Ivermectin, a potential anticancer drug derived from an antiparasitic drug

Ivermectin, a potential anticancer drug derived from an antiparasitic drug


Prev part 1

Made with Beautifier

Original link from www.ncbi.nlm.nih.gov

66. Yin J., Park G., Lee J.E., Choi E.Y., Park J.Y., Kim T.H., Park N., Jin X., Jung J.E., Shin D., Hong J.H., Kim H., Yoo H., Lee S.H., Kim Y.J., Park J.B., Kim J.H. DEAD-box RNA helicase DDX23 modulates glioma malignancy via elevating miR-21 biogenesis. Brain. 2015;138(Pt 9):2553–2570. doi: 10.1093/brain/awv167. [PubMed] [CrossRef] [Google Scholar]

67. Kircik L.H., Del Rosso J.Q., Layton A.M., Schauber J. Over 25 Years of Clinical Experience With Ivermectin: An Overview of Safety for an Increasing Number of Indications. J Drugs Dermatol. 2016;15(3):325–332. [PubMed] [Google Scholar]

68. Chen Y.P., Chan A.T.C., Le Q.T., Blanchard P., Sun Y., Ma J. Nasopharyngeal carcinoma. Lancet. 2019;394(10192):64–80. doi: 10.1016/s0140-6736(19)30956-0. [PubMed] [CrossRef] [Google Scholar]

69. Gallardo F., Mariamé B., Gence R., Tilkin-Mariamé A.-F. Macrocyclic lactones inhibit nasopharyngeal carcinoma cells proliferation through PAK1 inhibition and reduce in vivo tumor growth. Drug Design, Development and Therapy. 2018;12:2805–2814. doi: 10.2147/dddt.S172538.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Thawani R., McLane M., Beig N., Ghose S., Prasanna P., Velcheti V., Madabhushi A. Radiomics and radiogenomics in lung cancer: A review for the clinician. Lung Cancer. 2018;115:34–41. doi: 10.1016/j.lungcan.2017.10.015. [PubMed] [CrossRef] [Google Scholar]

71. Patel H., Yacoub N., Mishra R., White A., Long Y., Alanazi S., Garrett J.T. Current Advances in the Treatment of BRAF-Mutant Melanoma. Cancers (Basel) 2020;12(2) doi: 10.3390/cancers12020482.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Franken M.G., Leeneman B., Gheorghe M., Uyl-de Groot C.A., Haanen J., van Baal P.H.M. A systematic literature review and network meta-analysis of effectiveness and safety outcomes in advanced melanoma. Eur J Cancer. 2019;123:58–71. doi: 10.1016/j.ejca.2019.08.032. [PubMed] [CrossRef] [Google Scholar]

73. Gallardo F., Teiti I., Rochaix P., Demilly E., Jullien D., Mariamé B., Tilkin-Mariamé A.-F. Macrocyclic Lactones Block Melanoma Growth, Metastases Development and Potentiate Activity of Anti– BRAF V600 Inhibitors. Clinical Skin Cancer. 2016;1(1):4–14. doi: 10.1016/j.clsc.2016.05.001. e3. [CrossRef] [Google Scholar]

74. Deng F., Xu Q., Long J., Xie H. Suppressing ROS‐TFE3‐dependent autophagy enhances ivermectin‐induced apoptosis in human melanoma cells. Journal of Cellular Biochemistry. 2018;120(2):1702–1715. doi: 10.1002/jcb.27490. [PubMed] [CrossRef] [Google Scholar]

75. Nagata S. Apoptosis and Clearance of Apoptotic Cells. Annu Rev Immunol. 2018;36:489–517. doi: 10.1146/annurev-immunol-042617-053010. [PubMed] [CrossRef] [Google Scholar]

76. Degterev A., Yuan J. Expansion and evolution of cell death programmes. Nat Rev Mol Cell Biol. 2008;9(5):378–390. doi: 10.1038/nrm2393. [PubMed] [CrossRef] [Google Scholar]

