Проектирование строительства эксплуатационной скважины №11 на Северо-Прибрежной площадке Краснодарского края - Геология, гидрология и геодезия дипломная работа

Проектирование строительства эксплуатационной скважины №11 на Северо-Прибрежной площадке Краснодарского края - Геология, гидрология и геодезия дипломная работа




































Главная

Геология, гидрология и геодезия
Проектирование строительства эксплуатационной скважины №11 на Северо-Прибрежной площадке Краснодарского края

Рассмотрение географического положения эксплуатационной скважины Северо-Прибережной площади. Характеристика стратиграфии, тектоники и нефтегазоносности данного района. Проектирование бурения и крепления скважины на нефтегазоконденсат глубиной 3025 метров.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
1.1 Общие сведения об участке работ
1.2 Геологическая характеристика участка работ
1.2.1 Геологическое строение участка
1.2.4 Исходные данные для разработки проекта
2.1 Выбор и обоснование способа бурения
2.2 Проектирование конструкции скважины,
2.2.1 Расчет и обоснование конечного, промежуточного и начального диаметра бурения
2.2.2 Выбор промывочного агента для бурения скважины
2.3.1 Определение максимальной массы бурильной колонны
2.3.1.1 Расчёт бурильных труб, УБТ, компоновок бурильной колонны
2.3.2.4 Выбор буровой вышки и талевой системы
2.4.1 Выбор породоразрушающего инструмента
2.4.2 Расчет технологического режима бурения
2.4.5 Расчет производительности насосов для бурения под каждую обсадочную колонну
2.4.6 Расчет количества и качества промывочной жидкости для бурения под каждую обсадочную колонну
3.1 Сметный сводный расчет на строительство скважины
4.1 Мероприятия по обеспечению безопасных и комфортных бытовых условий
4.2 Инженерные мероприятия по обеспечению безопасных и безвредных условий труда на объекте проектирования
За последние годы, нефтяная промышленность нашей страны, развиваясь бурными темпами, выросла в одну из самых мощных отраслей тяжелой индустрии, оснащенную передовой техникой, располагающую квалифицированными кадрами и сетью специальных научно-исследовательских учреждений.
Нефть и газ - это наиболее дешевое топливо. Из года в год растут потребности страны в моторном, реактивном, дизельном топливе, в смазочных материалах для всевозможных машин и механизмов и в других многочисленных нефтепродуктах. Кроме того, нефть и газ являются сырьём для получения многих ценных химических продуктов, в том числе синтетического каучука, спиртов, эфиров, технических жиров, синтетических тканей и т. д. Поэтому вполне естественно, что в Российской федерации уделяли и уделяют огромное внимание развитию нефтяной и газовой промышленности.
Высокие темпы роста добычи нефти невозможны без значительного прироста разведанных запасов, без вовлечения в промышленную разработку большого числа новых месторождений, без расширения объёма буровых работ, без применения новых систем разработки и, конечно, без соответствующего технического оснащения нефтедобывающей промышленности.
Широкое применение газа в качестве топлива и для технологических нужд открывает перед хозяйством государства неограниченные возможности. Известно, что топливо составляет значительную часть издержек на производство электроэнергии, цемента, металла, стекла, фарфора, ряда строительных материалов и т.д. Использование газа в этих отраслях дает значительный экономический эффект.
Положительные результаты применения природного газа для технологических нужд получены в доменных и мартеновских цехах металлургических заводов страны. Успешно используется газ как технологическое топливо в печах прокатных и трубопрокатных цехов. Рост химической промышленности связан с развитием добычи нефти и газа.
Газовая промышленность Краснодарского края имеет большое значение в топливном балансе страны. Большое количество газоконденсатных месторождений со значительными запасами газа позволило за короткий срок увеличить добычу газа на Кубани.
За последние годы было осуществлено техническое перевооружение в бурении и техники эксплуатации газовых и газоконденсатных скважин Краснодарского края. Используются новые прогрессивные методы и техники разведки, бурения скважин, обустройство промыслов и эксплуатация газовых и газоконденсатных месторождений, разработанных и внедренных на Кубани.
