Обзор систем координат, использующихся в астрономических расчетах - Астрономия и космонавтика статья

Обзор систем координат, использующихся в астрономических расчетах - Астрономия и космонавтика статья




































Главная

Астрономия и космонавтика
Обзор систем координат, использующихся в астрономических расчетах

Классификация различных систем координат. Особенности и характеристика горизонтальной топоцентрической, экваториальной, эклиптической, галактической систем координат. История и практические особенности применения различных систем координат в астрономии.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Обзор систем координат, использующихся в астрономических расчетах
Горизонтальная топоцентрическая система координат
В этой системе центр помещается в месте нахождения наблюдателя на поверхности земли, основной плоскостью является плоскость математического горизонта . Одной координатой при этом является либо высота светила h, либо его зенитное расстояние z. Другой координатой является азимут A. Вследствие того, что горизонтальная система координат всегда топоцентрическая (наблюдатель всегда находится на поверхности земли, либо на некотором возвышении) слово "топоцентрическая" обычно опускается.
Высотой h светила называется дуга вертикального круга от математического горизонта до светила, или угол между плоскостью математического горизонта и направлением на светило. Высоты отсчитываются в пределах от 0° до +90° к зениту и от 0° до ?90° к надиру .
Зенитным расстоянием z светила называется дуга вертикального круга от зенита до светила, или угол между отвесной линией и направлением на светило. Зенитные расстояния отсчитываются в пределах от 0° до 180° от зенита к надиру.
Азимутом A светила называется дуга математического горизонта от точки юга до вертикального круга светила, или угол между полуденной линией и линией пересечения плоскости математического горизонта с плоскостью вертикального круга светила. Азимуты отсчитываются в сторону суточного вращения небесной сферы, то есть к западу от точки юга, в пределах от 0° до 360°. Иногда азимуты отсчитываются от 0° до +180° к западу и от 0° до ?180° к востоку. (В геодезии азимуты отсчитываются от точки севера .)
Изменения координат при вращении небесной сферы
Высота h, зенитное расстояние z, азимут A и часовой угол t светил постоянно изменяются вследствие вращения небесной сферы, так как отсчитываются от точек, не связанных с этим вращением. Склонение д, полярное расстояние p и прямое восхождение б светил при вращении небесной сферы не изменяются, но они могут меняться из-за движений светил, не связанных с суточным вращением.
Использование экваториальной системы координат
Первая экваториальная система координат
В этой системе основной плоскостью является плоскость небесного экватора . Одной координатой при этом является склонение д (реже -- полярное расстояние p). Другой координатой -- часовой угол t.
Склонением д светила называется дуга круга склонения от небесного экватора до светила, или угол между плоскостью небесного экватора и направлением на светило. Склонения отсчитываются в пределах от 0° до +90° к северному полюсу мира и от 0° до ?90° к южному полюсу мира .
Полярным расстоянием p светила называется дуга круга склонения от северного полюса мира до светила, или угол между осью мира и направлением на светило. Полярные расстояния отсчитываются в пределах от 0° до 180° от северного полюса мира к южному.
Часовым углом t светила называется дуга небесного экватора от верхней точки небесного экватора (то есть точки пересечения небесного экватора с небесным меридианом ) до круга склонения светила, или двугранный угол между плоскостями небесного меридиана и круга склонения светила. Часовые углы отсчитываются в сторону суточного вращения небесной сферы, то есть к западу от верхней точки небесного экватора, в пределах от 0° до 360° (в градусной мере) или от 0 h до 24 h (в часовой мере). Иногда часовые углы отсчитываются от 0° до +180° (от 0 h до +12 h ) к западу и от 0° до ?180° (от 0 h до ?12 h ) к востоку.
Вторая экваториальная система координат
В этой системе, как и в первой экваториальной, основной плоскостью является плоскость небесного экватора, а одной координатой -- склонение д (реже -- полярное расстояние p). Другой координатой является прямое восхождение б.
Прямым восхождением (RA,б) светила называется дуга небесного экватора от точки весеннего равноденствия до круга склонения светила, или угол между направлением на точку весеннего равноденствия и плоскостью круга склонения светила. Прямые восхождения отсчитываются в сторону, противоположную суточному вращению небесной сферы, в пределах от 0° до 360° (в градусной мере) или от 0 h до 24 h (в часовой мере).
RA -- астрономический эквивалент земной долготы . И RA и долгота измеряют угол восток-запад вдоль экватора; обе меры берут отсчёт от нулевого пункта на экваторе. Для долготы, нулевой пункт -- нулевой меридиан ; для RA нулевой отметкой является место на небе, где Солнце пересекает небесный экватор в весеннее равноденствие.
Склонение (д) в астрономии -- одна из двух координат экваториальной системы координат. Равняется угловому расстоянию на небесной сфере от плоскости небесного экватора до светила и обычно выражается в градусах , минутах и секундах дуги. Склонение положительно к северу от небесного экватора и отрицательно к югу.
· Объект на небесном экваторе имеет склонение 0°
· Склонение северного полюса небесной сферы равно +90°
У склонения всегда указывается знак, даже если склонение положительно.
Склонение небесного объекта, проходящего через зенит , равно широте наблюдателя (если считать северную широту со знаком +, а южную отрицательной). В северном полушарии Земли для заданной широты ц небесные объекты со склонением д > +90° ? ц не заходят за горизонт, поэтому называются незаходящими. Если же склонение объекта д < ?90° + ц , то объект называется невосходящим, а значит он ненаблюдаем на широте ц
В этой системе основной плоскостью является плоскость эклиптики . Одной координатой при этом является эклиптическая широта в, а другой -- эклиптическая долгота л.
Эклиптической широтой в светила называется дуга круга широты от эклиптики до светила, или угол между плоскостью эклиптики и направлением на светило. Эклиптические широты отсчитываются в пределах от 0° до +90° к северному полюсу эклиптики и от 0° до ?90° к южному полюсу эклиптики .
Эклиптической долготой л светила называется дуга эклиптики от точки весеннего равноденствия до круга широты светила, или угол между направлением на точку весеннего равноденствия и плоскостью круга широты светила. Эклиптические долготы отсчитываются в сторону видимого годового движения Солнца по эклиптике, то есть к востоку от точки весеннего равноденствия в пределах от 0° до 360°.
В этой системе основной плоскостью является плоскость нашей Галактики . Одной координатой при этом является галактическая широта b, а другой -- галактическая долгота l.
