/O ) может работать автономно, т.е. независимо от процессора. Поэтому, если в течение некоторого промежутка времени CPU не используется, его выключают командой "CPU Off". Потребляемый от батареи ток снижается до 30 mкA (режим LPM0). Допустим, что отпала необходимость в системной частоте (MCLK), которая используется для CPU, АЦП и таймеров. Включаем режим LPM3 - ток, потребляемый от батареи, снижается до 0,8 mкA. Возврат из энергосберегающих режимов LPM0-LPM3 в рабочий режим происходит по внутреннему прерыванию, которое генерируют периферийные модули. Возврат из режима LPM4 (все выключено) возможен только по внешнему прерыванию. Режимы управления потребляемой мощностью переключаются программно. Переходы из любого режима энергосбережения (LPM0-4) в рабочий режим происходят за 6 mксек. Развитая система прерываний ( 15 векторов ) позволяет оперативно управлять работой микроконтроллера, минимизируя время "холостой" работы CPU. Все периферийные устройства имеют индивидуальные вектора прерывания.
Принцип действия светодиодной информационной панели рассмотрим на основе принципиальной схемы.
Рисунок 1.3.2.2 - Принцип действия светодиодной информационной панели
Цепь выходного драйвера раскачки излучателя запитана непосредственно 12-ю вольтами и обеспечивает на выходе размах сигнала 18 В . Это напряжение получается при помощи мостовой схемы на 4-х инверторах К561ЛН2 (DD2.1-DD2.6). Один из инверторов вращает фазу сигнала на 180° для одного из плеч драйвера, на второе плечо поступает неинвертированный сигнал. При таком построении драйвера на выходе обеспечивается размах сигнала 18 В , необходимый для излучателя. По два инвертора соединены в параллель для удвоения выходного тока.
На рисунке 1.3.2.3 представлена а на рисунке 1.3.2.4 - её условное графическое обозначение.
Рисунок 1.3.2.3 - структурная схема микросхемы К561ЛН2
Рисунок 1.3.2.4 - Графическое обозначение
Микросхема К561ЛН2 содержит 6 буферных инверторов. В отличие от других микросхем её семейства для К561ЛН2 необходимо всего лишь одно напряжение питания, которое подаётся на 14 вывод. Нагрузочная способность инвертора - два ТТЛ входа (т. е. при выходном напряжении низкого уровня не менее 0,4 В). Время задержки распространения при Uип = 10 В - не более 55 мсек.
Операционный усилитель TLV 2771 (DD1) - это 5-выводный ОУ с высокой скоростью нарастания выходного сигнала производства TI. Этот усилитель имеет широкую полосу сигнала и обеспечивает высокое усиление на частоте 40кГц.
Операционный усилитель TLV 2771 , построенный на основе CMOS, имеет высокий пропускной показатель и широкую частотную полосу в 5,1 МГЦ, и потребляет при этом 1 мА. Он имеет хорошие показатели термической устойчивости (от -55 0 до +125 0 С), что является хорошим показателем для использования в автомобиле. Диапазон рабочих напряжений у TLV2771 - от 2,7 В до 5,5 В.
Рисунок 1.3.2.5 - Расположение ножек
Расположение ножек на условном графическом обозначении указано на рисунке 1.3.2.5.
На рисунке 1.3.2.6 показан внешний вид микросхемы.
Рисунок 1.3.2.6 - Внешний вид микросхемы
Таблица 1.3.2.3 - Назначение выводов TLV2771
неинвертирующий вход операционного усилителя
инвертирующий вход операционного усилителя
Максимальные допустимые параметры операционного усилителя TLV2771:
· Диапазон входных напряжений U ВХ = - 0,3…7 В;
Рассеиваемая мощность при Т ? 25 0 С Р = 437мВт.
Для вывода информации к водителю автомобиля я применил низковольтный двухразрядный семисегментный жидкокристаллический индикатор со статическим управлением DA04-11EWA (HG1). Внешний вид индикатора изображен на рисунке 1.3.2.7.
