Ivermectin, a potential anticancer drug derived from an antiparasitic drug

Ivermectin, a potential anticancer drug derived from an antiparasitic drug


Prev part 0

Next part 2


Made with Beautifier

Original link from www.ncbi.nlm.nih.gov

6. Laing R., Gillan V., Devaney E. Ivermectin - Old Drug, New Tricks? Trends Parasitol. 2017;33(6):463–472. doi: 10.1016/j.pt.2017.02.004.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Crump A. Ivermectin: enigmatic multifaceted’ wonder’ drug continues to surprise and exceed expectations. J Antibiot (Tokyo) 2017;70(5):495–505. doi: 10.1038/ja.2017.11. [PubMed] [CrossRef] [Google Scholar]

8. McKerrow J.H. Recognition of the role of Natural Products as drugs to treat neglected tropical diseases by the 2015 Nobel prize in physiology or medicine. Nat Prod Rep. 2015;32(12):1610–1611. doi: 10.1039/c5np90043c. [PubMed] [CrossRef] [Google Scholar]

9. Kane N.S., Hirschberg B., Qian S., Hunt D., Thomas B., Brochu R., Ludmerer S.W., Zheng Y., Smith M., Arena J.P., Cohen C.J., Schmatz D., Warmke J., Cully D.F. Drug-resistant Drosophila indicate glutamate-gated chloride channels are targets for the antiparasitics nodulisporic acid and ivermectin. Proc Natl Acad Sci U S A. 2000;97(25):13949–13954. doi: 10.1073/pnas.240464697.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Fritz L.C., Wang C.C., Gorio A. Avermectin B1a irreversibly blocks postsynaptic potentials at the lobster neuromuscular junction by reducing muscle membrane resistance. Proc Natl Acad Sci U S A. 1979;76(4):2062–2066. doi: 10.1073/pnas.76.4.2062.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Smit M.R., Ochomo E.O., Aljayyoussi G., Kwambai T.K., Abong’o B.O., Chen T., Bousema T., Slater H.C., Waterhouse D., Bayoh N.M., Gimnig J.E., Samuels A.M., Desai M.R., Phillips-Howard P.A., Kariuki S.K., Wang D., Ward S.A., Ter Kuile F.O. Safety and mosquitocidal efficacy of high-dose ivermectin when co-administered with dihydroartemisinin-piperaquine in Kenyan adults with uncomplicated malaria (IVERMAL): a randomised, double-blind, placebo-controlled trial. Lancet Infect Dis. 2018;18(6):615–626. doi: 10.1016/s1473-3099(18)30163-4. [PubMed] [CrossRef] [Google Scholar]

12. Foy B.D., Alout H., Seaman J.A., Rao S., Magalhaes T., Wade M., Parikh S., Soma D.D., Sagna A.B., Fournet F., Slater H.C., Bougma R., Drabo F., Diabate A., Coulidiaty A.G.V., Rouamba N., Dabire R.K. Efficacy and risk of harms of repeat ivermectin mass drug administrations for control of malaria (RIMDAMAL): a cluster-randomised trial. Lancet. 2019;393(10180):1517–1526. doi: 10.1016/s0140-6736(18)32321-3.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Udensi U.K., Fagbenro-Beyioku A.F. Effect of ivermectin on Trypanosoma brucei brucei in experimentally infected mice. J Vector Borne Dis. 2012;49(3):143–150. [PubMed] [Google Scholar]

14. Katz N., Araujo N., Coelho P.M.Z., Morel C.M., Linde-Arias A.R., Yamada T., Horimatsu Y., Suzuki K., Sunazuka T., Omura S. Ivermectin efficacy against Biomphalaria, intermediate host snail vectors of Schistosomiasis. J Antibiot (Tokyo) 2017;70(5):680–684. doi: 10.1038/ja.2017.31. [PubMed] [CrossRef] [Google Scholar]

15. B. MM, E.-S. AA Therapeutic potential of myrrh and ivermectin against experimental Trichinella spiralis infection in mice. The Korean journal of parasitology. 2013;51(3):297–304. doi: 10.3347/kjp.2013.51.3.297.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Hanafi H.A., Szumlas D.E., Fryauff D.J., El-Hossary S.S., Singer G.A., Osman S.G., Watany N., Furman B.D., Hoel D.F. Effects of ivermectin on blood-feeding Phlebotomus papatasi, and the promastigote stage of Leishmania major. Vector Borne Zoonotic Dis. 2011;11(1):43–52. doi: 10.1089/vbz.2009.0030. [PubMed] [CrossRef] [Google Scholar]

