Проектирование модели для определения времени простоя станков на машиностроительном предприятии - Программирование, компьютеры и кибернетика курсовая работа

Проектирование модели для определения времени простоя станков на машиностроительном предприятии - Программирование, компьютеры и кибернетика курсовая работа




































Главная

Программирование, компьютеры и кибернетика
Проектирование модели для определения времени простоя станков на машиностроительном предприятии

Форма организации основного переменно-поточного производства. Особенности переналадки станков как задача динамического программирования. Общая характеристика алгоритма формирования метода ветвей и границ. Сущность понятия комбинаторная конфигурация.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
по предмету «Моделирование производственных и экономических процессов»
Министерство образования и науки Украины
Восточноукраинский национальный университет
Специальность : «Прикладная математика»
ПРОЕКТИРОВАНИЕ МОДЕЛИ ДЛЯ ОПРЕДЕЛЕНТЯ ВРЕМЕНИ ПРОСТОЯ СТАНКОВ НА МАШИНОСТРОИТЕЛЬНОМ ПРЕДПРИЯТИИ
Тема задания : «Проектирование модели для определения времени простоя станков на машиностроительном предприятии»_______________________
__________________________________________________________________________________________________________________
1. Ляшенко И.Н.Линейное и нелинейное программирование.- Киев: Вища школа ,1975.-370с _ ________________________________________________
2. Дегтярев Ю.И. Исследование операций - Москва : Вища школа ,19 86_________
3.Балашевич В.А._____________________________________________
_________________________________________________________
Курсовой проект на указанную тему выполняется в следующем обьеме _________________________________________________________
1 Постановка задачи о переналадке станков как задачи динамического программирования.
2 Методы решения задачи. Метод ветвей и границ.
3 Алгоритм метода ветвей и границ . Схема алгоритма
Приложения (текст программы, схема программы, расшифровка переменных, описание программы, инструкция пользователю, входная и выходная информация)
Определить оптимальную последовательность запуска деталей в производство, если задана матрица затрат на переналадку оборудования:
Лист1 Схема алгоритма метода ветвей и границ _____________________
_________________________________________________________
Лист2 Схема программы_______________________________________
Дата выдачи «_ 1 _»_____ 09 ______ 200 6 г .
Срок окончания « 15 »_____ _ 11 ____ 200 6 г.
Руководитель проекта ______________
с тудента группы 1ПМ-03 Литюка А.С.
Срок сдачи проекта на проверку __ 9.11-15.11 ________
День защиты проекта_____ 16.11-24.11 _____________
Руководитель ______________________________
1 Постановка задачи о переналадке станков как задачи линейного программирования
2 Методы решения задачи. Метод ветвей и границ
3 Алгоритм метода ветвей и границ. Схема алгоритма
Приложение В Графическая часть (1А1)
Наиболее распространенная форма организации основного процесса производства-переменно-поточное производство, отличительная особенность которого заключается в периодической перенастройке (переналадке) всего процесса в связи с переходом на другой вид изделий.
Переход с изготовления изделий одного вида на другой (с одной серии на другую) сопровождается потерями и дополнительными издержками производства, к числу которых относятся потери от простоев оборудования, потери от брака в начальный период перехода, расходы по управлению производством.
По существу на любом предприятии каждая из поточных линий время от времени вынуждена перестраиваться с выработки изделий одного вида на другой. Каждый переход, независимо от того, после какой по размеру серии он происходит, вызывает потери времени и дополнительные расходы. Причем суммарные потери, связанные с заданной серией переходов, зависят от последовательности переходов. Если бы этой зависимости не было, то суммарные потери равнялись бы во всех последовательностях одному и тому же числу, и не возникло бы проблемы установления оптимальной последовательности запуска деталей.