· Минимальная сила света Iv мин.,мКд
· Максимальная сила света Iv макс.,мКд
· Максимальное обратное напряжение,В
· Максимальный импульсный прямой ток ,мА
Рисунок 1.3.2 и 1.3.2.9 - Ультразвуковые приёмопередатчики
В качестве излучателя и приемника ультразвукового сигнала я использовал ультразвуковые приёмопередатчики MA40E7S-1 ( TX1,RX1), которые имеют влагозащищенный корпус, что дает большое преимущество по сравнению с другими ультразвуковыми датчиками открытого типа. Рабочая частота у MA40E7S-1 составляет 40 кГц. Диапазон рабочих температур: -30...+85°С.
Рисунок 1.3.2.10 - Внешний вид данного приемопередатчика.
На рисунке 1.3.2.10 представлен внешний вид данного приемопередатчика.
C схеме устройства я использовал интерфейс JTAG (XS1), который задействует 4 вывода AVR-микроконтроллера. По JTAG-терминологии эти выводы в совокупности называются "Порт доступа к функциям тестирования" (TAP). В состав этого порта входят следующие сигналы:
· TMS - Выбор режим тестирования. Данный вывод используется для навигации по цифровому автомату TAP-контроллера.
· TCK: Синхронизация тестирования. JTAG-интерфейс работает синхронно по отношению TCK.
· TDI: Тестовый ввод данных. Последовательный ввод данных сдвигом в регистр инструкции или регистр данных (цепи сканирования).
· TDO: Тестовый вывод данных. Последовательный вывод данных из регистра инструкции или регистра данных.
Ультразвуковой дальномер создан на базе микропотребляющего микроконтроллера MSP430F413. Прибор передаёт «пачку» волн ультразвуковой частоты по направлению объекта и принимает соответствующий отражённый сигнал. Встроенный в MSP430 аналоговый компаратор Comparator_A используется для определения момента принятия отражённого сигнала. Микроконтроллер с высокой точностью измеряет время прохождения ультразвуковой «пачкой» расстояния от излучателя до объекта и обратно. Принимая во внимание, что скорость звука при комнатной температуре равна 335,48 метров/сек, MSP430 вычисляет расстояние между прибором и объектом и выводит значение на 2-цифровой ЖКИ со статическим управлением при помощи встроенного ЖК-драйвера. Расстояние отображается с точностью 9 мм. Минимально измеряемое расстояние - 20 см, оно ограничено физическими характеристиками излучателя. Максимальное измеряемое расстояние - 300 см. Амплитуда отражённого сигнала зависит от материала объекта, его формы и размера. Звукопоглощающие предметы, такие, как ковры и отражающие объекты площадью менее 0,2-х квадратных метров плохо отражают сигнал, для таких предметов максимально измеряемое расстояние меньше. Если величина отражённого сигнала меньше порога срабатывания Comparator_A, прибор перейдёт в режим перегрузки. На экране будет показано сообщение об ошибке E.
Прибор основан на эффекте отражения звуковых волн. Эти волны можно представить как продольные колебания давления в среде их распространения. Предметы, размеры которых превышают длину падающей звуковой волны, отражают её; отражённая волна называется эхом. Если скорость звука в среде известна и можно измерить время распространения волны от источника до объекта и обратно, то расстояние между излучателем и предметом может быть точно вычислено. На этом принципе измерения и основан данный прибор. Средой распространения звуковых волн в данном случае является воздух, а звуковые волны излучаются ультразвуковом диапазоне, т.к. он не воспринимается человеческим ухом. Принимая скорость звука в воздухе равной 335,48 метрам в секунду при комнатной температуре и обозначив время распространения звуковой волны от излучателя до объекта и обратно через t (сек), расстояние d вычисляется по формуле d=335,48 X 12 X t (метров). Так как звуковые волны преодолевают удвоенное расстояние между излучателем и предметом, реальное расстояние между источником и объектом будет равно d/2.