1.1 ОБЩИ Е СВЕДЕНИЯ ОБ УЧАСТКЕ РАБОТ
Рис.1.1.Обзорная карта района работ.
По административному делению Северо-Прибрежная площадь расположена на территории Славянского района Краснодарского края, в 130 км в северо-западном направлении от краевого центра, в 4км к северо-западу от станицы Черноерковской (рис. 1.1).
Железнодорожная станция "Протока" (г. Славянск - на - Кубани) находится в 46км к юго-востоку. К станице Черноерковской ведет асфальтированное шоссе через станицу Петровскую, которое выходит на асфальтированное шоссе Славянск-Ачуево. Дорожная сеть в районе, прилегающем к площади, развита слабо. Большинство дорог грунтовые, труднопроходимые в осенне-зимний период.
В орогидрографическом отношении Северо-Прибрежная площадь расположена в пределах низменной равнины, занятой плавнями и лиманами, частью мелиорированной под рисовые чеки, с сетью оросительных каналов. Древесной растительности нет.
Климат района умеренно-континентальный, со среднегодовой температурой +11-12°С. Лето сравнительно сухое, жаркое, со среднемесячной температурой +25°С. Зимой среднемесячная температура - 5°С, однако бывают морозы до -20°С. Безморозный период 195 дней. Среднегодовое количество осадков 550-600мм, большая часть их выпадает в осенне-зимний период в виде дождя.
Промышленность в районе работ практически отсутствует. Население занято в сельском хозяйстве.
Водоснабжение буровых будет осуществляться из артезианских скважин, пробуренных на площадках этих скважин.
1.2 ГЕОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА УЧАСТКА РАБОТ
1.2.1 Геологи ческое строение участка
Газоносный комплекс пород Прибрежных месторождений включает меловые и третичные отложения. Нижний мел представлен главным образом, песчано-глинистыми отложениями, заканчивающимися пачкой темных жирных глин альба с небольшими прослоями рыхлых песчаников. Верхний мел представлен в основном карбонатной толщей - известняками и мергелями.
В разрезе третичных пород, представленных в районе всеми ярусами палеогена и неогена, преобладают песчано-глинистые отложения. Исключение составляют мергели и известняки фораминиферовых отложений, а также прослои известняков в сармате и меотисе.
Наибольший интерес представляют продуктивные, карагано-чокракские слои среднего миоцена, которые являются газоносными на Прибрежных площадях.
Чокракские слои представлены переслаивающимися темными глинами, глинистыми сланцами и рыхлыми кварцевыми песчаниками и песками. На большей части площади в нижнем разрезе чокрака выделяется пачка глин, не содержащих песчаников. Наиболее характерным признаком чокракских отложений является их чрезвычайно резкая фациальная изменчивость по площади и изменение мощностей. Так коэффициент песчанистости их увеличивается с запада на восток от 0,1 до 0,4 милидарси.
Караганские слои по своему литологическому составу сходны с верхней песчано-глинистой частью чокрака и представлены чередованием бурых песчанистых глин, светлых кварцевых песков и песчаников и желтовато-серых мергелей. Основным отличием караганских отложений от чокракских является большая их песчанистость и меньшая фациальная изменчивость. Изменение мощности происходит в том же направлении, что и для чокракских отложений, т.е. мощность уменьшается на северо-запад и юг от 440 до 50-100 метров. Подстилаются чокракские слои однообразной толщей слоистых, темных, битуминозных майкопских глин с тонкими прослоями песчаников и мергелей мощностью до 1500 метров.
В отложениях чокрака по результатам геолого-технологических исследований (механической скорости, исследования шлама, газового каротажа) выделены 7 песчано-алевролитовых пачек.
Песчаники и алевролиты, вскрытые в интервалах 2782 - 2783 метров, 2793 - 2795 метров, 2895 - 2896 метров, и выделяющиеся по ДМК как коллекторы, характеризуются повышенными газопоказаниями и повышенным содержанием маслянистых битумоидов, что свидетельствует о их возможной продуктивности .
Песчаный пласт в интервале 3021 - 3024 метров по ДМК выделяется как коллектор, по результатам геохимических исследований является продуктивным, что позволяет рекомендовать его для опробования.