1 П ОСТАНОВКА ЗАДАЧИ О ПЕРЕНАЛАДКЕ СТАНКОВ КАК ЗАДАЧИ ДИНАМИЧЕСКОГО ПРОГРАММИРОВАНИЯ
Наибольшее распространение в решении задачи календарного планирования обработки т деталей на п станках имеют приближенные методы, основанные главным образом на использовании различных правил предпочтения. Лишь в последнее время стали появляться методы, гарантирующие сходимость к точному решению за конечное число шагов. Рассмотрим один из таких методов, базирующийся на идеях метода ветвей и границ.
Пусть на участке с последовательным движением производства обрабатываются детали с одинаковыми технологическими маршрутами. Передача деталей со станка на станок осуществляется транспортными партиями, совпадающими с партиями обработки. Задана матрица , где --продолжительность обработки партии деталей i-го наименования на j-м станке. В один и тот же момент на станке обрабатывается только одна деталь. Требуется найти календарное расписание работы участка в виде матриц и , элементы которых показывают соответственно время начала и окончания обработки каждой детали на каждом станке. Из всех допустимых расписаний необходимо выбрать обеспечивающее наименьшую совокупную длительность производственного цикла обработки всех деталей.
При описании алгоритма решения будет использовано понятие «конфликтующие детали». Его сущность можно пояснить на примере. Пусть для матрицы продолжительностей обработки
составлено расписание окончания обработки
Из анализа матрицы С видно, что для каждой отдельной детали расписание се обработки является наилучшим, так как обработка планируется таким образом, чтобы детали не пролеживали. В то же время это расписание недопустимо, так как имеются отрезки времени, когда на одном станке должны обрабатываться обе детали одновременно -- детали «конфликтуют». Действительно, на первом станке предусмотрена обработка одной детали в интервале (0--3), а другой -- в интервале (0--6), на втором станке первая деталь обрабатывается в интервале (3--8). а вторая -- в интервале (С--10).
Следовательно, возникает конфликт, который можно ликвидировать, сделав расписание допустимым за счет предпочтения какой-либо детали. Если отдать предпочтение первой детали, расписание примет вид
а если второй, то время окончания операций будет
В первом случае совокупная длительность никла 13 часов. во втором-- 15. Следовательно, главный вопрос при разрешении конфликта состоит в выборе детали, которой следует отдать предпочтение для обработки на данном станке. В общем случае любая деталь на некотором станке может конфликтовать с несколькими другими. Ниже на числовом примере рассматривается процесс последовательного устранения конфликтов, приводящий в соответствии со схемой метода ветвей и границ к допустимому оптимальному расписанию работы оборудования.
Пусть дана матрица продолжительностей обработки четырех партий деталей на трех станках
Требуется определить порядок обработки партий деталей на каждом станке, обеспечивающий наименьшую длительность совокупного цикла.
Первый шаг. Составляем для каждой отдельно взятой детали наилучшее расписание времени окончания ее обработки на каждом из станков в виде матрицы С, элементы которой
определяются исходя из возможности обработки каждой детали без пролеживания.
Второй шаг. Проверяем наличие конфликта на первом станке. Поскольку каждая деталь рассматривалась независимо от остальных, то их обработка на первом станке начинается одновременно и протекает в промежутки времени (0--2). (0--4), (0--9). (0--2). Следовательно, все детали конфликтуют друг с другом.
Третий шаг. Разрешая поочередно конфликт в пользу каждой из деталей, находим ту деталь, которую целесообразно на первом станке обрабатывать первой. Для этого выполняем т раз следующие два действия.
1. Строим календарное расписание окончания обработки деталей на каждой операции при условии, что на первом станке деталь l запускается первой.
Элементы этой матрицы определяются из соотношения
Предположим, что деталь 1 запускается на первом станке первой. Тогда
В результате деталь 1 не конфликтует ни с какими другими деталями на нервом станке.
2. Каждому календарному расписанию приписываем его оценку в виде минимально возможного времени окончания Обработки деталей на последнем станке n в предположении, что на первых п -- 1 станках конфликты отсутствуют.
Из матрицы известно возможное время начала обработки любой детали i на последнем станке. Оно совпадает с временем окончания ее обработки на предпоследнем станке.
Чтобы не увеличивать длительность обработки деталей, целесообразно на последнем станке обрабатывать детали в очередности их поступления на этот станок
Оценка определяется следующим образом.