17. Mastrangelo E., Pezzullo M., De Burghgraeve T., Kaptein S., Pastorino B., Dallmeier K., de Lamballerie X., Neyts J., Hanson A.M., Frick D.N., Bolognesi M., Milani M. Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug. J Antimicrob Chemother. 2012;67(8):1884–1894. doi: 10.1093/jac/dks147.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Wagstaff K.M., Sivakumaran H., Heaton S.M., Harrich D., Jans D.A. Ivermectin is a specific inhibitor of importin alpha/beta-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochem J. 2012;443(3):851–856. doi: 10.1042/bj20120150.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Caly L., Druce J.D., Catton M.G., Jans D.A., Wagstaff K.M. The FDA-approved Drug Ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 2020:104787. doi: 10.1016/j.antiviral.2020.104787.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Yan S., Ci X., Chen N., Chen C., Li X., Chu X., Li J., Deng X. Anti-inflammatory effects of ivermectin in mouse model of allergic asthma. Inflamm Res. 2011;60(6):589–596. doi: 10.1007/s00011-011-0307-8. [PubMed] [CrossRef] [Google Scholar]

21. Franklin K.M., Asatryan L., Jakowec M.W., Trudell J.R., Bell R.L., Davies D.L. P2X4 receptors (P2X4Rs) represent a novel target for the development of drugs to prevent and/or treat alcohol use disorders. Front Neurosci. 2014;8:176. doi: 10.3389/fnins.2014.00176.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Didier A., Loor F. The abamectin derivative ivermectin is a potent p-glycoprotein inhibitor. Anticancer Drugs. 1996;7(7):745–751. doi: 10.1097/00001813-199609000-00005. [PubMed] [CrossRef] [Google Scholar]

23. Markowska A., Kaysiewicz J., Markowska J., Huczynski A. Doxycycline, salinomycin, monensin and ivermectin repositioned as cancer drugs. Bioorg Med Chem Lett. 2019;29(13):1549–1554. doi: 10.1016/j.bmcl.2019.04.045. [PubMed] [CrossRef] [Google Scholar]

24. Juarez M., Schcolnik-Cabrera A., Duenas-Gonzalez A. The multitargeted drug ivermectin: from an antiparasitic agent to a repositioned cancer drug. Am J Cancer Res. 2018;8(2):317–331.[PMC free article] [PubMed] [Google Scholar]

25. Liu J., Zhang K., Cheng L., Zhu H., Xu T. Progress in Understanding the Molecular Mechanisms Underlying the Antitumour Effects of Ivermectin. Drug Des Devel Ther. 2020;14:285–296. doi: 10.2147/dddt.S237393.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Antoszczak M., Markowska A., Markowska J., Huczynski A. Old wine in new bottles: Drug repurposing in oncology. Eur J Pharmacol. 2020;866:172784. doi: 10.1016/j.ejphar.2019.172784. [PubMed] [CrossRef] [Google Scholar]

27. Kobayashi Y., Banno K., Kunitomi H., Tominaga E., Aoki D. Current state and outlook for drug repositioning anticipated in the field of ovarian cancer. J Gynecol Oncol. 2019;30(1):e10. doi: 10.3802/jgo.2019.30.e10.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Yoshida G.J. Therapeutic strategies of drug repositioning targeting autophagy to induce cancer cell death: from pathophysiology to treatment. J Hematol Oncol. 2017;10(1):67. doi: 10.1186/s13045-017-0436-9.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Wurth R., Thellung S., Bajetto A., Mazzanti M., Florio T., Barbieri F. Drug-repositioning opportunities for cancer therapy: novel molecular targets for known compounds. Drug Discov Today. 2016;21(1):190–199. doi: 10.1016/j.drudis.2015.09.017. [PubMed] [CrossRef] [Google Scholar]

30. Harbeck N., Penault-Llorca F., Cortes J., Gnant M., Houssami N., Poortmans P., Ruddy K., Tsang J., Cardoso F. Breast cancer. Nat Rev Dis Primers. 2019;5(1):66. doi: 10.1038/s41572-019-0111-2. [PubMed] [CrossRef] [Google Scholar]

