Композиционные материалы. Обработка композиционных материалов давлением - Физика и энергетика курсовая работа

Композиционные материалы. Обработка композиционных материалов давлением - Физика и энергетика курсовая работа




































Главная

Физика и энергетика
Композиционные материалы. Обработка композиционных материалов давлением

Классификация, структура, свойства, достоинства и недостатки композиционных материалов. Методы их обработки: контактное (ручное) формование, напыление, инжекция, вакуумная инфузия, намотка, пултрузия, прямое прессование. Рынок композиционных материалов.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство образования и науки Российской Федерации
Санкт - Петербургский политехнический университет имени Петра Великого
Институт металлургии, машиностроения и транспорта
Кафедра ‹‹Технология конструкционных материалов и материаловедение››
По дисциплине: Наукоёмкие технологии обработки давлением
Композиционные материалы. Обработка композиционных материалов давлением
· высокая удельная прочность (прочность 3500 МПа) [1]
· высокая жёсткость (модуль упругости 130…140 - 240 ГПа) [1]
· из КМ возможно изготовить размеростабильные конструкции
Причём, разные классы композитов могут обладать одним или несколькими преимуществами. Некоторых преимуществ невозможно добиться одновременно.
· Композиционные материалы гигроскопичны, т.е. склонны впитывать влагу, что обусловлено несплошностью внутренней структуры КМ.
· Низкая эксплуатационная технологичность.[3]
· Относительно небольшая стоимость оснастки для изготовления стеклопластика;
· Незначительная стоимость оборудования для изготовления стеклопластика (распылитель, валики, кисти).
· Значительное количество ручного труда при изготовлении изделия из стеклопластика;
· Предварительный раскрой стеклоткани, стекломата или другого стеклянного материала;
· Предварительная подготовка смеси полиэфирная смола - отвердитель;
· Качество конечного изделия из стеклопластика зависит от мастерства исполнителя;
· Относительно большое время изготовления изделия из стеклопластика;
· Не требуется раскрой стекломата и подготовка смеси полиэфирная смола - отвердитель, что позволяет экономить время, полезные площади, работу персонала;
· Существенно сокращаются производственные площади из-за снижения числа специально оборудованных мест для производства стеклопластика;
· Увеличивается скорость производства изделия из стеклопластика;
· Упрощается контроль над качеством изделий из стеклопластика;
· Экономится фонд заработной платы при производстве стеклопластика;
· Снижается себестоимость конечного изделия из стеклопластика, так как стеклянный ровинг - наиболее дешевый материал из стекла;
· Существенно снижается количество отходов - Вы используете ровно столько полиэфирной смолы и стекла, сколько нужно для производства изделия из стеклопластика.
· Ламинаты имеют тенденцию быть очень богатыми смолой и поэтому чрезмерно тяжелыми.
· Присутствуют только короткие волокна, которые ограничивают механические свойства ламината.
· Смолы должны быть с низкой вязкостью для возможности их напыления. Это приводит к уменьшению их механических свойств и теплостойкости.
· Вредные условия труда, большое содержаний в воздухе мелких частиц стекла. Качество конечного продукта в основном зависит от мастерства оператора установки.
При изготовлении средних и крупных партий изделий из стеклопластика целесообразно применить метод инжекции полиэфирной смолы в закрытую форму (метод RTM - Resin Transfer Moulding).
Рисунок - 3. 3. 1 Схема метода инжекции (RTM) [9]
Метод RTM (Рис. 3. 3. 1) основывается на пропитке и формовании композитов под давлением, в процессе которого связующее вещество переходит в закрытую матрицу, в которой уже содержится наполнители или преформы. Различные ткани разнообразного переплетения могут выступать как армирующий материал, например, мультиаксиальный или эмульсионный материал, и порошковые стекломаты. Связующим веществом выступает смола, которая гелеобразуется 50-120 мин[3], имеющая низкую динамическую вязкость. ГОСТ 28593-90 определяет вязкость и время гелеобразования смолы.
