Космические манипуляторы - Производство и технологии реферат

Космические манипуляторы - Производство и технологии реферат




































Главная

Производство и технологии
Космические манипуляторы

Особенности манипуляторов, использующихся в составе модулей на долговременном орбитальном комплексе "Мир". Режимы работы, характеристики, управление и устройство манипуляторов Стрела, Буран, Декстор, Канадарм, их применение в космическом пространстве.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

(Национальный исследовательский университет)
На долговременном орбитальном комплексе (станции) (ДОК) «Мир» в составе модулей использовались манипуляторы, как на сменных модулях, так и на базовом блоке. Эти манипуляторы отличались по своим задачам и исполнению.
На модулях «Квант-2», «Спектр», «Кристалл» и «Природа» на их внешних поверхностях вблизи основного стыковочного узла был смонтирован манипулятор. Основная задача этого М заключалась в том, чтобы после стыковки с базовым блоком (к продольному стыковочному узлу ПхО) произвести перестыковку модуля на другой стыковочный узел, ось которого лежала в плоскостях стабилизации I-III. II-IV. Этот же манипулятор использовался для перестыковки модулей в процессе эксплуатации комплекса. Для этих операций на внешней сферической поверхности ПхО между плоскостями стабилизации под сферическим углом 45 0 были установлены 2 специальных стыковочных узла, к которым и пристыковывался манипулятор модуля. После стыковки с этим узлом модуль отстыковывался от продольного стыковочного узла и перемещался к ближайшему свободному «перпендикулярному» стыковочному узлу, условно к I- II или III-IV. Этот манипулятор следует отнести к классу транспортных (транспортирующих), работающих по программе «точка-точка».
Манипуляторы базового блока («Стрела»)
К классу транспортирующих манипуляторов можно отнести и «грузовую систему» «Стрела», установленную на базовом блоке комплекса. Данная система предназначалась для транспортировки грузов из модулей на поверхность базового блока. После того, как была сформирована конструкция ДОК в виде «звезды», все выходные люки ПхО оказались заняты и необходимое оборудование можно было, доставлять только из вторых торцевых люков модулей. Для облегчения работы экипажа на поверхности ДОК и были установлены две «Стрелы», на II и IV плоскостях стабилизации на местах крепления головного обтекателя. На Рис.1. перечислены работы, при выполнении которых потребовалась помощь данного манипулятора.
Схема и фотография «Стрелы» представлены на Рис.1.
Отечественные механические манипуляторы « Стрела », выполненные в виде телескопической штанги разворачиваемой вокруг двух осей, используют на МКС для перемещения космонавтов по внешней поверхности станции. Краны установлены на модуле "Пирс" . Один из кранов может достигать модуля "Заря" . Другой расположен на противоположном борту и может «дотянуться» до самого конца "Звезды" .
Для проведения испытаний в институте создали уникальный стенд. Манипулятор, предназначенный для работы в открытом космосе, размещают на платформу, опирающуюся на воздушную подушку. Подобным образом проверяют и отрабатывают перемещение различных грузов в условиях искусственной невесомости. Манипулятор общей длиной (в "вытянутом" транспортном положении) 15 м действует в трех плоскостях и имеет 6 вращательных степеней свободы. Система бортовых манипуляторов орбитального (СБМ) корабля состоит из двух манипуляторов весом по 360 кг - основного и резервного. На конце каждого манипулятора смонтирован захват, которым удерживается и перемещается полезный груз, при этом за ходом операции оператор наблюдает с помощью двух независимых телекамер, поворачивающихся в двух плоскостях, а прожектор освещает захват и нужное место на наружной поверхности космического аппарата или орбитальной станции. Бурановский манипулятор имеет кинематическую схему, сходную с манипулятором Space Shuttle (RMS). Кроме шести вращательных степеней подвижности он имеет одну транспортную степень (для начальной установки в грузовом отсеке корабля при закрытых створках грузового отсека). Звенья манипулятора ("плечо" и "локоть") выполнены шарнирно-стержневыми из легких, но прочных композиционных материалов (углепластика), которые приспособлены для космических условий с резким перепадом температур.
Управление манипулятором осуществляется через коммутатор, связанный с приводами звеньев и бортовым цифровым вычислительным комплексом (БЦВК), что позволяет использовать несколько режимов управления. В режиме ручного управления действиями манипулятора руководит оператор с помощью двух рукояток на пульте управления манипуляторами, расположенном на задней стенке в командном отсеке кабины корабля. Одна рукоятка обеспечивает перемещение собственно манипулятора, а другая связана непосредственно с захватами. Контроль за операцией оператор осуществляет с помощью уже упомянутой выносной телевизионной системы.