Если , то время завершения обработки двух деталей i 1 и на последней операции будет равно времени окончания обработки детали i 2 , т. е.
Далее сравниваем время завершения обработки на последнем станке двух первых деталей i 1 и i 2 с временам завершения обработки на предпоследнем стачке детали i 3 .Здесь возможны два случая:
В результате такого цепного расчета получим минимально возможное время обработки всех деталей для варианта расписания предположении, что все конфликты в нем на первых п -- 1 станках устранены. Эту величину и принимаем за нижнюю границу времени окончания обработки деталей по расписанию
Как видно из матрицы , моменты завершения обработки деталей на предпоследнем, втором станке упорядочены следующим образом:
т. е. детали на последний станок поступают в очередности 1, 3, 2, 4. Выбираем первые две детали 1 и 3 и определяем момент завершения их обработки на последнем станке.
Включаем в рассмотрение третью по порядку деталь 2. Поскольку, то минимально возможное время обработки первых трех деталей (1, 3, 2) будет
Рассматривая последнюю деталь, видим, что .
Повторим действия I и 2 для остальных вариантов, когда первой на первом станке обрабатывается деталь 2, 3 или 4.
Разрешая конфликт в пользу детали 2, получаем
Отдавая предпочтение па первом станке детали 3, получаем расписание и его опенку в виде
Разрешаем конфликт в пользу детали 4:
3. Сопоставляем расписания , и их оценки с вершинами дерева, изображающего процесс ветвления всего множества вариантов расписания на подмножества (рисунок 1).
Из всех рассмотренных календарных расписаний выбираем такое , для которого
Поскольку наименьшей оценкой является , предпочтение к запуску на первом станке отдается детали l=1. Остальные m-1=3 детали продолжают конфликтовать па первом станке.
Четвертый шаг. В качестве исходного календарного расписания для дальнейших расчетов берем матрицу , на основе которой будем определять деталь, подлежащую запуску на нервом станке второй. Для этого построим календарные расписания в виде матриц , элементы которых находятся по правилу
Разрешая конфликты для каждой из т--1 оставшейся детали на первом станке, получим нижнюю границу для каждого расписания и выберем из всех расписаний то, для которого
Деталь k 2 планируется к обработке второй. Выполним эти расчеты для нашего примера.
Разрешая конфликт для детали 2, построим для нее календарное расписание с учетом того, что деталь 1 уже назначена к обработке первой, и найдем его нижнюю границу. Получим
Разрешаем конфликт в пользу детали 3:
Разрешаем конфликт в пользу детали 4:
Сопоставим полученные расписания и их оценки с вершинами дерева, разливаемыми из вершины (рисунок 1).
Так как оценки для всех вариантов одинаковы, безразлично, какой из деталей отдать предпочтение. Пусть деталь 2 планируется к запуску на первом станке второй.
Пятый шаг . Аналогичным образом определим деталь, запускаемую на первом станке третьей.
Разрешаем конфликт относительно детали 3:
Разрешаем конфликт относительно детали 4:
Сопоставляем полученные расписания и их оценки с вершинами дерева, развиваемыми из вершины (рисунок 1). Так как оценки, связанные с запуском на первом станке трех первых детален в очередности 1, 2, 3 или 1, 2, 4, одинаковы, безразлично, какой из них отдать предпочтение. Пусть выбрана первая из них, k 3 =3, тогда последовательность обработки деталей на первом станке будет 1, 2, 3, 4, с нижней границей, равной 38.
Шестой шаг. В результате предыдущих шагов получено календарное расписание и последовательность запуска партий деталей на первом станке .
Далее провернем и последовательно разрешаем конфликты на втором станке.
Детали 1, 2, 3, 4 планируются к обработке в интервалах времени соответственно (2--5), (6--15), (15--18),(17--36).
Следовательно, на втором станке деталь 2 запускается после детали I, а детали 3 и 4 конфликтуют.
Разрешим конфликт относительно детали 3.