Песчано-алевролитовые породы, вскрытые в интервалах 2904 - 2906 метров, 2956 - 2958 метров, 2963 - 2964 метров по газовому каротажу характеризуются как водонасыщенные, однако по ЛБА проявляют признаки УВ насыщения. Характер насыщения указанных пластов неясен.
При проходке интервалов 1580-1775 метров, 1910-1980 метров, 2025-2050 метров, 2110-2125 метров, 2280-2520 метров наблюдались осыпи и обвалы стенок скважин, что подтверждается результатами кавернометрии. Одна из основных причин осыпей и обвалов - несоответствие плотности промывочной жидкости поровым давлениям вскрываемых отложений.
Таблица 1.1 Литолого-стратиграфическая и геохимическая характеристика горных пород
Конка + Караган N 1 2 kr + N 1 2 kn
Четвертичная система + Куяльницкий ярус Q+ N 2 3 kl
Отложения представлены чередованием супесей, суглинков желтовато-коричневых, рыхлых и глин серовато-коричневых, вязких, пластичных, сильно алевритистых, слабоизвестковистых (CaCO3 до 4%). В нижней части переслаивание песка серого, светло - серого, полимиктового, разнозернистого с глинами серыми, голубовато-серыми, мягкими, слабоизвестковистых (CaCO3 до 4%).
В результате проведенных геохимических исследований в отложениях плиоцена отмечаются фоновые газопоказания (от 0.01 до 0.02%). Газ представлен легкой фракцией (метана 100%).
Верхняя часть киммерийского яруса - песчаник светло-серый, серый, кварцевый, разнозернистый, слабосцементированный с прослоями глин серых, голубовато-серых, вязких, пластичных бесструктурных.
Нижняя часть представлена глинами серыми, слабо уплотненными, вязкими, местами сильно алевритистыми, слабоизвестковистыми (CaCO3 3-4 %) с редкими маломощными прослоями песчаника кварцевого, светло-серого, мелкозернистого, слабосцементированного.
В отложениях киммерийского яруса по данным геохимических исследований фоновые газопоказания изменяются от 0 до 0.02%. Газ представлен легкой фракцией (метана 99-100 %). ЛБА 0 баллов.
Верхняя часть понтического яруса до глубины 1260 м представлена глинами темно-серыми, коричневато-серыми, массивными, слабоуплотненными, вязкими, пластичными, слабоизвестковистыми (CaCO3 до 12%).
Средняя часть разреза до глубины 1556 м представлена чередованием мощных (до 50-90 м) пластов песчаников кварцевых светло-серых, тонкозернистых, слабосцементированных на глинистом цементе и глин серых плотных и слабоуплотненных, слабослюдистых, алевритистых, известковистых и сильноизвестковистых (СаСО 3 от 12 до 29%).
Нижняя часть яруса - глины серые и темно-серые, тонкослоистые и неяснослоистые, плотные, алевритистые, слюдистые, слабоизвестковистые (СаСО 3 от 4 до 5%).
В результате проведенных геохимических исследований в отложениях понтического яруса отмечаются, в основном, фоновые газопоказания (от 0.03 до 0.06%), с кратковременными, незначительными увеличениями газопоказаний до 0.17%. Газ представлен легкой фракцией (метан 96 - 98%, этан 2 - 4%). По данным люминесцентно - битуминологических исследований, в отложениях отсутствуют концентрации легкого битума (ЛБА 0 баллов). Это говорит о наличии в песчаных пропластках понтического яруса пластовой воды с незначительным количеством растворенного метана.
Верхняя часть яруса до глубины 1780м - глины серые, темно-серые, массивные, местами тонкослоистые, неравномерно алевритистые, слюдистые, слабоизвестковистые (CaCO3 до 5 %) с прослоями песчаника кварцевого серого и светло-серого, разнозернистого (от мелкозернистого до среднезернистого), слабосцементированного карбонатно-глинистым цементом.
Средняя часть до глубины 1930м представлена переслаиванием мощных до 10 - 25 м песчаников серых и светло - серых, кварцевых, мелкозернистых и среднезернистых, слабосцементированных карбонатно-глинистым цементом с глинами от серого до темно-серого цвета, алевритистыми, слюдистыми, известковистыми (CaCO3 до 8 %), плотными.