В автоматическом режиме управления манипулятор действует по заложенной в БЦВК программе. При этом БЦВК осуществляет связь манипулятора с оборудованием, размещенным вне корабля, рассчитывает оптимальную траекторию и требуемую скорость перемещения захватов с грузом, непрерывно контролируя работу всей системы, и при необходимости, внося необходимые коррективы. В режиме целее указания манипулятор может самостоятельно переместить захваты с полезным грузом в заранее заданную точку пространства. Предусмотрен и резервный режим работы, при котором управляющие команды поступают на каждый шарнир манипулятора. В отличие от своего американского аналога RMS, манипулятор "Бурана" имеет одну принципиальную особенность - он может управляться не только с борта орбитального корабля, но и с Земли. В этом случае в процессе работы из космоса напрямую в наземный Центр управления полетом (ЦУП) "сбрасывается" большой объем телеметрической информации, которая мгновенно анализируется, обрабатывается и полученные команды столь же быстро отправляются на орбиту и поступают в блок памяти БЦВК, откуда они передаются на манипулятор. Таким образом, оператор, находящийся в ЦУПе, сможет производить работы в открытом космосе с борта корабля, выполняющего непилотируемый автоматический полет.
Технические характеристики манипулятора.
Что же касается программ, помещаемых в блоках памяти БЦВК, то разработчики предусмотрели их хранение в основном и дополнительных блоках. Такое решение позволяет гибко планировать программу полета в зависимости от наличия или отсутствия экипажа на борту корабля. В связи с закрытием программы манипулятор "Бурана" так и не был испытан в условиях космического полета (в первом и единственном полете "Бурана" он не устанавливался, а второй полет в декабре 1991 г., в котором предусматривалось его испытание, так и не состоялся) однако проведенное наземное натурное и компьютерное моделирование позволило определить следующие особенности его движения:
· Движение пустого захвата сопровождается колебаниями с амплитудой 7-10 см и частотой 0.5-1 Гц.
· При работе с грузом около 1 т амплитуда колебаний захвата за счет суммарной упругости (основная упругость сосредоточена в шарнирах и в захвате в месте крепления груза) составила 50 см.
· Остановка груза весом 1.5 т и 6 т сопровождается колебательным переходным процессом со временем затухания порядка 2 и 4 минут соответственно.
Манипулятор "Бурана" на испытаниях на стенде, имитирующем невесомость.
манипулятор модуль орбитальный космический
На фотографии видно, что манипулятор установлен по правому борту корабля и фиксируется в транспортном положении тремя узлами, поддерживающими манипулятор в подвижных сочленениях звеньев.
Американский шатал Endeavour стартовал, 11 марта к Международной космической станции с космодрома на мысе Канавералл. Главное задание полета Endeavour - доставка на МКС жилищного модуля и робота, который может выполнять задание в открытом космосе. В состав экипажа космического корабля входят семеро астронавтов. Вскоре после старта космонавты получили тревожные сигналы от рулевых двигателей корабля, затем по неясной пока причине пришлось перейти на резервную систему охлаждения. По оценке руководителей НАСА, эти проблемы не должны сказаться на программе полета. Шатл Endeavour доставит на Международную космическую станцию первый из трех компонентов японского жилого модуля "Кибо" и канадский высокоточный робот-манипулятор Декстр (Dextre), стоимостью более $200 млн., который имеет две роботизированные руки для работы на внешней поверхности МКС.
Декстр выглядит как безголовое туловище, оснащенное двумя крайне подвижными руками длиной в 3,35 м. Трёх с половиной метровый корпус имеет ось вращения в «талии». Корпус с одного конца оборудован захватывающим приспособлением, за который его может ухватить Канадарм 2 и перенести SPDM к любому орбитальному заменяемому элементу (англ. ORU) на станции. С другого конца корпуса имеется исполнительный орган робота, фактически идентичный органу Канадрам», так что SPDM может быть закреплён на захватывающих приспособлениях МКС или может использоваться для того чтобы расширять функциональность Кандарм2.
Обе руки SPDM имеют семь суставов, что даёт им такую же гибкость, как у Канадарм 2, в сочетании с большей точностью. В конце каждой руки находится система, названная Orbital Replacement Unit/Tool Changeout Mechanism (OTCM) (по русским: Орбитальный заменяемый элемент/Механизм замены инструментов. В неё входят встроенные цепкие захваты, выдвижная головка, монохромная телевизионная камера, подсветка, и разделяемый соединитель, который обеспечивает питание, обмен данными и видеонаблюдение за полезным грузом.