Такой метод отлично подойдет для стандартных объёмов 500 -10000 изделий в год. Конструкция матрицы состоит из композиционных или стальных форм, которые повторяют с двух сторон внешние обводы детали. Конструкции обладают высокотемпературными характеристиками, которые удерживаются точным совмещением закрытых стальных рам, которые поддерживаются в местах зажимов.
Рисунок - 3. 3. 1 Схема метода инжекции (RTM-light) [9]
Этот метод идеален для производства матриц 0,2м2 до 100м2. Конструкция матрицы состоит из композиционных или стальных форм. Контур матрица состоит из более легкой и гибкой конструкции. Половинки матрицы соединяются между собой под воздействием вакуума. Метод Light RTM (Рис. 2. 3. 2) отличается тем, что прижим матрицы и пуансона осуществляется с помощью вакуума, а пуансон представляет собой легкий позитивный оттиск матрица. Разрежение создается также и в раочей полости формы, что позволяет добиться оптмаильных характеристик пропитки армирующего материала.
Смолы: эпоксидные, полиэфирные, винилэфирные.
Волокна: Любые. Желательно использовать специально предназначенные для этого стекломатериалы с проводящим слоем и механически связанными волокнами.
Наполнители: Любые стойкие к стиролу, кроме материалов в виде сот. О сновные преимущества:
Могут быть получены ламинаты с высоким содержанием стекла и с минимальным содержанием пустот. Хорошие условия труда и окружающей среды. Нет большого выброса вредных веществ. Возможно сокращение трудовых затрат и времени на изготовление изделия. Один рабочий может обслуживать одновременно несколько аппаратов, производяших инжекцию. Вся форма изделия имеет глянцевую поверхность. Минимизированы отходы материалов. Основные недостатки: Дорогие и сложные формы. Сложность процесса. Необходимость иметь инжекционное оборудование.
Вакуумная инфузия (Рис. 3. 4. 1.) в настоящее время является наиболее перспективной технологией получения композитов. Использование вакуумной инфузии, как процесса для получения изделий из композиционных материалов обусловлено рядом причин:
1. Получение композита с высоким содержанием армирующего материала;
3. Отсутствие материалов с малым сроком жизни (препрегов), время подготовки и сборки вакуумного мешка неограниченно;
4. Отсутствие необходимости в дорогостоящих автоклавах или прессах и инжекционных системах;
5. Возможность изготовления больших деталей целиком без разделения на составные части.
Данные факторы способствовали развитию технологии вакуумной инфузии, а также обусловливают ее широкий потенциал для дальнейшего применения.
Процесс вакуумной инфузии заключается в заполнении жидким связующим пор в предварительно отвакуумированном армирующем материале.
После пропитки происходит отверждение жидкой смолы с образованием жесткой полимерной матрицы, обусловливающей равномерное распределение нагрузки в композитном изделии. Типичными армирующими материалами являются стеклоткань и углеродная ткань. В качестве связующего могут применятся эпоксидные, полиэфирные, эпоксивинилэфирные и др. связующие. При выборе связующего необходимо знать при каком уровне вакуума связующее может закипеть. Например, стирол, содержащийся во всех полиэфирных связующих, закипает при комнатной температуре, если давление в вакуумном пакете составляет менее 50 мм рт. ст. тогда как эпоксидные связующие не закипят даже при 1 мм рт. ст. Также необходимо убедиться, что связующее не содержит растворители, которые также будут закипать в процессе инфузии, способствовать образованию пор и понижению прочности изделия.