77. Galluzzi L., Green D.R. Autophagy-Independent Functions of the Autophagy Machinery. Cell. 2019;177(7):1682–1699. doi: 10.1016/j.cell.2019.05.026.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Levy J.M.M., Towers C.G., Thorburn A. Targeting autophagy in cancer. Nat Rev Cancer. 2017;17(9):528–542. doi: 10.1038/nrc.2017.53.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Gewirtz D.A. The four faces of autophagy: implications for cancer therapy. Cancer Res. 2014;74(3):647–651. doi: 10.1158/0008-5472.Can-13-2966. [PubMed] [CrossRef] [Google Scholar]

80. Galluzzi L., Pietrocola F., Bravo-San Pedro J.M., Amaravadi R.K., Baehrecke E.H., Cecconi F., Codogno P., Debnath J., Gewirtz D.A., Karantza V., Kimmelman A., Kumar S., Levine B., Maiuri M.C., Martin S.J., Penninger J., Piacentini M., Rubinsztein D.C., Simon H.U., Simonsen A., Thorburn A.M., Velasco G., Ryan K.M., Kroemer G. Autophagy in malignant transformation and cancer progression. Embo j. 2015;34(7):856–880. doi: 10.15252/embj.201490784.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Galluzzi L., Bravo-San Pedro J.M., Demaria S., Formenti S.C., Kroemer G. Activating autophagy to potentiate immunogenic chemotherapy and radiation therapy. Nat Rev Clin Oncol. 2017;14(4):247–258. doi: 10.1038/nrclinonc.2016.183. [PubMed] [CrossRef] [Google Scholar]

82. Ravegnini G., Sammarini G., Nannini M., Pantaleo M.A., Biasco G., Hrelia P., Angelini S. Gastrointestinal stromal tumors (GIST): Facing cell death between autophagy and apoptosis. Autophagy. 2017;13(3):452–463. doi: 10.1080/15548627.2016.1256522.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Marino G., Niso-Santano M., Baehrecke E.H., Kroemer G. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol. 2014;15(2):81–94. doi: 10.1038/nrm3735.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Fang Y., Tian S., Pan Y., Li W., Wang Q., Tang Y., Yu T., Wu X., Shi Y., Ma P., Shu Y. Pyroptosis: A new frontier in cancer. Biomed Pharmacother. 2020;121:109595. doi: 10.1016/j.biopha.2019.109595. [PubMed] [CrossRef] [Google Scholar]

85. Gong T., Liu L., Jiang W., Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol. 2020;20(2):95–112. doi: 10.1038/s41577-019-0215-7. [PubMed] [CrossRef] [Google Scholar]

86. Liu X., Zhang Z., Ruan J., Pan Y., Magupalli V.G., Wu H., Lieberman J. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535(7610):153–158. doi: 10.1038/nature18629.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

87. Zheng Z., Li G. Mechanisms and Therapeutic Regulation of Pyroptosis in Inflammatory Diseases and Cancer. Int J Mol Sci. 2020;21(4) doi: 10.3390/ijms21041456.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. Han S.J., Lovaszi M., Kim M., D’Agati V., Hasko G., Lee H.T. P2X4 receptor exacerbates ischemic AKI and induces renal proximal tubular NLRP3 inflammasome signaling. Faseb j. 2020;34(4):5465–5482. doi: 10.1096/fj.201903287R.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. O’Brien C.A., Kreso A., Jamieson C.H. Cancer stem cells and self-renewal. Clin Cancer Res. 2010;16(12):3113–3120. doi: 10.1158/1078-0432.CCR-09-2824. [PubMed] [CrossRef] [Google Scholar]