Для этого на базе составим расписание, в котором элементы для данной детали и деталей, не участвующих в конфликте, остаются без изменения, а элементы и возрастают на величину задержки в поступлении детали 4 на второй станок, которая равна в данном случае разности -- == 1. Получим расписание и оценку нижней границы:
Разрешая конфликт в пользу детали 4, задерживаем подачу детали 3 ко второму станку на 36--15=21, в результате чего расписание и его оценка принимают вид
Сопоставляя эти расписания и оценки с вершинами графа, развиваемыми из вершины , выбираем расписание , предусматривающее обработку на втором станке третьей по порядку детали 3.
Таким образом, на этом шаге упорядочена очередность запусков партий на втором станке в виде последовательности деталей 1. 2, 3, 4 с оценкой времени совокупного цикла .
Седьмой шаг. Отправляясь от расписания , проверяем наличие конфликтующих детален на третьем станке.
Детали 1, 2, 3, 4 планируются к обработке в интервалах времени соответственно (5--18), (15--26), (18--26),(37--38).
Конфликтуют три первые детали. Разрешаем конфликт в пользу детали 1:
Разрешаем конфликт в пользу детали 2:
Разрешаем конфликт в пользу детали 3:
Разветвляем вершину дерева решений (рисунок 1) в соответствии с полученными оценками. Для определения детали, запускаемой па третьем станке второй, выбираем расписание , имеющее меньшую нижнюю границу.
Рассматривая его, видим, что на третьем станке конфликтуют детали 2 и 3, обрабатываемые в интервалы времени соответственно (15--29) и (18--26).
Разрешим конфликт, отдавая предпочтение детали 2.
Разрешим конфликт в пользу детали 3:
Таким образом, безразлично, какой детали отдать предпочтение. Пусть второй обрабатывается деталь 2. Проверяя расписание , устанавливаем отсутствие конфликтов па третьем станке.
Мы нашли один из вариантов календарного расписания. Чтобы убедиться в его оптимальности, рассмотрим дерево ветвлений и проанализируем значения нижних границ для всех его оборванных ветвей. Поскольку все нижние оценки не меньше полученной, считаем расписание оптимальным. Начало времени обработки партий деталей
Календарный график работы оборудования, соответствующий расписаниям и А..
Цифры над прямоугольниками -- номера деталей, внутри прямоугольника -- время начала и окончания обработки партии деталей.
2 М ЕТОДЫ РЕШЕНИЯ ЗАДАЧИ. МЕТОД ВЕТВЕЙ И ГРАНИЦ
Комбинаторика - раздел математики, посвящённый решению задач выбора и расположения элементов некоторого, обычно конечного множества в соответствии с заданными правилами.
Каждое такое правило определяет способ построения некоторой конструкции из элементов исходного множества, называемой комбинаторной конфигурацией . Поэтому можно сказать, что целью комбинаторного анализа является изучение комбинаторных конфигураций. Это изучение включает в себя вопросы существования комбинаторных конфигураций, алгоритмы их построения, оптимизацию таких алгоритмов, а также решение задач перечисления, в частности определение числа конфигураций данного класса. Простейшим примером комбинаторных конфигураций являются перестановки, сочетания и размещения.
Большой вклад в систематическое развитие комбинаторных методов был сделан Г. Лейбницем (диссертация “Комбинаторное искусство”), Я. Бернулли (работа “Искусство предположений”), Л. Эйлером. Можно считать, что с появлением работ Я. Бернулли и Г. Лейб-ница комбинаторные методы выделились в самостоятельную часть математики. В работах Л.Эйлера по разбиениям и композициям натуральных чисел на слагаемые было положено начало одному из основных методов перечисления комбинаторных конфигураций - методу производящих функций.
Возвращение интереса к комбинаторному анализу относится к 50-м годам ХХ в. в связи с бурным развитием кибернетики и дискретной математики и широким использованием электронно-вычислительной техники. В этот период активизировался интерес к классическим комбинаторным задачам.
Классические комбинаторные задачи - это задачи выбора и расположения элементов конечного множества, имеющие в качестве исходной некоторую формулировку развлекательного содержания типа головоломок.