Внизу корпуса Декстра находится пара ориентируемых телекамер цветного изображения с подсветкой, платформа для хранения ORU и кобура для инструментов. Кобура оборудована тремя различными инструментами, используемыми для решения различных задач на МКС.
Canadarm был роботом-манипулятором, изначально предназначенным для использования на борту космического корабля. Canadarm был введён в эксплуатацию в 1975 году и впервые запущен в 1981 году, он был важным техническим развитием в истории пилотируемых космических полетов. Canadarm продемонстрировал потенциальные возможности применения робототехнических устройств в пространстве, а также прочно вошёл в инжиниринг в космических исследованиях. Несколько итераций устройства были изготовлены для использования на борту различных миссий.
Canadarm состоит из длинных петель - рук, контролируемых robotically из кабины. Canadarm официально известен, как поворотная дистанционная система манипулятора (SRM),и она предназначена для астронавтов для перемещения полезной нагрузки в или из космического корабля. Она также может быть использована и для других задач, начиная от ремонта телескопа ” Хаббл ” для сборки Международной Космической Станции (МКС). Второе поколение устройств, ” Canadarm-2?, было установлено на МКС.
Опытно-конструкторские работы по различным аспектам космических полетов, могут заключить договор с агентствами, такими как Национальное управление по аэронавтике и исследованию космического Пространства (НАСА). В то время как агентства, часто предпочитают работать с отечественными компаниями, международное сотрудничество - это не редкость, как показало использование Canadarm. НАСА заказала устройство, которое можно использовать для управления Трансферт для полезных нагрузок и потенциально использовать для других видов деятельности в космосе, когда требуется, захватить и манипулировать объектами. На протяжении всего их развертывания, различные модели Canadarm никогда не подводили, хотя он были уничтожены в 2003 г, в. результате стихийных бедствий.
Впервые Canadarm использовался на борту шатла Колумбия в ходе миссии STS-2 в 1981 году. За время эксплуатации манипулятор Канадарм участвовал в 50 миссиях и совершил 7000 оборотов вокруг Земли, отработав без единого отказа. Манипулятор использовался для захвата телескопа Хаббл, перемещения и выгрузки более 200 т компонентов МКС и перемещения астронавтов.
Манипулятор располагался в грузовом отсеке шатла, управление осуществлялось дистанционно из кабины. Имеет 6 степеней свободы. Механизм захвата по принципу работы напоминает диафрагму фотоаппарата.
Собственный вес -- 410 кг (900 фунтов);
Вес в составе общей системы -- 450 кг
Дистанционно-Управляемый Манипулятор (ДУМ) (RMS) «CANADARM» устанавливался на МТКК «Space Shuttle». Возможно установление двух рук ДУМ. Одновременно может работать только одна рука. Основное назначение ДУМ (RMS) - транспортные операции:
-доставка объектов из ОПГ, размещение объектов в ОПГ, перемещение космонавтов, закреплённых в «Выносном Рабочем Месте» (ВРМ) к объекту в ОПГ;
-обеспечение проведения технологических операций:
-поддержание, закрепление, размещение инструмента и человека.
RMS Canadarm разработан и изготовлен фирмой “Spar Aerospace”. Разработка и изготовление первого образца - 70 млн. дол. Последующие 3 «руки» были изготовлены за 60 млн. дол. Всего изготовлено 5 (руки 201, 202, 301, 302 и 303) и переданы NASA. Рука 302 потеряна при катастрофе Challenger. Срок службы - 10 лет, 100 полётов.
Схема манипулятора RMS Canadarm представлена на Рис.2.
Белое покрытие конструкции, работающее как термостатирующее оборудование для поддержания необходимой температуры оборудования в условиях вакуума, предотвращает повышение температуры руки под солнечными лучами и проектирует от космического холода, когда рука находится в тени.
Two degrees of movement (pitch/yaw)
Right, up, down forward, and backward movement of the arm
Controls the pitch, roll, and yaw of the arm
Впервые Canadarm использовался на борту шаттла Колумбия в ходе миссии STS-2 в 1981 году. За время эксплуатации манипулятор Канадарм участвовал в 50 миссиях и совершил 7000 оборотов вокруг Земли, отработав без единого отказа [2] . Манипулятор использовался для захвата телескопа Хаббл , перемещения и выгрузки более 200 т компонентов МКС и перемещения астронавтов.