В данном приборе использованы керамические ультразвуковые излучатели на частоту 40 кГц. MSP430 подаёт на излучатель пачку из 12 импульсов частотой 40 кГц прямоугольной формы стабилизированной при помощи кварцевого резонатора и принимает «эхо» с помощью УЗ-приёмника. Таймер Timer_A в MSP430 сконфигурирован для подсчёта 40-килогерцовых импульсов от кварца, таким образом, временное разрешение измерения составляет 25 мкс, что более чем достаточно для данных целей. Тактовая частота для измерений получена при помощи кварцевого генератора, что обеспечивает её высокую стабильность. Отражённый сигнал, принятый приёмником усиливается операционным усилителем, выход которого подключен к входу компаратора Comparator_A . Компаратор
Comparator_A определяет наличие сигнала на входе и формирует сигнал захвата для таймера Timer_A, результат счёта при этом «защёлкивается» в регистре захвата-сравнения CCR1. Время осуществления «защёлкивания» в точности соответствует времени прихода импульсов отражённого сигнала. Запомненный в регистре результат счёта соответствует времени, затраченному пачкой ультразвуковых импульсов на преодоление расстояния от прибора до объекта и обратно. Расстояние в дюймах вычисляется микроконтроллером MSP430 исходя из измеренного времени и выводится на 2-х цифровой ЖКИ со статическим управлением. Сразу после этого МК переходит в режим пониженного потребления LPM3 для снижения потребляемой мощности. Таймер Basic Timer1 запрограммирован на формирование прерываний каждые 205 мс. Прерывание от Basic Timer1 переводит MSP430 в активный режим, при этом повторяются цикл измерения и вывод на ЖК.
МК MSP430F413 является главным элементом схемы. HG1 - 2-х цифровой низковольтный ЖКИ со статическим управлением, управляемый встроенным драйвером ЖКИ. R03 подключен к 3,6 В, а R13 и R23 оставлены неподключенными, таким образом организовано статическое управление ЖК. Кварцевый резонатор на 40 кГц специально выбран для использования в составе низкочастотного кварцевого генератора для обеспечения резонансной частоты используемых в приборе ультразвуковых излучателей. R4 является «подтягивающим» резистором для вывода Reset. Конденсатор C3 обеспечивает фильтрацию питания и должен быть расположен как можно ближе к выводам питания. 14-выводный разъём XS1 предназначен для подключения интерфейса JTAG к MSP430 для внутрисхемного программирования и отладки при помощи MSP430 flash emulation tool. Светодиод VD1 сигнализирует о циклах измерения. Вывод порта P1.5 сконфигурирован как выход частоты ACLK, требуемой для УЗ-излучателя.
Цепь выходного драйвера раскачки излучателя запитана непосредственно 9-ю вольтами и обеспечивает на выходе размах сигнала 18 В . Это напряжение получается при помощи мостовой схемы на 4-х инверторах К561ЛН2. Один из инверторов вращает фазу сигнала на 180° для одного из плеч драйвера, на второе плечо поступает неинвертированный сигнал. При таком построении драйвера на выходе обеспечивается размах сигнала 18 В , необходимый для излучателя. По два инвертора соединены в параллель для удвоения выходного тока. Конденсаторы C5 и C6 обеспечивают развязку излучателя по постоянному току. Т.к. К561ЛН2 запитан от 12 В, а MSP430 от 3.6 В, уровень логического сигнала не согласован. Биполярный транзистор КТ315Д служит преобразователем уровня.
Операционный усилитель TLV 2771 - это 5-выводный ОУ с высокой скоростью нарастания выходного сигнала производства TI. Этот усилитель имеет широкую полосу сигнала и обеспечивает высокое усиление на частоте 40кГц. ОУ включен по инвертирующей схеме. Коэффициент усиления (КУ) устанавливается резисторами R1 и R3 и равен 55, С2 служит для частотной коррекции. R5 и R6 создают смещение на неинвертирующем входе ОУ для корректной работы с однополярным источником питания. Усиленный ультразвуковой сигнал является двухполярным относительно постоянного уровня в данной точке. Высокая добротность УЗ-приёмника обеспечивает требуемую избирательность и ослабление частот, кроме 40кГц. Выход ОУ подключен ко входу CA0 компаратора Comparator_A через вывод порта P1.6. Опорное напряжение компаратора Comparator_A выбрано от внутреннего источника 1,8 В . Пока не принято ультразвуковое «эхо» уровень напряжения на входе CA0 несколько меньше, чем на опорном CA1. При приёме сигнала уровень на входе возрастает выше опорного, при этом переключается выход компаратора Comparator_A CAOUT. Резистором R6 осуществляется точная подстройка чувствительности и, соответственно, оптимального диапазона измерения.
MSP430 и усилитель сигнала УЗ-приёмника питаются от управляемого источника 3.6В. Выключатель S1 управляет питанием прибора.