В 1859 г. У. Гамильтон придумал игру “Кругосветное путешествие”, состоящую в отыскании такого пути, проходящего через все вершины (города, пункты назначения) графа, изображенного на рис. 1, чтобы посетить каждую вершину однократно и возвратиться в исходную. Пути, обладающие таким свойством, называются гамильтоновыми циклами .
Задача о гамильтоновых циклах в графе получила различные обобщения. Одно из этих обобщений - задача коммивояжера , имеющая ряд применений в исследовании операций, в частности при решении некоторых транспортных проблем.
Задача коммивояжера (в дальнейшем сокращённо - ЗК) является одной из знаменитых задач теории комбинаторики. Она была поставлена в 1934 году, и об неё, как об Великую теорему Ферма обламывали зубы лучшие математики. В своей области (оптимизации дискретных задач) ЗК служит своеобразным полигоном, на котором испытываются всё новые методы.
Коммивояжер (бродячий торговец) должен выйти из первого города, посетить по разу в неизвестном порядке города 2,1,3.. n и вернуться в первый город. Расстояния между городами известны. В каком порядке следует обходить города, чтобы замкнутый путь (тур) коммивояжера был кратчайшим?
Чтобы привести задачу к научному виду, введём некоторые термины. Итак, города перенумерованы числами j Т=(1,2,3.. n ). Тур коммивояжера может быть описан циклической перестановкой t =( j 1 , j 2 ,.., j n , j 1 ), причём все j 1 .. j n - разные номера; повторяющийся в начале и в конце j 1 , показывает, что перестановка зациклена. Расстояния между парами вершин С ij образуют матрицу С. Задача состоит в том, чтобы найти такой тур t , чтобы минимизировать функционал
Относительно математизированной формулировки ЗК уместно сделать два замечания.
Во-первых, в постановке С ij означали расстояния, поэтому они должны быть неотрицательными, т.е. для всех j Т:
(последнее равенство означает запрет на петли в туре), симметричными, т.е. для всех i , j :
и удовлетворять неравенству треугольника, т.е. для всех:
В математической постановке говорится о произвольной матрице. Сделано это потому, что имеется много прикладных задач, которые описываются основной моделью, но всем условиям (2)-(4) не удовлетворяют. Особенно часто нарушается условие (3) (например, если С ij - не расстояние, а плата за проезд: часто туда билет стоит одну цену, а обратно - другую). Поэтому мы будем различать два варианта ЗК: симметричную задачу, когда условие (3) выполнено, и несимметричную - в противном случае. Условия (2)-(4) по умолчанию мы будем считать выполненными.
Второе замечание касается числа всех возможных туров. В несимметричной ЗК все туры t =( j 1 , j 2 ,.., j n , j 1 ) и t ' =( j 1 , j n ,.., j 2 , j 1 ) имеют разную длину и должны учитываться оба. Разных туров очевидно ( n -1)!.
Зафиксируем на первом и последнем месте в циклической перестановке номер j 1 , а оставшиеся n -1 номеров переставим всеми ( n -1)! возможными способами. В результате получим все несимметричные туры. Симметричных туров имеется в два раз меньше, т.к. каждый засчитан два раза: как t и как t ' .
Можно представить, что С состоит только из единиц и нулей. Тогда С можно интерпретировать, как граф, где ребро ( i , j ) проведено, если С ij =0 и не проведено, если С ij =1. Тогда, если существует тур длины 0, то он пройдёт по циклу, который включает все вершины по одному разу. Такой цикл называется гамильтоновым циклом. Незамкнутый гамильтонов цикл называется гамильтоновой цепью (гамильтоновым путём).
В терминах теории графов симметричную ЗК можно сформулировать так:
Дана полная сеть с n вершинами, длина ребра ( i , j )= С ij . Найти гамильтонов цикл минимальной длины.
В несимметричной ЗК вместо “цикл” надо говорить “контур”, а вместо “ребра” - “дуги” или “стрелки”.
Некоторые прикладные задачи формулируются как ЗК, но в них нужно минимизировать длину не гамильтонова цикла, а гамильтоновой цепи. Такие задачи называются незамкнутыми. Некоторые модели сводятся к задаче о нескольких коммивояжерах, но мы здесь их рассматривать не будем.