Рисунок 3.4.1 - Схема вакуумной инфузии
Технологическими факторами влияющими на качество конечного изделия являются:
При наличии дырок или неплотного прилегания жгута композит будет пористым, иметь плохую поверхность, а также процесс инфузии может не пройти до конца
При недостаточном вакууме (более 100 мм рт. ст.) [4] армирующий материал сжимается недостаточно плотно и содержание связующего в изделии может быть завышенным, также может возрастать пористость.
Высоковязкая смола (с вязкостью выше 500-600 мПа*с) [4] пропитывает материал слишком медленно, и может образовывать незаполненные пустоты (поры), как внутри композита так и на его поверхности
Быстрое гелирование смолы может привести к тому, что инфузия не успеет дойти до конца. Вязкость начинает возрастать гораздо раньше гелирования, поэтому связующее необходимо выбирать с большим запасом по времени гелирования. Желательно, что бы время гелирования было не менее 5 часов.
Правильное распределение смолы с помощью проводящих сеток:
При расположении проводящих связующее материалов желательно чтобы от окончания проводящей сетки до вывода вакуума во всех точках было примерно равное расстояние 2-5 см. длина сетки без подвода связующего не более 1 метра. Существует несколько стандартных стратегий для крупногабаритных изделий по распределению подводящих трубок к пропитываемой форме, такие как, рыбий скелет или параллельные последовательно открываемые вводы. Также для крупногабаритных изделий часто применяют моделирование пропитки.
Аккуратная выкладка слоев ткани и вспомогательных материалов:
При получении композита методом вакуумной инфузии большое внимание следует уделять выкладыванию слоев углеродной ткани, вспомогательных материалов и сборке вакуумного мешка.
Углеродная ткань должна быть плотно прилегать к оснастке или гелькоату. При необходимости лучше произвести подклейку ткани к оснастке при помощи клея (спрея) или липкой ленты. Необходимо избегать возникновения натянутостей или точек неполного прилегания ткани к оснастке или гелькоату, так как это может вызывать изменение геометрических размеров внутренней части изделия, а также приводит к увеличению веса конечного изделия в связи с образованием областей с повышенным содержанием связующего. Плотное прилегание материалов по всей поверхности необходимо тщательно контролировать для всех слоев углеродной ткани, а также для всех вспомогательных материалов.
При закреплении дренажной сетки для распределения связующего следует помнить, что при использовании тонкого вакуумного мешка вакуумная сетка может его проткнуть. После сборки вакуумного мешка необходимо убедится в его герметичности, для этого нужно на некоторое время отключить насос и следить за тем, чтобы за 5 минут вакуум не упал более чем на 10 мм рт. Ст. Для удобства работы лучше использовать вакуумные насосы с достаточно высокой производительностью. Это позволит быстро откачивать вакуумный мешок, а также не приведет к существенному падению вакуума при наличии “микродырочек”. При попадании воздуха в вакуумный мешок образуются поры в композите, которые приводят к дефектной поверхности с “рытвинами” в местах переплетения ткани, а также к существенному падению механических характеристик. Композит получается хрупкий и непрочный. 1% пор приводит к падению межслоевой прочности примерно на 10%
Существует большое количество методов, позволяющих тем или иным образом управлять процессом вакуумной инфузии. Такие как, математическое моделирование процесса пропитки, использование полупроницаемых материалов для получения деталей с минимальной пористостью, использование различных проводящих связующее сеток для обеспечения необходимой скорости пропитки, применение двойного вакуумного мешка для уменьшения вероятности разгерметизации. Для понимания параметров, которые могут влиять на процесс вакуумной инфузии можно рассмотреть простейшую модель описывающую данный процесс.
Скорость инфузии приближенно можно описать уравнением [5]
K - проницаемость пропитываемого материала. Например, у тканей проницаемость выше, чем у однонаправленных лент.
з - вязкость смолы (чем ниже вязкость тем выше скорость инфузии)
S - площадь сечения пропитываемого материала
P атм -P вакуум - разность давлений, чем более глубокий вакуум тем выше скорость инфузии
Таким образом, например, понижая вязкость, увеличение разности давлений может существенно ускорить процесс, а переход от ткани на однонаправленные ленты приведет к замедлению процесса вакуумной инфузии.