Рассчитаем потребляемую мощность каждого из элементов:
· Мощность, потребляемая ИМС MSP430F413:
P1=U ПОТ ?I ПОТ =3,6?0,2?10 -6 =0,72 мкВт;
· Мощность, потребляемая ИМС TLV2771:
P2= U ПОТ ?I ПОТ =12?20?10 -6 =240 мкВт;
· Мощность, потребляемая ИМС К561ЛН2:
P3= U ПОТ ?I ПОТ =3,6?1?10 -3 =3600 мкВт;
· Мощность, потребляемая ЖКИ DA04-1EAW:
P4= U ПОТ ?I ПОТ =2,5? 5?10 -3 =12500 мкВт;
· Мощность, потребляемая транзистором КТ315Д:
P5= U ПОТ ?I ПОТ =12?1?10 -3 =12000 мкВт.
· Мощность, потребляемая резисторами R1-R10:
P6= U ПОТ ?I ПОТ =10?0,125?10 -3 = 1250 мкВт;
· Мощность, потребляемая светодиодом АЛ307А:
P7= U ПОТ ?I ПОТ =3,6?1?10 -3 =3600 мкВт;
Мощность, потребляемая устройством :
P=P1+P2+P3+P4+P5+P6+P7=(0.72+240+3600+12500+12000+1250+3600)?10 -6 =33191?10 -6 =33,2 мВт.
Источником питания для светодиодной информационной панели является автомобильный аккумулятор, который является электрическим прибором, накапливающим электроэнергию при заряде и отдающий её во внешнюю цепь при разряде. При заряде аккумуляторной батареи электрическая энергия, поступающая в неё, превращается в химическую и в таком виде накапливается. Во время разряда химическая энергия вновь преобразуется в электрическую и питает электроприборы.
Аккумуляторная состоит из моноблока, разделённого перегородками на три или шесть отсеков. Внутрь каждого отсека установлен пакет, состоящий из положительных и отрицательных электродов (пластин) с сепараторами. Одноименные электроды соединены параллельно. Отсеки сверху закрыты общей или отдельными крышками, в которых есть отверстия для заливки электролита. Места соединений крышек с моноблоком заполнены кислотоупорной мастикой.
Основное предназначение аккумулятора - питание пускового электродвигателя (стартера). В начальный момент пуска двигателя стартеры потребляют от аккумулятора силу тока, достигающую 600-825 А. Затем потребляемая сила тока падает.
Напряжение на зажимах аккумулятора составляет 12 В.
В устройстве от 3,6 В питается микросхема процессора MSP430F413 и усилитель на TLV2771. Получить данное стабилизированное напряжение можно через схему источника напряжения на стабилизаторе К142ЕН12А.
Рисунок 1.4.1 - Типовая схема подключения К142ЕН12А
Параметры стабилизатора К142 ЕН12А:
2. Конструкторско-технологический раздел
Печатные платы представляют собой диэлектрическую пластину с нанесенным на нее токопроводящим рисунком (печатным монтажом) и отверстиями для монтажа элементов.
При конструировании РЭА на печатных платах используют следующие методы:
1.Моносхемный применяют для несложной РЭА. В том случае вся электрическая схема располагается на одной ПП. Моносхемный метод имеет ограниченное применение, так как очень сложные ПП неудобны при настройке и ремонте РЭА. Недостаток - сложность системы соединительных проводов, связывающих отдельные платы.
2.Функционально-узловой метод применяют в РЭА с использованием микроэлектронных элементов. При этом ПП содержит проводники коммутации функциональных модулей в единую схему. На одной плате можно собрать очень сложную схему. Недостаток этого метода - резкое увеличение сложности ПП. В ряде случаев все проводники не могут быть расположены на одной и даже обеих сторонах платы. При этом используют многослойные печатные платы МПП, объединяющие в единую конструкцию несколько слоёв печатных проводников, разделённых слоями диэлектрика. В соответствии с ГОСТом различают три метода выполнения ПП:
Предпочтительными являются полуавтоматизированный, автоматизированный методы.