31. Ginsburg O., Bray F., Coleman M.P., Vanderpuye V., Eniu A., Kotha S.R., Sarker M., Huong T.T., Allemani C., Dvaladze A., Gralow J., Yeates K., Taylor C., Oomman N., Krishnan S., Sullivan R., Kombe D., Blas M.M., Parham G., Kassami N., Conteh L. The global burden of women’s cancers: a grand challenge in global health. Lancet. 2017;389(10071):847–860. doi: 10.1016/s0140-6736(16)31392-7.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Dou Q., Chen H.N., Wang K., Yuan K., Lei Y., Li K., Lan J., Chen Y., Huang Z., Xie N., Zhang L., Xiang R., Nice E.C., Wei Y., Huang C. Ivermectin Induces Cytostatic Autophagy by Blocking the PAK1/Akt Axis in Breast Cancer. Cancer Res. 2016;76(15):4457–4469. doi: 10.1158/0008-5472.CAN-15-2887. [PubMed] [CrossRef] [Google Scholar]

33. Diao H., Cheng N., Zhao Y., Xu H., Dong H., Thamm D.H., Zhang D., Lin D. Ivermectin inhibits canine mammary tumor growth by regulating cell cycle progression and WNT signaling. BMC Vet Res. 2019;15(1):276. doi: 10.1186/s12917-019-2026-2.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Diana A., Carlino F., Franzese E., Oikonomidou O., Criscitiello C., De Vita F., Ciardiello F., Orditura M. Early Triple Negative Breast Cancer: Conventional Treatment and Emerging Therapeutic Landscapes. Cancers (Basel) 2020;12(4) doi: 10.3390/cancers12040819.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

35. Deepak K.G.K., Vempati R., Nagaraju G.P., Dasari V.R., N. S, Rao D.N., Malla R.R. Tumor microenvironment: Challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol Res. 2020;153:104683. doi: 10.1016/j.phrs.2020.104683. [PubMed] [CrossRef] [Google Scholar]

36. Kwon Y.J., Petrie K., Leibovitch B.A., Zeng L., Mezei M., Howell L., Gil V., Christova R., Bansal N., Yang S., Sharma R., Ariztia E.V., Frankum J., Brough R., Sbirkov Y., Ashworth A., Lord C.J., Zelent A., Farias E., Zhou M.M., Waxman S. Selective Inhibition of SIN3 Corepressor with Avermectins as a Novel Therapeutic Strategy in Triple-Negative Breast Cancer. Mol Cancer Ther. 2015;14(8):1824–1836. doi: 10.1158/1535-7163.MCT-14-0980-T.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Draganov D., Gopalakrishna-Pillai S., Chen Y.R., Zuckerman N., Moeller S., Wang C., Ann D., Lee P.P. Modulation of P2X4/P2X7/Pannexin-1 sensitivity to extracellular ATP via Ivermectin induces a non-apoptotic and inflammatory form of cancer cell death. Sci Rep. 2015;5:16222. doi: 10.1038/srep16222.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Thanh Huong P., Gurshaney S., Thanh Binh N., Gia Pham A., Hoang Nguyen H., Thanh Nguyen X., Pham-The H., Tran P.T., Truong Vu K., Xuan Duong N., Pelucchi C., La Vecchia C., Boffetta P., Nguyen H.D., Luu H.N. Emerging Role of Circulating Tumor Cells in Gastric Cancer. Cancers (Basel) 2020;12(3) doi: 10.3390/cancers12030695.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. Nambara S., Masuda T., Nishio M., Kuramitsu S., Tobo T., Ogawa Y., Hu Q., Iguchi T., Kuroda Y., Ito S., Eguchi H., Sugimachi K., Saeki H., Oki E., Maehara Y., Suzuki A., Mimori K. Antitumor effects of the antiparasitic agent ivermectin via inhibition of Yes-associated protein 1 expression in gastric cancer. Oncotarget. 2017;8(64):107666–107677. doi: 10.18632/oncotarget.22587.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Zanconato F., Cordenonsi M., Piccolo S. YAP and TAZ: a signalling hub of the tumour microenvironment. Nat Rev Cancer. 2019;19(8):454–464. doi: 10.1038/s41568-019-0168-y. [PubMed] [CrossRef] [Google Scholar]