Жадный алгоритм - алгоритм нахождения наикратчайшего расстояния путём выбора самого короткого, ещё не выбранного ребра, при условии, что оно не образует цикла с уже выбранными рёбрами. “Жадным” этот алгоритм назван потому, что на последних шагах приходится жестоко расплачиваться за жадность.
Посмотрим, как поведет себя при решении ЗК жадный алгоритм. Здесь он превратится в стратегию “иди в ближайший (в который еще не входил) город”. Жадный алгоритм, очевидно, бессилен в этой задаче. Рассмотрим для примера сеть на рис унке 3 , представляющую узкий ромб. Пусть коммивояжер стартует из города 1. Алгоритм “иди вы ближайший город” выведет его в город 2, затем 3, затем 4; на последнем шаге придется платить за жадность, возвращаясь по длинной диагонали ромба. В результате получится не кратчайший, а длиннейший тур.
В пользу процедуры “иди в ближайший” можно сказать лишь то, что при старте из одного города она не уступит стратегии “иди в дальнейший”.
Как видим, жадный алгоритм ошибается. Можно ли доказать, что он ошибается умеренно, что полученный им тур хуже минимального, положим, в 1000 раз? Мы докажем, что этого доказать нельзя, причем не только для жадного алгоритма, а для алгоритмов гораздо более мощных. Но сначала нужно договориться, как оценивать погрешность неточных алгоритмов, для определенности, в задаче минимизации. Пусть f B - настоящий минимум, а f A - тот квазиминимум, который получен по алгоритму. Ясно , что f A / f B ?1, но это - тривиальное утверждение, что может быть погрешность. Чтобы оценить её, нужно зажать отношение оценкой сверху:
где, как обычно в высшей математике, е?0, но, против обычая, может быть очень большим. Величина е и будет служить мерой погрешности. Если алгоритм минимизации будет удовлетворять неравенству (5), мы будем говорить, что он имеет погрешность е.
Предположим теперь, что имеется алгоритм А решения ЗК, погрешность которого нужно оценить. Возьмем произвольный граф G (V,E) и по нему составим входную матрицу ЗК:
Если в графе G есть гамильтонов цикл, то минимальный тур проходит по этому циклу и f B = n. Если алгоритм А тоже всегда будет находить этот путь, то по результатам алгоритма можно судить, есть ли гамильтонов цикл в произвольном графе. Однако, непереборного алгоритма, который мог бы ответить, есть ли гамильтонов цикл в произвольном графе, до сих пор никому не известно. Таким образом, наш алгоритм А должен иногда ошибаться и включать в тур хотя бы одно ребро длины 1+nе. Но тогда f A (n-1)+(1+nе) так что f A /f B =1+nе т.е. превосходит погрешность е на заданную неравенством (5). О величине е в нашем рассуждении мы не договаривались, так что е может быть произвольно велик.
Таким образом доказана следующая теорема.
Либо алгоритм А определяет, существует ли в произвольном графе гамильтонов цикл, либо погрешность А при решении ЗК может быть произвольно велика.
Это соображение было впервые опубликовано Сани и Гонзалесом в 1980 г. Теорема Сани-Гонзалеса основана на том, что нет никаких ограничений на длину ребер. Теорема не проходит, если расстояния подчиняются неравенству треугольника (4).
Если оно соблюдается, можно предложить несколько алгоритмов с погрешностью 12. Прежде, чем описать такой алгоритм, следует вспомнить старинную головоломку. Можно ли начертить одной линией открытый конверт? На рисунке 4 видно, что можно (цифры на отрезках показывают порядок их проведения). Закрытый конверт одной линией нарисовать нельзя и вот почему. Будем называть линии ребрами, а их перекрестья - вершинами.
Когда через точку проводится линия, то используется два ребра - одно для входа в вершину, одно - для выхода. Если степень вершины нечетна - то в ней линия должна начаться или кончиться. На рис. 3 вершин нечетной степени две: в одной линия начинается, в другой - кончается. Однако на рис унке 4 имеется четыре вершины степени три, но у одной линии не может быть четыре конца. Если же нужно прочертить фигуру одной замкнутой линией, то все ее вершины должны иметь четную степень.