Преимущества вакуумной пропитки смолой п о сравнению с ручным ламинированием :
· лучшее соотношение смолы и волокон (повышенная прочность);
· снижение содержание воздуха в ламинате (повышенная прочность);
· уменьшение эмиссии вредных веществ;
· конструкции типа "сэндвич" могут изготавливаться в один прием.
· более широкие возможности варьирования структуры ламината.
· процесс несложный, однако, требует определенных навыков, поэтому на первых этапах возможны ошибки и неудачи;
· время подготовки к инфузии не ограничено, однако, сама подготовка достаточно сложная, так как включает в себя не только выкладку армирующих материалов в форму, но также и создание вакуумного мешка, размещение вакуумных линий и линий подачи смолы;
· правильное создание вакуумного мешка также требует определенных навыков;
· необходимо обеспечить хороший вакуум, стараюсь устранить все утечки, так как попадание воздуха в ламинат будет отрицательно влиять на сам процесс инфузии (в частности, на течение смолы) и качество изготавливаемой детали.
Одним из самых многообещающих методов формования изделий из стеклопластика выступает метод намотки волокном, за счет того, что он создает требуемую структуру наполнителя в фабрикатах в зависимости от их формы и особенностей эксплуатации.
Процесс намотки (Рис. 3. 5. 1) волокном можно назвать относительно несложным методом, в котором на вращающуюся оправку наматывается армирующий материал в виде постоянного ровинга (жгута) или нити (пряжи). Специальные механизмы следят за углом намотки и нахождением армирующего материала. Эти устройства передвигаются со скоростью, совпадающей с вращением оправки. Материал обертывается вокруг оправки в виде полос, соприкасающихся друг с другом, либо по какому-то специальному рисунку до полного перекрытия оправочной поверхности. Идущие друг за другом слои, могут наноситься под одним углом или под разными углами намотки, пока не наберется требуемая толщина. Угол намотки меняется от очень малого, который имеет название продольного, до большого - окружного. Такое расположение подразумевает 90 0 относительно оси оправки, захватывая все углы спирали этого интервала.
Рисунок 3.5.1 - Схема метода намотки [7]
Термореактивная смола служит связующим веществом для армирующего материала. В процессе мокрой намотки смола наносится непосредственно во время самой намотки. Процесс сухой намотки основан на применении ровинга, который предварительно пропитывается смолой в В-стадии. Затвердение осуществляется при увеличенной температуре без лишнего давления. Завершающая стадия процесса основывается на взятии изделия с оправки. По необходимости можно провести отделочные операции: обработку механическим путем или шлифовальный способ. Основной процесс намотки характеризуется множеством вариантов, которые различаются лишь характером намотки, а также особенностями конструкции, сочетанием материалов и разновидностью оборудования. Конструкцию необходимо намотать как на поверхности вращения. Однако существует возможность отформовать изделия и другого вида, например, сжатием еще незатвердевшей намотанной детали внутри закрытой формы.
Конструкция получается похожа на гладкий цилиндр, трубу или тюбинг, диаметр которых получается от нескольких сантиметров до нескольких десятков сантиметров. Намотка позволяет формовать изделия конической, сферической и геодезической формы. Чтобы получить сосуды высокого давления и резервуары для хранения, в намотку необходимо ввести торцевую заглушку. Есть возможность сформовать изделия, которые будут работать в нестандартных условиях нагружения, например, наружное или внутреннее давление, нагрузки на сжатие или крутящий момент. Термопластичные трубы и сосуды из металла высокого давления укрепляются при намотке наружными бандажами. Полученным изделиям характерна высокая степень точности. Однако существует и другая сторона процесса намотки, для такого процесса характерны меньшие скорости производства. Плюсом является то, что для намотки сгодится абсолютно любой постоянно армирующий материал.