41. Melotti A., Mas C., Kuciak M., Lorente-Trigos A., Borges I., Ruiz i Altaba A. The river blindness drug Ivermectin and related macrocyclic lactones inhibit WNT-TCF pathway responses in human cancer. EMBO Mol Med. 2014;6(10):1263–1278. doi: 10.15252/emmm.201404084.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Yang J.D., Hainaut P., Gores G.J., Amadou A., Plymoth A., Roberts L.R. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16(10):589–604. doi: 10.1038/s41575-019-0186-y.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Nishio M., Sugimachi K., Goto H., Wang J., Morikawa T., Miyachi Y., Takano Y., Hikasa H., Itoh T., Suzuki S.O., Kurihara H., Aishima S., Leask A., Sasaki T., Nakano T., Nishina H., Nishikawa Y., Sekido Y., Nakao K., Shin-Ya K., Mimori K., Suzuki A. Dysregulated YAP1/TAZ and TGF-beta signaling mediate hepatocarcinogenesis in Mob1a/1b-deficient mice. Proc Natl Acad Sci U S A. 2016;113(1):71–80. doi: 10.1073/pnas.1517188113.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Intuyod K., Hahnvajanawong C., Pinlaor P., Pinlaor S. Anti-parasitic Drug Ivermectin Exhibits Potent Anticancer Activity Against Gemcitabine-resistant Cholangiocarcinoma In Vitro. Anticancer Res. 2019;39(9):4837–4843. doi: 10.21873/anticanres.13669. [PubMed] [CrossRef] [Google Scholar]

45. Wang Y., Su J., Wang Y., Fu D., Ideozu J.E., Geng H., Cui Q., Wang C., Chen R., Yu Y., Niu Y., Yue D. The interaction of YBX1 with G3BP1 promotes renal cell carcinoma cell metastasis via YBX1/G3BP1-SPP1- NF-kappaB signaling axis. J Exp Clin Cancer Res. 2019;38(1):386. doi: 10.1186/s13046-019-1347-0.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Xu W.H., Shi S.N., Xu Y., Wang J., Wang H.K., Cao D.L., Shi G.H., Qu Y.Y., Zhang H.L., Ye D.W. Prognostic implications of Aquaporin 9 expression in clear cell renal cell carcinoma. J Transl Med. 2019;17(1):363. doi: 10.1186/s12967-019-2113-y.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34. doi: 10.3322/caac.21551. [PubMed] [CrossRef] [Google Scholar]

48. Zhu M., Li Y., Zhou Z. Antibiotic ivermectin preferentially targets renal cancer through inducing mitochondrial dysfunction and oxidative damage. Biochemical and Biophysical Research Communications. 2017;492(3):373–378. doi: 10.1016/j.bbrc.2017.08.097. [PubMed] [CrossRef] [Google Scholar]

49. Arcangeli S., Pinzi V., Arcangeli G. Epidemiology of prostate cancer and treatment remarks. World J Radiol. 2012;4(6):241–246. doi: 10.4329/wjr.v4.i6.241.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Nappi L., Aguda A.H., Nakouzi N.A., Lelj-Garolla B., Beraldi E., Lallous N., Thi M., Moore S., Fazli L., Battsogt D., Stief S., Ban F., Nguyen N.T., Saxena N., Dueva E., Zhang F., Yamazaki T., Zoubeidi A., Cherkasov A., Brayer G.D., Gleave M. Ivermectin inhibits HSP27 and potentiates efficacy of oncogene targeting in tumor models. J Clin Invest. 2020;130(2):699–714. doi: 10.1172/jci130819.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Sharmeen S., Skrtic M., Sukhai M.A., Hurren R., Gronda M., Wang X., Fonseca S.B., Sun H., Wood T.E., Ward R., Minden M.D., Batey R.A., Datti A., Wrana J., Kelley S.O., Schimmer A.D. The antiparasitic agent ivermectin induces chloride-dependent membrane hyperpolarization and cell death in leukemia cells. Blood. 2010;116(18):3593–3603. doi: 10.1182/blood-2010-01-262675. [PubMed] [CrossRef] [Google Scholar]

52. Apperley J.F. Chronic myeloid leukaemia. Lancet. 2015;385(9976):1447–1459. doi: 10.1016/s0140-6736(13)62120-0. [PubMed] [CrossRef] [Google Scholar]

53. Wang J., Xu Y., Wan H., Hu J. Antibiotic ivermectin selectively induces apoptosis in chronic myeloid leukemia through inducing mitochondrial dysfunction and oxidative stress. Biochem Biophys Res Commun. 2018;497(1):241–247. doi: 10.1016/j.bbrc.2018.02.063. [PubMed] [CrossRef] [Google Scholar]