Нижняя часть яруса представлена глинами серыми, темно-серыми, плотными, участками тонкослоистыми, алевритистыми, слюдистыми, известковистыми (CaCO3 до 8 %), с редкими маломощными (1-2 м) прослоями кварцевого песчаника.
В отложениях меотического яруса фоновые газопоказания от 0.05 до 0.07 % с незначительными увеличениями до 0.15 %, представленные легкой фракцией: метана 94-100 %, этана 0-6 %. ЛБА 0 баллов. Что указывает на наличие в песчаниках пластовой воды с незначительным количеством растворенного метана.
Верхний сармат N 1 3 sr 3 (1964 - 2174м). Глина темно-серая, плотная, массивная и неяснослоистая, алевритистая, слюдистая, известковистая (CaCO3 до 8-10 %) с мощными прослоями (до 50 м) песчаников кварцевых иногда с вкраплениями глауконита, светло-серых, от мелкозернистых до среднезернистых, слабосцементированных карбонатно-глинистым цементом. С глубины 2110м верхний сармат представлен глинами темно-серыми, плотными, массивными и тонкослоистыми, слабослюдистыми, слабоизвестковистыми (CaCO3 до 3.7 %) с маломощными прослоями светло-серого мелкозернистого кварцевого песчаника и коричневато-серого доломитизированного мергеля.
Средний сармат N 1 3 sr 2 (2174 - 2346 м) Представлен глинами серыми и темно-серыми, слабоалевритистыми, слабослюдистыми, слабоизвестковистыми и известковистыми (СаСО 3 от 1.3 до 17 %), вязкая, пластичная с тонкими, редкими прослоями известняка светло-серого цвета, крепкого. С глубины 2300м переслаивание глин серых плотных, слабоалевритистых, слюдистых, известковых (СаСО 3 до 20 %), мергеля доломитизированного коричневато-серого, крепкого, алевролита серого и песчаника полимиктового серого, мелкозернистого, слабосцементированного. Нижний сармат N 1 2 sr 1 (2346-2510 м) Глина темно-серая алевритистая, слюдистая, массивная и тонкослоистая, неизвестковистая и слабоизвестковистая (СаСО 3 от 0 до 5%) плотная и вязкая, пластичная с прослоями доломита различной окраски, крепкого и песчаника кварцевого, мелкозернистого и тонкозернистого, слабосцементированного.
В отложения сарматского яруса в интервале 1964 - 2490 м отмечались, в основном, фоновые газопоказания (от 0.03 до 0.05 %). Состав газа: метан 90-100 %, этан 0-10 %. По данным люминесцентно - битуминологических исследований шлама отмечается незначительная концентрация легкого битума " А " до 1 - 2 баллов. Можно сделать вывод о наличии в данных отложениях водонасыщенных коллекторов с незначительным количеством растворенных УВ.
Конкский + Караганский ярус N 1 2 kr + N 1 2 kn
Отложения представлены глинами темно-серыми алевритистыми, сильно слюдистыми, тонкослоистыми, плотными и глинами тонкослоистыми известковистыми (CaCO3 до 15%), вязкими, пластичными с маломощными прослоями мергеля доломитизированного коричневато-серого, крепкого и песчаника кварцевого серого, тонкозернистого, на карбонатно-глинистом цементе, а также известняка светло-серого и белого. Стяжения пирита, зерна молочно-белого кальцита.
В результате геохимических исследований в отложениях караганского яруса среднего миоцена отмечаются, в основном, фоновые газопоказания (от 0.04 до 0.07%), с кратковременными увеличениями газопоказаний до 0.17%. ЛБА составляет 1 - 2 балла БГ МБ, иногда повышается до 1 - 2 баллов ГЖ МБ.
Такая геохимическая характеристика говорит о присутствии в данных отложениях легких битумоидов в рассеянном состоянии и указывает на наличие пластовой воды с незначительным количеством растворенных УВ.
В интервале 2490 - 2564 м отмечено резкое повышение фоновых газопоказаний до 0.8 - 1.5%, с кратковременным повышением до 2%. Состав газа: СН 4 15 - 26%, С 2 Н 6 0.5 - 2%, С 3 Н 8 0.5 - 1%, С 4 Н 10 14 - 20%, С 5 Н 12 35 - 60%, iС 4 Н 10 1 - 2%, iС 5 Н 12 10 - 15%. ЛБА 1 - 2 ГЖ МБ. Это связано с установкой нефтяной ванны при ликвидации аварии. Добавки нефти в промывочную жидкость затрудняют интерпретацию газового каротажа указанного интервала.