90. Huang Z., Wu T., Liu A.Y., Ouyang G. Differentiation and transdifferentiation potentials of cancer stem cells. Oncotarget. 2015;6(37):39550–39563. doi: 10.18632/oncotarget.6098.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Bao S., Wu Q., McLendon R.E., Hao Y., Shi Q., Hjelmeland A.B., Dewhirst M.W., Bigner D.D., Rich J.N. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–760. doi: 10.1038/nature05236. [PubMed] [CrossRef] [Google Scholar]

92. Dean M., Fojo T., Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5(4):275–284. doi: 10.1038/nrc1590. [PubMed] [CrossRef] [Google Scholar]

93. Li X., Lewis M.T., Huang J., Gutierrez C., Osborne C.K., Wu M.F., Hilsenbeck S.G., Pavlick A., Zhang X., Chamness G.C., Wong H., Rosen J., Chang J.C. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 2008;100(9):672–679. doi: 10.1093/jnci/djn123. [PubMed] [CrossRef] [Google Scholar]

94. Diehn M., Clarke M.F. Cancer stem cells and radiotherapy: new insights into tumor radioresistance. J Natl Cancer Inst. 2006;98(24):1755–1757. doi: 10.1093/jnci/djj505. [PubMed] [CrossRef] [Google Scholar]

95. Dominguez-Gomez G., Chavez-Blanco A., Medina-Franco J.L., Saldivar-Gonzalez F., Flores-Torrontegui Y., Juarez M., Diaz-Chavez J., Gonzalez-Fierro A., Duenas-Gonzalez A. Ivermectin as an inhibitor of cancer stemlike cells. Mol Med Rep. 2018;17(2):3397–3403. doi: 10.3892/mmr.2017.8231. [PubMed] [CrossRef] [Google Scholar]

96. Kim J.H., Choi H.S., Kim S.L., Lee D.S. The PAK1-Stat3 Signaling Pathway Activates IL-6 Gene Transcription and Human Breast Cancer Stem Cell Formation. Cancers (Basel) 2019;11(10) doi: 10.3390/cancers11101527.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Wang J., Seebacher N., Shi H., Kan Q., Duan Z. Novel strategies to prevent the development of multidrug resistance (MDR) in cancer. Oncotarget. 2017;8(48):84559–84571. doi: 10.18632/oncotarget.19187.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Niazi M., Zakeri-Milani P., Najafi Hajivar S., Soleymani Goloujeh M., Ghobakhlou N., Shahbazi Mojarrad J., Valizadeh H. Nano-based strategies to overcome p-glycoprotein-mediated drug resistance. Expert Opin Drug Metab Toxicol. 2016;12(9):1021–1033. doi: 10.1080/17425255.2016.1196186. [PubMed] [CrossRef] [Google Scholar]

99. Dong J., Qin Z., Zhang W.D., Cheng G., Yehuda A.G., Ashby C.R., Jr., Chen Z.S., Cheng X.D., Qin J.J. Medicinal chemistry strategies to discover P-glycoprotein inhibitors: An update. Drug Resist Updat. 2020;49:100681. doi: 10.1016/j.drup.2020.100681. [PubMed] [CrossRef] [Google Scholar]

100. Kibria G., Hatakeyama H., Harashima H. Cancer multidrug resistance: mechanisms involved and strategies for circumvention using a drug delivery system. Arch Pharm Res. 2014;37(1):4–15. doi: 10.1007/s12272-013-0276-2. [PubMed] [CrossRef] [Google Scholar]

101. Lespine A., Dupuy J., Orlowski S., Nagy T., Glavinas H., Krajcsi P., Alvinerie M. Interaction of ivermectin with multidrug resistance proteins (MRP1, 2 and 3) Chem Biol Interact. 2006;159(3):169–179. doi: 10.1016/j.cbi.2005.11.002. [PubMed] [CrossRef] [Google Scholar]

102. Pouliot J.F., L’Heureux F., Liu Z., Prichard R.K., Georges E. Reversal of P-glycoprotein-associated multidrug resistance by ivermectin. Biochem Pharmacol. 1997;53(1):17–25. doi: 10.1016/s0006-2952(96)00656-9. [PubMed] [CrossRef] [Google Scholar]