Верно и обратное утверждение: если все вершины имеют четную степень, то фигуру можно нарисовать одной незамкнутой линией. Действительно, процесс проведения линии может кончиться, только если линия придет в вершину, откуда уже выхода нет: все ребра, присоединенные к этой вершине (обычно говорят: инцидентные этой вершине), уже прочерчены. Если при этом нарисована вся фигура, то нужное утверждение доказано; если нет, удалим уже нарисованную часть G'. После этого от графа останется одна или несколько связных компонент; пусть G' - одна из таких компонент. В силу связности исходного графа G, G' и G'' имеют хоть одну общую вершину, скажем, v. Если в G'' удалены какие-то ребра, то по четному числу от каждой вершины. Поэтому G'' - связный и все его вершины имеют четную степень. Построим цикл в G'' (может быть, не нарисовав всего G'') и через v добавим прорисованную часть G'' к G'. Увеличивая таким образом прорисованную часть G', мы добьемся того, что G' охватит весь G.
Эту задачу когда-то решил Эйлер, и замкнутую линию, которая покрывает все ребра графа, теперь называю эйлеровым циклом. По существу была доказана следующая теорема.
Эйлеров цикл в графе существует тогда и только тогда, когда (1) граф связный и (2) все его вершины имеют четные степени.
Теперь можно обсудить алгоритм решения ЗК через построение кратчайшего остовного дерева. Для краткости будет называть этот алгоритм деревянным.
Вначале обсудим свойство спрямления. Рассмотрим какую-нибудь цепь, например, на рис.5. Если справедливо неравенство треугольника, то d[1,3]d[1,2]+d[2,3] и d[3,5]d[3,4]+d[4,5] Сложив эти два неравенства, получим d[1,3]+d[3,5]d[1,2]+d[2,3]+d[3,4]+d[4,5]. По неравенству треугольника получим. d[1,5]d[1,3]+d[3,5]. Окончательно
Итак, если справедливо неравенство треугольника, то для каждой цепи верно, что расстояние от начала до конца цепи меньше (или равно) суммарной длины всех ребер цепи. Это обобщение расхожего убеждения, что прямая короче кривой.
Вернемся к ЗК и опишем решающий ее деревянный алгоритм.
1. Построим на входной сети ЗК кратчайшее остовное дерево и удвоим все его ребра. Получим граф G - связный и с вершинами, имеющими только четные степени.
2. Построим эйлеров цикл G, начиная с вершины 1, цикл задается перечнем вершин.
3. Просмотрим перечень вершин, начиная с 1, и будем зачеркивать каждую вершину, которая повторяет уже встреченную в последовательности. Останется тур, который и является результатом алгоритма.
Теорема. Погрешность деревянного алгоритма равна 1.
Доказательство. Возьмем минимальный тур длины f B и удалим из него максимальное ребро. Длина получившейся гамильтоновой цепи L HC меньше f B . Но эту же цепь можно рассматривать как остовное дерево, т. к. эта цепь достигает все вершины и не имеет циклов. Длина кратчайшего остовного дерева L MT меньше или равна L HC . Имеем цепочку неравенств
Но удвоенное дерево - оно же эйлеров граф - мы свели к туру посредством спрямлений, следовательно, длина полученного по алгоритму тура удовлетворяет неравенству
Умножая (6) на два и соединяя с (7), получаем цепочку неравенств
Т.е. 2f B >f A , т.е. f A /f B >1+; =1.
Таким образом, мы доказали, что деревянный алгоритм ошибается менее, чем в два раза. Такие алгоритмы уже называют приблизительными, а не просто эвристическими.