Разрез представлен глинистыми породами с прослоями алевролитов, песчаников и доломитизированных мергелей. Многочисленные стяжения пирита и пиритизированные раковины. Зерна прозрачного и молочно-белого кальцита.
Глины коричневато-серые и тёмно-серые, алевритистые, слюдистые, полосчатые, слоистые, карбонатные (CaCO 3 до 15 %), плотные и глины серые, вязкие, пластичные, хорошо размокающие в воде, слабо алевритистые, известковистые.
Песчаники кварцевые с зернами глауконита серые и светло-серые, мелкозернистые и тонкозернистые, слабосцементированные, реже плотные на карбонатно-глинистом цементе.
Алевролиты светло-серые и коричневато-серые, кварц-полевошпатовые, плотные.
Мергель доломитизированный коричневато-серый, крепкий.
Фоновые газопоказания в отложениях чокракского горизонта по данным геохимических исследований составляют 0.03-0.06 %. При вскрытии песчаных пачек чокракского горизонта наблюдалось увеличение газопоказаний до 0.6-1 %. В процессе газового каротажа после бурения (СПО, промывок) наблюдались выходы пачек разгазированного глинистого раствора до 2.5-4.7 % и повышенное содержание маслянистых битумоидов при ЛБА (3 балла, цвет - бело-голубой, голубовато-желтый). Это может свидетельствовать о наличии в песчаниках газа либо газоконденсата.
В интервале 2782 - 2783 м наблюдалось повышение газопоказаний до 0.211% при увеличении скорости проходки до 2.99 м/ч. По данным геохимических исследований: ЛБА 2 балла ГЖ МБ, приведенное к объему породы газосодержащие составило 3.4, остаточное углеводородосодержание горных пород по пласту Fг=2.6%, что говорит о возможном газонасыщении.
Повышение газопоказаний до 0.611% с одновременным повышением скорости проходки до 5 м/ч наблюдалось в интервале 2793 - 2795 м. По результатам геохимических исследований: ЛБА 2 балла ГЖ МБ, остаточное углеводородосодержание горных пород по пласту составило Fг=2.02 - 3.3%, что говорит о возможном газонасыщении пласта.
Интервал 2895 - 2896 м характеризуется повышением суммарных газопоказаний до 0,17%, ЛБА 3 балла БГ ЛБ, остаточное углеводородосодержание горных пород составляет Fг=2.2%, что говорит о возможном газонасыщении пласта.
При бурении интервалов 2904 - 2906 м, 2955 - 2958м и 2963 - 2964 м резкого повышения газопоказания над фоновыми не наблюдалось. Однако повышение показаний ЛБА до 2 - 3 баллов ГЖ МБ приурочено к песчано-алевритовым пластам со скоростью проходки до 3.55 - 3.88 м/ч. Данные пласты вероятно водонасыщенные, однако по ЛБА имеют признаки УВ насыщения.
При бурении интервала 3021 - 3024 м наблюдалось повышение суммарных газопоказаний до 1.09 %, по результатам геохимических исследований: ЛБА 3 балла ГЖ МБ, приведенные газопоказания 4.4, остаточное углеводородосодержание горных пород составило Fг=3.3%. По результатам геохимических исследований пласт вероятно газонасыщенный.
Газоконденсатные месторождения Прибрежной площади относятся к одному типу залежей - пластовому и приурочены к сводам антиклинальных поднятий.
Газ месторождений заключен в песчаных пластах различной мощности нижнемелового возраста (альб - апт).
По всему месторождению газосодержащий коллектор представлен песчаниками, переслаивающимися глинами; общее число прослоев иногда достигает 10 и более.
Мощность песчаных слоев невелика, и лишь отдельные пласты достигают 10-15 метров.
Коллектор, как правило, имеет очень неоднородную литологическую характеристику по разрезу, значительную изменчивость физических свойств по вертикали и по площади. Средние значения пористости и проницаемости пластов по месторождению колеблется соответственно от 10 до 19% и от 0,1 до 0,6 дарси. Газонасыщенные песчаники залегают на глубинах 1450-2800 метров. Температура пластов изменяется от 42 до 128?С.