Галактической широтой b светила называется дуга круга галактической широты от эклиптики до светила, или угол между плоскостью галактического экватора и направлением на светило.
Галактические широты отсчитываются в пределах от 0° до +90° к северному галактическому полюсу и от 0° до ?90° к южному галактическому полюсу .
Галактической долготой l светила называется дуга галактического экватора от точки начала отсчёта C до круга галактической широты светила, или угол между направлением на точку начала отсчёта C и плоскостью круга галактической широты светила. Галактические долготы отсчитываются против часовой стрелки, если смотреть с северного галактического полюса, то есть к востоку от точки начала отсчёта C в пределах от 0° до 360°.
Точка начала отсчёта C находится вблизи направления на галактический центр, но не совпадает с ним, поскольку последний, вследствие небольшой приподнятости Солнечной системы над плоскостью галактического диска, лежит примерно на 1° к югу от галактического экватора. Точку начала отсчёта C выбирают таким образом, чтобы точка пересечения галактического и небесного экваторов с прямым восхождением 280° имела галактическую долготу 32,93192° (на эпоху 2000).
Координаты точки начала отсчёта C на эпоху 2000 в экваториальной системе координат составляют:
Небесные координаты употреблялись уже в глубокой древности. Описание некоторых систем содержится в трудах древнегреческого геометра Евклида (около 300 до н. э.). Опубликованный в « Альмагесте » Птолемея звёздный каталог Гиппарха содержит положения 1022 звёзд в эклиптической системе небесных координат.
Наблюдения изменений небесных координат привели к величайшим открытиям в астрономии, которые имеют огромное значение для познания Вселенной. К ним относятся явления прецессии , нутации , аберрации , параллакса , собственных движений звёзд и другие. Небесные координаты позволяют решать задачу измерения времени, определять географические координаты различных мест земной поверхности. Широкое применение находят небесные координаты при составлении различных звёздных каталогов, при изучении истинных движений небесных тел -- как естественных, так и искусственных -- в небесной механике и астродинамике и при изучении пространственного распределения звёзд в проблемах звёздной астрономии.
Использование различных систем координат
Использование горизонтальной топоцентрической системы координат
Горизонтальная топоцентрическая система координат используется наблюдателем, находящимся в определенном месте на поверхности земного шара для определения положения какого либо светила на небе.
Координаты небесных светил в данной системе координат могут быть получены с помощью угломерных инструментов и при наблюдениях в телескоп , смонтированный на азимутальной установке .
Большинство астрономических компьютерных программ способны выдавать положения светил в данной системе координат.
При наблюдениях следует учитывать поправку за рефракцию .
Использование первой экваториальной системы координат
Первая экваториальная система координат используется для определения точного времени и при наблюдениях в телескоп, смонтированный на экваториальной установке .
Использование второй экваториальной системы координат
Вторая экваториальная система координат является общепринятой в астрометрии .
В экваториальной гелиобарицентрической системе координат составляются современные звёздные карты и описываются положения светил в каталогах. При этом координаты светил приводятся к определенному положению небесного экватора и точки весеннего равноденствия, т.е. к определенной эпохе (в астрономии применяются эпохи B1950 и J2000.0 ).
Экваториальная геоцентрическая система координат отличается от экваториальной гелиобарицентрической системы координат тем, что координаты звезд скорректированы в ней из-за явления годичного паралакса , а положение небесного экватора и точки весеннего равноденствия приводятся к текущей дате.
Использование эклиптической системы координат
Эклиптическая геоцентрическая система координат используется в небесной механике для расчета орбиты Луны .
Эклиптическая гелиоцентрическая система координат используется для расчета орбит планет и других тел Солнечной системы обращающихся вокруг Солнца.
В большинстве школ астрологии , так же используется эклиптическая система координат. Эклиптическая широта светил при этом как правило не учитывается. А эклиптика разбивается на 12 равных участков, по 30 градусов дуги каждый, называемых знаками зодиака.
На практике, как правило, требуется пользоваться несколькими системами координат. Например, для расчета положения Луны на небе необходимо сначала рассчитать координаты Луны в эклиптической геоцентрической системе координат, пересчитать координаты в экваториальную геоцентрическую систему координат, за тем перейти к горизонтальной топоцентрической системе координат.
Горизонтальная система небесных координат. Экваториальная система небесных координат. Эклиптическая система небесных координат. Галактическая система небесных координат. Изменение координат при вращении небесной сферы. Использование различных систем коорд реферат [46,9 K], добавлен 25.03.2005
Географическая система координат. Горизонтальная система координат. Экваториальные системы координат. Эклиптическая система координат. Галактическая система координат. Системы счёта времени. Звёздное время. Переход от одной системы координат к другой. реферат [254,4 K], добавлен 09.03.2007
Небесная сфера и система координат на ней. Анализ положения небесных светил в пространстве. Геоцентрические координаты светил. Изменение координат во времени. Характеристика связи между координатами точки места наблюдения и координатами светил на сфере. контрольная работа [1,0 M], добавлен 25.03.2016
Основные понятия, необходимые для успешного изучения космической геодезии. Описание систем координат, наиболее часто используемых в астрономии для описания положения светил на небе. Общие сведения о задачах космической геодезии как науки, их решение. контрольная работа [1,2 M], добавлен 11.01.2010
История звездной карты. Созвездия каталога Птолемея. Новая Уранометрия Аргеландера. Современные границы созвездий. Горизонтальная, экваториальная, эклиптическая и галактическая системы небесных координат. Изменения координат при вращении небесной сферы. реферат [3,4 M], добавлен 01.10.2009
Предмет астрономии. Источники знаний в астрономии. Телескопы. Созвездия. Звездные карты. Небесные координаты. Работа с картой. Определение координат небесных тел. Кульминация светил. Теорема о высоте полюса мира. Измерение времени. учебное пособие [528,1 K], добавлен 10.04.2007
Принципы получения информации, необходимой для вычисления координат. Алгоритмы определения курса по информации о высотах звезд. Анализ погрешностей астроориентатора. Определение горизонтальных координат светил. Размещение астросекстантов на платформе. контрольная работа [161,9 K], добавлен 25.03.2016
Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д. PPT, PPTX и PDF-файлы представлены только в архивах. Рекомендуем скачать работу .