После аварии Space Shuttle "Columbia" (полёт STS-107 ) в начале 2003 года, Советом по Расследованию Происшествия (Columbia Accident Investigation Board, CAIB) был сформирован мандат усовершенствования «Программы Шаттл». Одним из требований для НАСА была разработка дополнения («пару») для Canadarm в виде Orbiter Boom Sensor System (OBSS), которая должна содержать инструменты для инспекции внешней поверхности ТЗП днища шаттла перед возвратом. Основываясь на технологии и опыте, приобретенных MDA (бывшая “Spar Aerospace”) в создании нескольких поколений космических манипуляторов, MDA разработало расширение для Космических челноков: роботизированную штангу, способную выполнять на орбите инспекции системы тепловой защиты шаттла. Инспекционной Присоединяемой Штанге (IBA) отводилась главная роль в осмотре системы тепловой защиты шаттла.
Инспекционная Штанга базировалась на уже существующих решениях, разработанных по программе Canadarm, и имеет, по существу, тот же дизайн, за исключением того, что суставы руки были заменены на алюминиевые переходники, эффективно закрепляющие переходники в ложементах. Наконечник стрелы был предназначен для размещения и интерфейса с набором датчиков для оценки системы тепловой защиты шаттла.
Весящая 211 килограммов (без датчиков), и около 15 метров в длину, IBA была приблизительно таких же размеров, что и Canadarm шаттла. Таким образом, IBA разместился на борту корабля, где первоначально должен был устанавливаться «Холдинг механизм» второй руки. На орбите, Canadarm шаттла и Canadarm2 " МКС " будут забирать IBA с помощью грейфера
Манипулятор для осмотра ТЗП шаттла.
После аварии Space Shuttle "Columbia" (полёт STS-107 ) в начале 2003 года, Советом по Расследованию Происшествия (Columbia Accident Investigation Board, CAIB) был сформирован мандат усовершенствования «Программы Шаттл». Одним из требований для НАСА была разработка дополнения («пару») для Canadarm в виде Orbiter Boom Sensor System (OBSS), которая должна содержать инструменты для инспекции внешней поверхности ТЗП днища шаттла перед возвратом. Основываясь на технологии и опыте, приобретенных MDA (бывшая “Spar Aerospace”) в создании нескольких поколений космических манипуляторов, MDA разработало расширение для Космических челноков: роботизированную штангу, способную выполнять на орбите инспекции системы тепловой защиты шаттла. Инспекционной Присоединяемой Штанге (IBA) отводилась главная роль в осмотре системы тепловой защиты шаттла.
Инспекционная Штанга базировалась на уже существующих решениях, разработанных по программе Canadarm, и имеет, по существу, тот же дизайн, за исключением того, что суставы руки были заменены на алюминиевые переходники, эффективно закрепляющие переходники в ложементах. Наконечник стрелы был предназначен для размещения и интерфейса с набором датчиков для оценки системы тепловой защиты шаттла.
Весящая 211 килограммов (без датчиков), и около 15 метров в длину, IBA была приблизительно таких же размеров, что и Canadarm шаттла. Таким образом, IBA разместился на борту корабля, где первоначально должен был устанавливаться «Холдинг механизм» второй руки. На орбите, Canadarm шаттла и Canadarm2 " МКС " будут забирать IBA с помощью грейфера
В 2014 году на российском сегменте МКС планируется установить европейский манипулятор ERA (European Robotic Arm) более короткий и слабый, но более аккуратный манипулятор (точность позиционирования -- 3 миллиметра), способный работать в полуавтоматическом режиме без постоянного управления космонавтами (Рис.3), который предполагается использовать для перестыковки модулей станции и обслуживания шлюзовой камеры. Манипулятор представляет из себя симметричный 4-х звенник, состоящий из двух «Больших» и двух «малых» звеньев. На обоих малым звеньях установлены захваты, аналогичные захватам Canadarm2, что позволяет пристыковывать ERA любым из малых звеньев.
Схема японского модуля МКС JEM представлена на Рис.4. Физические параметры модуля представлены в Таблице 3.
Японский экспериментальный блок "Кибо", что значит надежда, является первой орбитальной лабораторий Японии. "Кибо" состоит из четырех модулей:
Это центральная часть блока, которая позволит проводить все виды экспериментов в условиях невесомости. Внутри модуля установлено 10 экспериментальных блоков. Сам модуль имеет размеры автобуса.