В период, предшествующий открытию газоконденсатных месторождений на Кубани (1952-1956 гг.), на промысловых площадях наблюдались межколонные проявления, открытое фонтанирование и грифонообразования.
Наибольшее количество межколонных проявлений и грифонообразова-ний произошло в те периоды, когда продуктивные горизонты уже были возбуждены и работали после спуска и крепления колонн.
Анализ имеющихся данных показывает, что 93% осложнений на Кубани произошло на площадях: Ново-Дмитриевской, Калужской, Прибреж-ной и Анастасиевско-Троицкой.
В тектоническом плане эти площади представляют собой антиклинальные складки. Крупные тектонические нарушения здесь отсутствуют, а геологическое строение не отличается от остальных разбуриваемых площадей.
1.2.4 Исходные данные для разработки проекта
Эксплуатационная скважина № 11 расположена в пределах Северо-Прибрежной площади, в 0.35км северо-западнее от разведочной скважины № 15 Прибрежной площади, и заложена с целью эксплуатации газовых залежей в чокракских отложениях.
Геолого-технологические исследования проводились станцией геолого-технологического контроля типа: "Сириус" в интервале 193-3057.9 м с 01.04.05 г по 27.07.05.
Количество определений, анализов и пр.
Выдача суточных пометровых сводок геолого-технологических параметров.
Бурить скважины можно механическим, термическим, электроимпульсным и другими способами (несколько десятков). Однако промышленное применение находят только способы механического бурения - ударное и вращательное. Остальные пока не вышли из стадии экспериментальной разработки. Ударный способ более 50 лет не применяется на нефтегазовых промыслах России, следовательно на проектируемой скважине применяем вращательное бурение.
При вращательном бурении разрушение породы происходит в результате одновременного воздействия на долото нагрузки и крутящего момента. Под действием нагрузки долото внедряется в породу, а под влиянием крутящего момента скалывает ее.
Существует две разновидности вращательного бурения - роторный и с забойными двигателями.
При бурении с забойным двигателем долото привинчено к валу, а бурильная колонна - к корпусу двигателя. При работе двигателя вращается его вал с долотом, а бурильная колонна воспринимает реактивный момент вращения корпуса двигателя, который гасится невращающимся ротором (в ротор устанавливают специальную заглушку).
При роторном бурении мощность от двигателей передается через лебедку к ротору - специальному вращательному механизму, установленному над устьем скважины в центре вышки. Ротор вращает бурильную колонну и привинченное к ней долото. Бурильная колонна состоит из ведущей трубы и привинченных к ней с помощью специального переводника бурильных труб.
2.2.ПРОЕКТИРОВАНИЕ КОНСТРУКЦИИ СКВАЖИНЫ, ОБОСНОВАНИЕ И РАСЧЕ Т ПРОФИЛЯ ПРОЕКТНОЙ СКВАЖИНЫ
Конструкция газовой или газоконденсатной скважины должна выбираться с учетом конкретных особенностей не только данного месторождения, но и каждой отдельной скважины. Она зависит от геологических условий, глубины залегания и пластового давления эксплуатационного объекта, физико-механических и других свойств горных пород и характера осложнений в процессе бурения. Кроме того, конструкция должна разрабатываться с учетом максимально возможной экономии пластовой энергии и получения больших дебитов газа. Эти два требования определяют выбор диаметра эксплуатационной колонны, которая в свою очередь является основным элементом конструкции скважины, так как от ее диаметра зависят диаметры остальных обсадных колонн[1].
Выбор конструкции скважины зависит также от комплекса неуправляемых и управляемых факторов.
· К неуправляемым факторам следует отнести геологические условия месторождения: глубину залегания продуктивных пластов, их продуктивность и коллекторские свойства; пластовые и поровые давления, а также давления гидроразрыва проходимых пород; физико-механические свойства и состояние пород, вскрываемых скважиной с точки зрения возможных обвалов, осыпей, кавернообразования, передачи на обсадные колонны горного давления и т.д.
· К управляемым факторам можно отнести способ бурения; число продуктивных горизонтов, подлежащих опробованию; способ вскрытия продуктивных горизонтов; материально-техническое обеспечение.