© 2000 — 2021



Обзор систем координат, использующихся в астрономических расчетах статья. Астрономия и космонавтика.
Дипломная работа: Нормативно-правовая и методическая база современного делопроизводства
Менің Туған Өлкем Эссе
Интернет Сайт Реферат
Практические Работы По Технической Механике Решение
Реферат: Филология
Реферат: Внутренний мир Раскольникова. Скачать бесплатно и без регистрации
Итоговая Контрольная Работа В Формате Огэ
Контрольная Работа По Теме Общество И Человек
Реферат: Воля та вольові акти людини
Человеком Не Рождаются Человеком Становятся Эссе
Реферат: Купечество Верховажья. Скачать бесплатно и без регистрации
Реферат: Безналичный денежный оборот
Курсовая работа по теме Налогообложение доходов физических лиц в Российской Федерации на материалах ИФНС России по г. Чебоксары
Таможенная статистика
Реферат: Computers And Disabled People In Education Essay
Дипломная работа по теме Анализ работы с кадрами ГУ 'Службы пожаротушения и аварийно-спасательных работ' Департамента по чрезвычайным ситуациям Северо-Казахстанской области на примере ПЧ-1СО г. Петропавловска
Я Учитель Математики Эссе
Итоговая Контрольная Работа Спотлайт 5 Класс
Портрет Милы Сочинение 7 Класс Описание Внешности
Конспекты лекций: Контрфилософия
Похожие работы на - Государственные финансы. Фонды обязательного медицинского страхования
Реферат: Формирование стратегии развития физической культуры и спорта Российской Федерации
Реферат: Спортивна гімнастика


Report Page