Известно еще несколько простых алгоритмов, гарантирующих в худшем случае =1. Для того, чтобы найти среди них алгоритм поточнее, зайдем с другого конца и для начала опишем “brute-force enumeration” - “перебор животной силой”, как его называют в англоязычной литературе. Понятно, что полный перебор практически применим только в задачах малого размера. Напомним, что ЗК с n городами требует при полном переборе рассмотрения (n-1)!/2 туров в симметричной задаче и (n-1)! Туров в несимметричной, а факториал, как показано в следующей таблице, растет удручающе быстро:
Чтобы проводить полный перебор в ЗК, нужно научиться (разумеется, без повторений) генерировать все перестановки заданного числа m элементов. Это можно сделать несколькими способами, но самый распространенный (т.е. приложимый для переборных алгоритмов решения других задач) - это перебор в лексикографическом порядке.
Пусть имеется некоторый алфавит и наборы символов алфавита (букв), называемые словами. Буквы в алфавите упорядочены: например, в русском алфавите порядок букв абя (символ читается “предшествует)”. Если задан порядок букв, можно упорядочить и слова. Скажем, дано слово u=(u 1 ,u 2 ,..,u m ) - состоящее из букв u 1 ,u 2 ,..,u m - и слово v =(v 1 ,v 2 ,..,v b ). Тогда если u 1 v 1, то и uv, если же u 1 =v 1, то сравнивают вторые буквы и т.д. Этот порядок слов и называется лексикографическим. Поэтому в русских словарях (лексиконах) слово “абажур” стоит раньше слова “абака”. Слово “бур” стоит раньше слова “бура”, потому что пробел считается предшествующим любой букве алфавита.
Рассмотрим, скажем, перестановки из пяти элементов, обозначенных цифрами 1..5. Лексикографически первой перестановкой является 1-2-3-4-5, второй - 1-2-3-5-4, …, последней - 5-4-3-2-1. Нужно осознать общий алгоритм преобразования любой перестановки в непосредственно следующую.
Правило такое: скажем, дана перестановка 1-3-5-4-2. Нужно двигаться по перестановке справа налево, пока впервые не увидим число, меньшее, чем предыдущее (в примере это 3 после 5). Это число, P i -1 надо увеличить, поставив вместо него какое-то число из расположенных правее, от P i до P n . Число большее, чем P i -1 , несомненно, найдется, так как P i - 1< P i . Если есть несколько больших чисел, то, очевидно, надо ставить меньшее из них. Пусть это будет P j ,j>i-1. Затем число P i - 1 и все числа от P i до P n , не считая P j нужно упорядочить по возрастанию. В результате получится непосредственно следующая перестановка, в примере - 1-4-2-3-5. Потом получится 1-4-2-5-3 (тот же алгоритм, но упрощенный случай) и т.д.

Проектирование модели для определения времени простоя станков на машиностроительном предприятии курсовая работа. Программирование, компьютеры и кибернетика.
Курсовая работа по теме Проектирование аудиометра
Система Образования В Зарубежных Странах Курсовая Работа
Сочинение Рассуждение На Тему Цитаты
Курсовая работа по теме Анализ эффективности издержек производства на примере ЗАО 'Байсад'
Курсовая работа по теме Антикризисное регулирование экономики
Методы Управления Образовательной Организацией Реферат
Реферат: Фразеологические явления в переводе
Курсовая работа: Благотворительность как социальный феномен и ее возрождение в современной России
Дипломная работа по теме Создание динамических сайтов средствами Dreamweaver
Управление Качеством Химического Образования Реферат
Универсальное Сочинение По Направлению Забвению Не Подлежит
Реферат На Тему Река Волга
Курсовая работа: Разработка программы "Формирование и проверка контрольной суммы кластеров"
Нумерация Курсовой Работы С 3 Страницы
Памятка О Порядке Проведения Итогового Сочинения 2022
Реферат: Романизм
Реферат по теме Уплата налога на прибыль
Контрольная работа: Анализ финансово-хозяйственной деятельности ЗАО "Курская подшипниковая компания"
Реферат по теме Синтез комбинацонных схем и конечных автоматов, сети Петри
Доклад по теме Бледная поганка
Последствия взрыва и применения оружия на борту - Безопасность жизнедеятельности и охрана труда реферат
Особенности развития и операции на прямой кишке у детей - Медицина реферат
Анализ информационной составляющей системы управления на примере ООО "Радуга" - Менеджмент и трудовые отношения курсовая работа


Report Page