Конструкция скважины считается рациональной, если она обеспечивает минимальную стоимость ее строительства, а также выполнение технических (существующие технические средства и материалы, условия их доставки), технологических (освоенные технологические приемы, организация труда основных и вспомогательных подразделений) и геологических (проявление пластовых флюидов, поглощение буровых и тампонажных растворов, обвалообразование и пластическое течение горных пород) ограничений и требований к надежности и долговечности скважины (обеспечение успешного испытания, освоения и эксплуатации)[8].
2.2.1 Расчет и обоснование конечного, промежуточного и начального диаметров бурения
Строительство скважины состоит из двух последовательно идущих процессов: бурения скважины и ее крепления. Бурение - это разрушение пород и создание ствола скважины. Цель крепления ствола скважины - во-первых, закрепить ее стенки, сделать их устойчивыми против усилий, создаваемых боковым давлением пород, и, во-вторых, изолировать друг от друга разнородные пласты.
Основным элементом при сооружении скважины является ее технический разрез, т.е. конструкция скважины, которая определяется диаметром, глубиной спуска и числом обсадных колонн, толщиной стенок труб, диаметром самой скважины на разных ее глубинах, высотой подъема цемента за трубами.
Для доведения обсадных колонн до намеченных глубин необходимо определить диаметр ствола скважины. Для этого пользуемся данными практики бурения - величинами зазоров просвета и коэффициентов просвета скважины[3].
Величина зазора или просвета скважины определяется по формуле[4]:
где, ? - величина зазора или просвета, мм;
Рекомендуемые значения величин зазоров изменяются в пределах от 15 до 50 мм и зависят от жесткости колонны, степени искривления ствола скважины (таблица 2.1).
Таблица 2.1. Значения величин зазоров
Диаметром муфт этих труб не более, мм
Если величину зазора скважины отнести к диаметру скважины, т.е.[4]:
то получим значение коэффициента просвета скважины. Из формулы (2.2) можно получить значение диаметра скважины, выраженное через коэффициент просвета и диаметр муфты[4]:
Если величину 1/(1-2?) обозначить через ?, то получим[4]:
Из формулы видно, что диаметр скважины можно определить умножением диаметра муфты обсадной колонны, подлежащей спуску в скважину, на расчетный коэффициент ? (таблица 2.2).
Таблица 2.2 Диаметры колонны и муфты и значения коэффициентов
На основании данных таблицы 2.2 находим, что максимальным диаметром долота под 140-мм колонну будет:
Чтобы пропустить долото диаметром 190,5 мм через промежуточную колонну обсадных труб, минимальный диаметр последней должен быть:
Для промежуточной колонны, исходя из технологических соображений, выбираем трубы диаметром 245 мм и пробурим ствол скважины под данную колонну долотом согласно формуле (2.2.4):
Из стандартных типоразмеров выбираем долото диаметром 295,3 мм.
Чтобы долото диаметром 293,7 мм пропустить через колонну труб, кондуктор должен иметь диаметр 324 мм. Далее определяем диаметр долота под ствол скважины для спуска кондуктора:
Для бурения скважины под кондуктор выбираем долото диаметром 393,7 мм[5].
Таким образом, предусматривается следующая конструкция скважины №11 Северо-Прибрежной:
· Шахтное направление длиной 30 метров и диаметром 530 мм, спускается для предохранения устья от размыва буровым раствором и для обвязки устья с желобной системой, забивается электровибратором;
· Кондуктор диаметром 324 мм спускается на глубину 1020 метров, цементируется до устья. Предназначен для изоляции и предохранения вод хозяйственно-питьевого назначения, перекрытия неустойчивых отложений и установки противовыбросного оборудования.
· Промежуточная колонна диаметром 245 мм спускается на глубину 2450 метров, цементируется до устья. Предназначена для перекрытия неустойчивых отложений понта, меотиса; верхнего, среднего и большей части нижнего сармата и установки противовыбросного оборудования.
· Эксплуатационная колонна диаметром 140 мм спускается на глубину 3025 метров, цементируется в интервале 3025-1850 метров. Служит для разобщения вскрытых пластов, опробования и эксплуатации продуктивного горизонта[5].