54. Dong Z., Yu C., Rezhiya K., Gulijiahan A., Wang X. Downregulation of miR-146a promotes tumorigenesis of cervical cancer stem cells via VEGF/CDC42/PAK1 signaling pathway. Artif Cells Nanomed Biotechnol. 2019;47(1):3711–3719. doi: 10.1080/21691401.2019.1664560. [PubMed] [CrossRef] [Google Scholar]

55. Carneiro S.R., da Silva Lima A.A., de Fatima Silva Santos G., de Oliveira C.S.B., Almeida M.C.V., da Conceicao Nascimento Pinheiro M. Relationship between Oxidative Stress and Physical Activity in Women with Squamous Intraepithelial Lesions in a Cervical Cancer Control Program in the Brazilian Amazon. Oxid Med Cell Longev. 2019;2019 doi: 10.1155/2019/8909852.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Zhang P., Zhang Y., Liu K., Liu B., Xu W., Gao J., Ding L., Tao L. Ivermectin induces cell cycle arrest and apoptosis of HeLa cells via mitochondrial pathway. Cell Prolif. 2019;52(2):e12543. doi: 10.1111/cpr.12543.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Moufarrij S., Dandapani M., Arthofer E., Gomez S., Srivastava A., Lopez-Acevedo M., Villagra A., Chiappinelli K.B. Epigenetic therapy for ovarian cancer: promise and progress. Clin Epigenetics. 2019;11(1):7. doi: 10.1186/s13148-018-0602-0.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Hashimoto H., Messerli S.M., Sudo T., Maruta H. Ivermectin inactivates the kinase PAK1 and blocks the PAK1-dependent growth of human ovarian cancer and NF2 tumor cell lines. Drug Discov Ther. 2009;3(6):243–246. [PubMed] [Google Scholar]

59. Kodama M., Kodama T., Newberg J.Y., Katayama H., Kobayashi M., Hanash S.M., Yoshihara K., Wei Z., Tien J.C., Rangel R., Hashimoto K., Mabuchi S., Sawada K., Kimura T., Copeland N.G., Jenkins N.A. In vivo loss-of-function screens identify KPNB1 as a new druggable oncogene in epithelial ovarian cancer. Proc Natl Acad Sci U S A. 2017;114(35):E7301–E7310. doi: 10.1073/pnas.1705441114.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Zhang X., Qin T., Zhu Z., Hong F., Xu Y., Zhang X., Xu X., Ma A. Ivermectin Augments the In Vitro and In Vivo Efficacy of Cisplatin in Epithelial Ovarian Cancer by Suppressing Akt/mTOR Signaling. Am J Med Sci. 2020;359(2):123–129. doi: 10.1016/j.amjms.2019.11.001. [PubMed] [CrossRef] [Google Scholar]

61. Molinaro A.M., Taylor J.W., Wiencke J.K., Wrensch M.R. Genetic and molecular epidemiology of adult diffuse glioma. Nat Rev Neurol. 2019;15(7):405–417. doi: 10.1038/s41582-019-0220-2.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Wen P.Y., Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359(5):492–507. doi: 10.1056/NEJMra0708126. [PubMed] [CrossRef] [Google Scholar]

63. Liu Y., Fang S., Sun Q., Liu B. Anthelmintic drug ivermectin inhibits angiogenesis, growth and survival of glioblastoma through inducing mitochondrial dysfunction and oxidative stress. Biochem Biophys Res Commun. 2016;480(3):415–421. doi: 10.1016/j.bbrc.2016.10.064. [PubMed] [CrossRef] [Google Scholar]

64. Liu J., Liang H., Chen C., Wang X., Qu F., Wang H., Yang K., Wang Q., Zhao N., Meng J., Gao A. Ivermectin induces autophagy-mediated cell death through the AKT/mTOR signaling pathway in glioma cells. Biosci Rep. 2019;39(12) doi: 10.1042/bsr20192489.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Kwak H.J., Kim Y.J., Chun K.R., Woo Y.M., Park S.J., Jeong J.A., Jo S.H., Kim T.H., Min H.S., Chae J.S., Choi E.J., Kim G., Shin S.H., Gwak H.S., Kim S.K., Hong E.K., Lee G.K., Choi K.H., Kim J.H., Yoo H., Park J.B., Lee S.H. Downregulation of Spry2 by miR-21 triggers malignancy in human gliomas. Oncogene. 2011;30(21):2433–2442. doi: 10.1038/onc.2010.620. [PubMed] [CrossRef] [Google Scholar]

Prev part 0

Next part 2


Report Page