- Экспериментальный багажный модуль (ELM-PS):
Он играет роль хранилища оборудования, в котором находятся перемещаемые контейнеры. Их можно перевозить на "космическом челноке".
Он постоянно находится в открытом космосе. Использоваться он будет для утилизации отходов. В нем находятся заменяемые мусорные контейнеры, которые при наполнении выбрасываются.
Она будет обслуживать внешний грузовой блок. Основная часть руки переносит тяжелые объекты, а для деликатной работы используется малая съемная рука. Рука-манипулятор оснащена видеокамерой, которая позволяет точно управлять движениями руки.
Так же ко всем модулям будут прикреплены багажные блоки малых размеров.
Автоматическая машина, состоящая из манипулятора и устройства программного управления его движением. Назначение и применение промышленного робота. Структурная схема антропоморфного манипулятора. Задачи механики манипуляторов и ее кинематический анализ. реферат [179,3 K], добавлен 09.12.2010
Роль контрольно-измерительной техники в обеспечении качества и конкурентоспособности продукции. Требования к мобильным координатно-измерительным машинам фирмы FARO. Особенности портативных измерительных манипуляторов, принцип работы лазерного сканера. реферат [1,5 M], добавлен 07.03.2010
Организация надзора за безопасной эксплуатацией грузоподъемных кранов-манипуляторов. Признаки и нормы браковки стальных канатов. Назначение, допуск к самостоятельному выполнению работ в качестве оператора крана-манипулятора. Оказание первой помощи. шпаргалка [155,1 K], добавлен 22.11.2011
Применение лазерных технологий в трубопроводном строительстве. Технология лазерной сварки металлов. Синтез управления возмущенным движением автоматических манипуляторов. Расчет элементов матрицы кинематических характеристик через координаты механизма. презентация [616,6 K], добавлен 12.12.2016
Комплексная механизация и автоматизация технологических процессов подготовительно–разбраковочного производства. Датчик автоматического измерения ширины материала: принцип работы. Кинематическая схема двухкоординатных манипуляторов для швейных машин с ЧПУ. контрольная работа [1,3 M], добавлен 07.02.2016
Транспортирование заготовок и деталей: классификация способов и их отличительные особенности, оценка имеющихся преимуществ и недостатков. Специальные ориентирующие устройства для деталей, их значение и принципы работы. Автоматические манипуляторы. реферат [25,8 K], добавлен 18.04.2011
Использование ионных двигателей для маршевого и межорбитального полета в космическом пространстве. Применение космических электрореактивных двигательных установок. Разработка маршрутного плана технологического процесса детали "катодная оболочка". дипломная работа [173,4 K], добавлен 18.12.2012
Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д. PPT, PPTX и PDF-файлы представлены только в архивах. Рекомендуем скачать работу .

© 2000 — 2021



Космические манипуляторы реферат. Производство и технологии.
Реферат: Деградация земель и лесов. Скачать бесплатно и без регистрации
Сочинение по теме Повелитель мух. Голдинг Уильям
Реферат: Договоры мены, дарения и ренты
Реферат: Военные действия вооруженных сил СССР в предвоенные 1936-1940 годы. Скачать бесплатно и без регистрации
Мифы Народов Тюменского Севера Реферат
Реферат: Программ а по оказанию содействия добровольному переселению в Курганскую область соотечественников, проживающих за рубежом, на 2009-2022 годы
Нэп в казахстане
Реферат: Criticism of Vladimir Propp’s Theory on Genesis of Magic Fairy Tales’ Structure
Уголовная Ответственность Несовершеннолетних Реферат Право
Курсовая работа по теме Рынок образовательных услуг в России и за рубежом
Защита Интеллектуальной Собственности Эссе
Помогите Написать Эссе
Курсовая Работа На Тему Методика Аудита Расчетов С Бюджетом По Налогу На Добавленную Стоимость
График Контрольных Работ 1 Класс
Реферат по теме Свободное время
Курсовая работа по теме Маркетинговая деятельность в коммерческом банке
Сочинение По Пословице Нет Друга
Основные элементы оптического волокна
Курсовая Работа Методика Составления Годового Плана Предприятия
Курсовая работа: Обучение, трудоустройство и другие услуги по английскому языку для жителей г. Саратов и области. Скачать бесплатно и без регистрации
Методы мотивации и стимулирования муниципальных служащих (на примере Свердловской области) - Менеджмент и трудовые отношения курсовая работа
Национальная безопасность России и пути ее укрепления - Государство и право контрольная работа
Теория погрешностей - Математика лабораторная работа


Report Page