2.2.2 Выбор промывочного агента для бурения скважины
Ствол скважины длительное время находится в необсаженном состоянии при значительном всестороннем давлении, что является причиной обвалов и осыпей, вызывающих посадки, затяжки, прихваты бурильного инструмента, недоходы обсадных колонн до проектных глубин. Проходка ствола скважины в неустойчивых породах также осложняет процесс бурения, так как такие породы способствуют обвалам и вследствие этого прихватам бурильного инструмента. Кроме этого, в некоторых районах, подверженных карстообразованию, ствол скважины иногда попадает в огромные каверны[6].
Идеальный буровой раствор, применяемый при бурении скважин, должен отвечать следующим требованиям:
· способствовать повышению скорости проходки;
· позволять поддерживать низкое содержание твердой фазы, благодаря чему до минимума снижается опасность загрязнения пласта;
· повышать устойчивость ствола, ингибировать склонные к осложнениям породы и обеспечивать сохранение целостности выбуренной породы, благодаря чему облегчается ее удаление;
· обеспечивать поддержание на стабильном уровне статического напряжения сдвига и улучшенную очистку ствола без чрезмерных пульсаций давления в процессе спускоподъемных операций;
· проявлять низкую токсичную и высокую термостабильность;
· давать возможность экономить денежные средства, при этом затраты на контролирование и поддержание необходимых свойств бурового раствора с лихвой окупаются.
Для устранения осложнений скважину бурят с применением высококачественной промывочной жидкости. Непрерывная циркуляция промывочной жидкости в стволе скважины обеспечивает не только очистку забоя от выбуренной породы, но и охлаждение и смазку долота.
Глинистые растворы, применяемые в качестве промывочной жидкости, глинизируют стенки скважины и удерживают во взвешенном состоянии выбуренные частицы породы в покоящейся жидкости, т.е. в период прекращения циркуляции. Они являются одним из наиболее распространенных видов промывочных жидкостей, применяемых при бурении нефтяных и газовых скважин. Обработанные химическими реагентами они образуют устойчивую суспензионно-коллоидную дисперсную систему с небольшой водоотдачей и необходимыми структурно-механическими качествами. При нормальных условиях бурения нетрудно регулировать их параметры[9].
Глинистый раствор - это смесь мелких частиц глины с водой, приготовленная так, что частицы глины находятся во взвешенном состоянии.
Глинистый раствор приготовляется непосредственно н
Проектирование строительства эксплуатационной скважины №11 на Северо-Прибрежной площадке Краснодарского края дипломная работа. Геология, гидрология и геодезия.
Контрольная работа по теме Процесс принятия и виды управленческих решений
Реферат: Dream And Meaning A Psychological Analysis Of
Реферат по теме Мотивационная готовность и адаптация детей к школе
Реферат: Судьба России в трудах русских мыслителей конца XIX - начала XX веков
Курсовая работа по теме Образ Ивана Никитича в рассказе А.П. Чехова "Корреспондент"
Реферат: A Progressive Democracy Essay Research Paper The
Курсовая работа: Гальмівна система автомобіля ГАЗ-53
Курсовая работа по теме Разработка базы данных 'Продуктовый склад'
Учимся Писать Сочинение 2 Класс Ответы
Курсовая Работа Заказать Балаково
Реферат: Анализ сказки М.Е. Салтыкова-Щедрина "Карась-идеалист". Скачать бесплатно и без регистрации
Реферат Государственные Учреждения
Налоги Сущность Функции Виды Реферат
Реферат: Tomatoe Diseases Essay Research Paper Bacterial Spot
Курсовая работа по теме Лингвокультурологический анализ английского, американского и русского анекдота
Контрольная Работа По Геометрии 7 Класс Дидактика
Курсовая Работа На Тему Технологический Процесс Обработки Шестерен Из Стали 12хн3а
Реферат: Призрение сирот на Руси
Курсовая работа по теме Технология получения туалетного мыла
Реферат по теме Пушки Пирса со сходящимся пучком
Учет материально-производственных запасов на промышленном предприятии - Бухгалтерский учет и аудит курсовая работа
Упрощенная система налогообложения и отчетности - Бухгалтерский учет и аудит курсовая работа
Калифорния - География и экономическая география презентация


Report Page