103. Lespine A., Martin S., Dupuy J., Roulet A., Pineau T., Orlowski S., Alvinerie M. Interaction of macrocyclic lactones with P-glycoprotein: structure-affinity relationship. Eur J Pharm Sci. 2007;30(1):84–94. doi: 10.1016/j.ejps.2006.10.004. [PubMed] [CrossRef] [Google Scholar]

104. Jiang L., Wang P., Sun Y.J., Wu Y.J. Ivermectin reverses the drug resistance in cancer cells through EGFR/ERK/Akt/NF-kappaB pathway. J Exp Clin Cancer Res. 2019;38(1):265. doi: 10.1186/s13046-019-1251-7.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

105. Loibl S., Gianni L. HER2-positive breast cancer. Lancet. 2017;389(10087):2415–2429. doi: 10.1016/s0140-6736(16)32417-5. [PubMed] [CrossRef] [Google Scholar]

106. Lim S.M., Syn N.L., Cho B.C., Soo R.A. Acquired resistance to EGFR targeted therapy in non-small cell lung cancer: Mechanisms and therapeutic strategies. Cancer Treat Rev. 2018;65:1–10. doi: 10.1016/j.ctrv.2018.02.006. [PubMed] [CrossRef] [Google Scholar]

107. Choi S.K., Kam H., Kim K.Y., Park S.I., Lee Y.S. Targeting Heat Shock Protein 27 in Cancer: A Druggable Target for Cancer Treatment? Cancers (Basel) 2019;11(8) doi: 10.3390/cancers11081195.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. Kumar R., Gururaj A.E., Barnes C.J. p21-activated kinases in cancer. Nat Rev Cancer. 2006;6(6):459–471. doi: 10.1038/nrc1892. [PubMed] [CrossRef] [Google Scholar]

109. Rane C.K., Minden A. P21 activated kinase signaling in cancer. Semin Cancer Biol. 2019;54:40–49. doi: 10.1016/j.semcancer.2018.01.006. [PubMed] [CrossRef] [Google Scholar]

110. Dammann K., Khare V., Gasche C. Tracing PAKs from GI inflammation to cancer. Gut. 2014;63(7):1173–1184. doi: 10.1136/gutjnl-2014-306768. [PubMed] [CrossRef] [Google Scholar]

111. Kumar R., Li D.Q. PAKs in Human Cancer Progression: From Inception to Cancer Therapeutic to Future Oncobiology. Adv Cancer Res. 2016;130:137–209. doi: 10.1016/bs.acr.2016.01.002. [PubMed] [CrossRef] [Google Scholar]

112. Guzzo C.A., Furtek C.I., Porras A.G., Chen C., Tipping R., Clineschmidt C.M., Sciberras D.G., Hsieh J.Y., Lasseter K.C. Safety, tolerability, and pharmacokinetics of escalating high doses of ivermectin in healthy adult subjects. J Clin Pharmacol. 2002;42(10):1122–1133. doi: 10.1177/009127002401382731. [PubMed] [CrossRef] [Google Scholar]

113. Geyer J., Gavrilova O., Petzinger E. Brain penetration of ivermectin and selamectin in mdr1a,b P-glycoprotein- and bcrp- deficient knockout mice. J Vet Pharmacol Ther. 2009;32(1):87–96. doi: 10.1111/j.1365-2885.2008.01007.x. [PubMed] [CrossRef] [Google Scholar]

114. Gao A., Wang X., Xiang W., Liang H., Gao J., Yan Y. Reversal of P-glycoprotein-mediated multidrug resistance in vitro by doramectin and nemadectin. J Pharm Pharmacol. 2010;62(3):393–399. doi: 10.1211/jpp.62.03.0016. [PubMed] [CrossRef] [Google Scholar]

Prev part 1

Report Page