Для процесса намотки можно использовать машины разных типов: от различных токарных станков и машин на основе цепного привода до более сложных компьютеризованных агрегатов, характеризующимися тремя или четырьмя осями движения. Применяются также машины, которые непрерывно производят трубы. Для удобства намотки больших резервуаров должно быть спроектировано портативное оборудование на месте установки.
Волокна: Любые, волокна подаются напрямую от рамы для катушек без дополнительного сшивания в ткань.
· Это может быть очень быстрый и поэтому экономически выгодный метод укладки материала.
· Регулируемое соотношение смола/стекло.
· Высокая прочность при малом собственном весе.
· Неподверженность коррозии и гниению.
· Хорошие структурные свойства ламинатов, так как профили имеют направленные волокна и высокое содержание стекломатериала.
· Ограниченная номенклатура изделий.
· Волокно трудно точно положить по длине сердечника.
· Высокие затраты на сердечник для больших изделий.
Пултрузия представляет собой процесс получения стеклопластиковых профилей путем вытягивания через нагретую до 130 - 150 градусов [5] формообразующую фильеру стекловолокнистых материалов, пропитанных полиэфирной смолой или другой термореактивной смолой.
В результате на выходе получается армированный стеклопластиковый профиль, конфигурация которого повторяет форму фильеры. Методом пултрузии можно получать изделия из стеклопластика с любым профилем (стеклопластиковый стержень, стеклопластиковая труба, уголок, пластина, швеллер, короб и т.д.).
При изготовлении изделий методом пултрузии выделяют два (основных) элемента, формирующих композицию:
· Армирующий элемент (преимущественно - стекловолокно; реже -углеродное и базальтовое волокно);
· Матрица (преимущественно - полиэфирные и термореактивные смолы; реже - термопластичные полимеры).
Пропитанные полимером волокна пропускаются через преформовочное устройство, которое придает волоконно-полимерному составу желаемую форму и выравнивает волокна.
После прохождения преформовочных устройств волокна и незатвердевший полимер пропускаются через нагретую прессформу (фильеру). Входная зона фильеры при определенных режимах охлаждается водой, чтобы не допустить преждевременной коагуляции полимера на входе.
Несколько комплектов нагревателей, находящихся в прямом контакте с фильерой, создают несколько зон нагрева (обычно 4...6), и обеспечивают оптимальные для процесса полимеризации температурный профиль. Температурный профиль задает система управления в зависимости от изделия и скорости протяжки. Как и процессе экструзии, во время пултрузии возникают эффекты саморазогрева (экзотермическая реакция в полимере).
Конечный продукт, выходящий из фильеры - это сильно отвержденный продукт, не требующий обработки. Отвержденный продукт вытягивается из фильеры вытяжной машиной и в отрезной машине распиливается на на готовые к использованию сегменты.
Параметры обработки оказывают значительное влияние на целостность композитного изделия. Правильный выбор скорости протяжки, температурный профиль фильеры, оптимальный объем волокна, выбор и совместимость волокон и полимерной матрицы, хорошая упаковка волокон, кинетические свойства полимера и правильная пропитка полимером являются ключевыми факторами, определяющими качество продукта.
На практике существует довольно большое количество вариантов построения технологической линии и осуществления технологического процесса получения изделий методом пултрузии. Подавляющее большинство линий сформировано по горизонтальному принципу, хотя (в значительно меньших объемах) могут применяться и верикально-ориентированные линии. Последние применяются с целью минимизации влияния земного притяжения на деформацию получаемых изделий.
- возможность автоматизации процесса;
- низкая себестоимость исходного сырья;
- соблюдение всех допусков по размерам;
- высокие физико-химические, тепловые и электрические свойства изделий;
- возможность изготовления непрерывных листовых и пластинчатых полуфабрикатов.