Метод металлизации сквозных отверстий применяют при изготовлении многослойных печатных плат. Заготовки из фольгированного диэлектрика отрезают с припуском 30 мм на сторону. После снятия заусенцев по периметру заготовок и в отверстиях, поверхность фольги защищают на крацевальном станке и обезжиривают химически соляной кислотой в ванне. Рисунок схемы внутренних слоёв выполняют при помощи сухого фоторезиста. При этом противоположная сторона платы должна не иметь механических повреждений и подтравливания фольги. Базовые отверстия получают высверливанием на универсальном станке с ЧПУ. Ориентируясь на метки совмещения, расположенные на технологическом поле. Полученные заготовки собирают в пакет. Перекладывая их складывающимися прокладками из стеклоткани, содержащими до 50% термореактивной эпоксидной смолы. Совмещение отдельных слоёв производится по базовым отверстиям. Прессование пакета осуществляется горячим способом. Приспособление с пакетами слоёв устанавливают на плиты пресса, подогретые до 120…130° С. Первый цикл прессования осуществляют при давлении 0,5 МПа и выдержке15…20 минут. Затем температуру повышают до 150…160° С, а давление - до 4…6 МПа. При этом давлении плата выдерживается из расчёта 10 минут на каждый миллиметр толщины платы. Охлаждение ведётся без снижения давления. Сверление отверстий производится на универсальных станках с ЧПУ СМ-600-Ф2. В процессе механической обработки платы загрязняются. Для устранения загрязнения отверстия подвергают гидроабразивному воздействию. При большом количестве отверстий целесообразно применять ультразвуковую очистку. После обезжиривания и очистки плату промывают в горячей и холодной воде. Затем выполняется химическую и гальваническую металлизации отверстий. После этого удаляют маску. Механическая обработка по контуру, получение конструктивных отверстий осуществляют на универсальных, координатно-сверлильных станках. Выходной контроль осуществляется автоматизированным способом на специальном стенде, где происходит проверка работоспособности платы, т.е. её электрических параметров. Затем идет операция гальванического осаждения меди. Операция проводиться на автооператорной линии АГ-44. На тонкий слой осаждается медь до нужной толщины. После этого производится контроль на толщину меди и качество её нанесения. Далее производиться обработка по контуру печатной платы. В этой операции удаляется ненужный стеклотекстолит по краям платы и подгонка до требуемого размера. Затем методом сеткографии производиться маркировка печатной платы. Весь цикл производства печатных плат заканчивается контролем платы. Здесь используется автоматизируемая проверка на специальных стендах.
Процесс компоновки элементов проектируемой мной светодиодной информационной панели можно подразделить на несколько этапов:
_ Функциональная компоновка - это размещение и установка функциональных элементов на печатных платах с учетом функциональных и энергетических требований, а также плотности компоновки и установки элементов, плотности топологии печатных проводников. Функциональная компоновка проводится для определения основных размеров печатной платы, выбора способов ее проектирования и изготовления. Прежде чем приступить к изготовлению печатной пла
Разработка устройства идентификации близлежащих объектов для автомобиля дипломная работа. Коммуникации, связь, цифровые приборы и радиоэлектроника.
Отчет по практике по теме Организация бухгалтерского учета на предприятии ООО 'Афалина'
Контрольная работа: Психологический рабочий стресс: механизм развития, влияние на деятельность
Контрольная Работа 9 Класс Мордкович Углубленное Изучение
Дипломная Работа На Тему Уголовное Наказание В Виде Штрафа
Рефераты На Тему Предпринимательство
Реферат по теме Инцест (кровосмешение)
Контрольная работа по теме Регенерація тканин людини. Алергічні реакції організму
Реферат Подбор Одежды По Случаю
Доклад: Система принятия верных решений
Сочинение На Тему Мужество Егэ
Реферат: Недреманное око
Реферат: Особенности воспитательной работы в спецшколе-интернате
Реферат: Содовое производство
Эссе По Политологии Политическая Культура
Совершенствование таможенного регулирования внешнеэкономической деятельности в условиях глобализации экономики
Система Образования В Италии Реферат
Контрольная работа по теме Профессиональное обучение работников
Реферат: Право общей долевой собственности 2
Дипломная Работа Графический Дизайн
Мини Сочинение О Корне
Анализ избирательных цепей в частотной и временной областях - Коммуникации, связь, цифровые приборы и радиоэлектроника курсовая работа
Сравнительный анализ пословиц и поговорок на трех языках - Иностранные языки и языкознание творческая работа
Право собственности граждан - Государство и право курсовая работа


Report Page