- существенное влияние на скорость производства температуры и времени отверждения;
- сложности в обеспечении строго постоянного сечения изделий по всей длине, кроме изделий с простой формой сечения (круг, квадрат, двутавр);
- использование узкого спектра стекловолоконных материалов (жгуты и нити).
Современные разработки позволяют устранять вышеперечисленные недостатки метода пултрузии и расширять его применение. Новейшие полимерные матрицы на основе эпоксидных смол с поливиниловыми эфирами, а также применение при формовании изделий полиэфирсульфона, полисульфона и пластифицированного полиимида позволяет значительно увеличивать скорость формования профильных стеклопластиков.
Для производства профильных изделий, имеющих сложную схему армирования, используют способ протягивания слоистых стекловолоконных материалов на основе тканей или матов.
Разрабатываются и внедряются способы изготовления трубчатых стеклопластиковых изделий, в которых сочетается наматывание спирального слоя и протягивание через фильеру.
Процесс заключается в непосредственном придании необходимой формы изделию под действием высокого давления, что образуется в пресс-форме при температуре быстрого отверждения материала. Вследствие внешнего давления в прессуемом материале, происходит его уплотнение, частичное разрушение предыдущей структуры, Во время уплотнения и деформации в результате трения между частичками материала происходит выделение тепловой энергии, которая совместно с внешним обогревом формующих элементов приводит к плавлению связующего. После того как материал перешел в вязкопластичное состояние, он под действием давления распределяется в пресс-форме образуя монолитную и уплотненную структуру.
В полость матрицы 3 (рис. 3.7.1, а) загружают предварительно гранулированный или порошкообразный материал 2. При замыкании пресс-формы под действием силы пресса пуансон 1 создает давление на материал (рис. 3.7.1, б).Под действием этого давления и теплоты от нагретой пресс- формы материал размягчается и заполняет формообразующую полость. После определенной выдержки, необходимой для отверждения материала, пресс-форму раскрывают и с помощью выталкивателя 5 извлекают готовую деталь 4 (рис. 3.7.1, в).
Рисунок - 3.7.1 Схемы прямого прессования а - засыпка в пресс-форму материала; б - момент прессования; в - момент распрессовки; 1 - пуансон; 2 - гранулированный материал; 3 - матрица; 4 - готовая деталь; 5 - выталкиватель.
Процесс отверждения заключается в протекании реакции сшивки макромолекул вследствие поликонденсации между свободными функциональными группами связующего или отвердителя и связующего (двухкомпонентные системы). Реакция происходит под действием тепла, с выделением низкомолекулярных, летучих веществ: вода, формальдегид, аммиак, метанол и др.
Технологические параметры компрессионного прессования:
§ Температура предварительного подогрева;
Серьезной и не решенной до конца проблемой в переработке полиэфирных пресс-материалов остается недостаточно высокое качество поверхности получаемых деталей, препятствующие их лакированию. Проблема частично решается: покрытие наносится непосредственно в форме -- In-Mould-Coating (IMC), для этого пресс-форму после отверждения связующего приоткрывают на 3-5 мм и через зазор впрыскивают лак (обычно полиуретановый); затем форму закрывают для распределения и отверждения лака, который очень текуч и отверждается в течение 30 с. В большинстве прессов новых конструкций эта операция предусмотрена.
3.8 Сравнение методов формообразования композиционных материалов
В зависимости от серийности производства, степени ответственности изделия, его формы и габаритов, используемых материалов, области применения изделия, требований к его механическим, технологическим, эстетическим и др. характеристикам могут применяться различные методы формообразования. Ниже представлена сравнительная таблица.
Таблица 3.9.1 - сравнение методов формообразования КМ [3]
Способ горячего прессования изделий из композиционного материала и устройство для его осуществления (RU 2212341).
Изобретение относится к области изготовления изделий из композиционных углерод-углеродных материалов. Способ осуществляют предварительным формированием полуфабриката изделия из композиционного материала, наружные слои которого выполнены из металлического листа. Затем проводят нагрев в безокислительной среде полуфабриката изделия с одновременным приложением контролируемой нагрузки по всей поверхности полуфабриката до полного расплавления связующей прокладки и пропитки этим расплавом ткани и углеродного волокна. Скорость нагрузки регулируют в пределах 110 -4 -110 -3 с -1 до температуры 200 o С, а в интервале температур 200-700 o С в пределах 110 -3 -110 -2 с -1 . Безокислительную среду создают путем предварительного вакуумирования за счет искуcственного натекания инертного газа. Для осуществления способа используют устройство, включающее пресс изотермической штамповки со штамповым блоком, содержащим два штампа, тепловыравнивающие подштамповые плиты с замкнутыми лабиринтньми полостями и нагреватели. Способ позволяет повысить производительность процесса, уменьшить количество пропиток и карбонизаций композиционного материала. Повышается прочность на изгиб и модуль упругости. Снижается уровень пористости, исключается образование трещин композиционного материала. 2 с. и 4 з.п. ф-лы, 2 табл., 4 ил.
Изобретение относится к области изготовления изделий из композиционных углерод-углеродных материалов (С-С КМ).
Известен следующий способ получения С-С КМ. Каркас из углеродных волокон пропитывают полимерным связующим с последующим его отверждением карбонизацией, в процессе которой формируется углеродная матрица (Конкин А.А. Углеродные и другие жаростойкие волокнистые материалы, -М.: Химия, 1974 г.) Известный способ имеет ряд недостатков, снижающих прочностные характеристики композиционного материала и производительность процесса вследствие наличия остаточной пористости и трещин, а также необходимости многократной пропитки и карбонизации матрицы.
Известен способ и устройство изготовления изделия из композиционного материала с чередующимися монослоями углеродных волокон, полимерных связующих прослоек и тканей, которые подвергают прессованию при температуре 140 o С и давлении 30 МПа. Далее проводят карбонизацию матрицы при 1200 o С в камерной печи без нагрузки (Тучинский Л.И. Композиционные материалы, получаемые методом пропитки, -М.: Металлургия, 1986, стр.189-200).
Недостатками известного способа являются остаточная пористость и образование трещин в процессе карбонизации, снижение производительности при раздельном проведении процессов пропитки и карбонизации композиционного материала.
Для обеспечения процесса пропитки углеродной ткани и волокна углеродсодержащим связующим, а также непрерывности контролируемого нагружения по всей поверхности полуфабриката изделия при последующей карбонизации используют пресс изотермической штамповки с тепловыравнивающими подштамповыми плитами (Фиглин С. З. и др. Изотермическое деформирование металлов, -М.: Машиностроение, 1978 г., стр.50-56). Подштамповые плиты таких прессов имеют замкнутые лабиринтные сетчатые полости с циркулирующим жидким натрием или калием.
Такая конструкция подштамповой плиты позволяет поддерживать минимальный перепад температур по всей рабочей поверхности штампа.
Недостатком известной конструкции является отсутствие средств защиты от окисления прессуемого материала.
Задачей, на решение которой направлено изобретение, является повышение производительности и уровня физико-механических свойств композиционного углерод-углеродного материала в процессе формирования из него изделия типа днища.
Поставленная задача решается применением способа горячего прессования, включающего предварительное формирование полуфабриката изделия из композиционного материала путем последовательной укладки монослоев углеродной ткани, связующей полимерной углеродсодержащей прокладки и углеродного волокна, связующей прокладки, углеродной ткани, непрерывный нагрев полуфабриката изделия с одновременным приложением контролируемой нагрузки по всей поверхности полуфабриката изделия до полного расплавления связующей прокладки, пропитки ткани и углеродного волокна полимерным связующим и его отверждения, а также последующей карбонизации связующей составляющей, причем процесс ведут в безокислительной среде.
Такой способ позволяет обеспечить снижение пористости, исключает образование трещин и повышает производительность процесса.
Для обеспечения полноты пропитки углеродной ткани и углеродного волокна полимерным углеродсодержащим связующим скорость нагрузки регулируют в пределах 110 -4 -110 -3 с -1 до температуры 200 o С, а в интервале температур 200...700 o С увеличивают до значений 110 -3 -110 -2 с -1 для ускорения процесса карбонизации связующей составляющей.
Для уменьшения испарения (сублимации) углеродсодержащих компонентов связующего в интервале температур до 200 o С разрежение поддерживают в пределах 110 -1 -110 -2 мм рт.ст. за счет искусственного натекания инертного газа. В интервале температур 200...700 o С разрежение поддерживают на уровне 510 -3 -110 -3 мм рт.ст. для обеспечения безокислительных условий нагрева.
С целью исключения приваривания к рабочей поверхности штампа углеродной ткани и повышения технологической жесткости конструкции полуфабриката изделия при последующей транспортировке и обработке наружные слои композиционного материала выполнены из металлического листа.
Для обеспечения предложенного способа и безокислительных условий нагрева применяется устройство горячего прессования композиционного материала, включающее пресс изотермической штамповки со штамповым блоком, содержащим два штампа, тепловыравнивающие подштамповые плиты с замкнутыми лабиринтными полостями и нагреватели, в котором каждый штамп снабжен герметичным корпусом, корпус верхнего штампа снабжен сильфоном, а корпус нижнего соединен с вакуумной откачной системой и системой напуска инертного газа.
С целью обеспечения равномерного и взрывобезопасного нагрева рабочей поверхности штампов в интервале температур до 700 o С лабиринтные полости тепловыравнивающих подштамповых плит заполнены расплавленным металлическим литием.
Для уменьшения испарения углеродсодержащих компонентов в интервале температур до 200 o С, поддерживания необходимого уровня разрежения за счет натекания инертного газа корпус нижнего штампа сообщен с вакуумной откачной системой и системой напуска инертного газа.
Для сокращения времени охлаждения подштамповых плит последние снабжены водоохлаждаемыми проставками.
Изобретение иллюстрируется чертежо
Композиционные материалы. Обработка композиционных материалов давлением курсовая работа. Физика и энергетика.
Контрольная Работа Номер Один По Химии
Доклад по теме Психология и клиническая медицина - взаимодействие и отсутствие контактов
Реферат: A Comparison Of Racism In Of Mice
My House Сочинение На Английском 5 Класс
Курсовая работа по теме Разработка электропривода ленточного конвейера с двумя приводными станциями
Реферат Луч Света В Темном Царстве
Дневник Учебной Практики В Доу По Неделям
Курсовая работа по теме Особенности обеспечения прибыльности и рентабельности современного предприятия на примере СПК 'Первомайский' Черноземельского района
Российское Образование Сочинение На Английском
Мотивация Инновационной Деятельности Реферат
Реферат На Тему Туристические Культурно-Исторические Ресурсы Рф
Курсовая работа по теме Подготовка учащихся к ЕГЭ при обучении истории
Реферат по теме Курсовая разница по кредитам и займам, полученным в иностранной валюте
Реферат по теме Оздоровительная физическая культура лиц пожилого возраста
Сущность, значение и место контроля в управлении экономикой
Жизнь И Смерть Евгения Базарова Сочинение 10
Опера Князь Игорь Реферат 8 Класс
Как Написать Сочинение По Литературе 9 Класс
Эссе П А Столыпин
Реферат На Тему Проблема Активной Ранней Диагностики Бронхогенного Рака
Транснациональные корпорации как приоритетная организационно-экономическая форма субъектов хозяйствования на мировом рынке - Международные отношения и мировая экономика дипломная работа
Эвфемизмы в современном англоязычном дискурсе - Иностранные языки и языкознание курсовая работа
Принципы лечения и профилактики вибрационной болезни - Медицина презентация


Report Page