Геологическая эффективность структурно-формационной интерпретации и её контроль на примере "рифового направления" ГРР - Геология, гидрология и геодезия статья

Геологическая эффективность структурно-формационной интерпретации и её контроль на примере "рифового направления" ГРР - Геология, гидрология и геодезия статья




































Главная

Геология, гидрология и геодезия
Геологическая эффективность структурно-формационной интерпретации и её контроль на примере "рифового направления" ГРР

Невысокий рост эффективности геофизических технологий по сравнению с ростом научного прогресса. Обострение неконструктивной конкуренции геологии на рынке нефтесервиса. Параметры сейсмической записи и ее информативность. Рифовые модели сейсморазведчиков.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Геологическая эффективность структурно-формационной интерпретации и её контроль на примере «рифового направления» ГРР
Успехи современных технологий поисков и разведки нефти и газа целиком базируются на достижениях технического прогресса в области создания приборов и систем разведочной геофизики. Революционный переход на цифровую регистрацию и системы многократных перекрытий в сейсморазведке обеспечил возможность использования анализа формы сейсмического сигнала для прогноза вещественных характеристик среды. Новые датчики с регистрацией полного вектора сейсмического волнового поля сегодня позволяют проводить производственные 2Д/3Д/4Д-съёмки на суше, в море и в переходных зонах с качественно новым уровнем интеграции сейсмической информации на всех типах волн для решения задач прогноза геологического разреза (ПГР) и прямого поиска углеводородов (ПП). Компьютерная революция вкупе с впечатляющими достижениями средств и способов визуализации сейсмических данных позволили реализовать миграционные преобразования в глубинной области в производственном режиме, выполнять атрибутный анализ исходных сейсмограмм и итерационный процесс построения сложных моделей среды. Настольные многоэкранные рабочие станции сделали интерактивный и итерационный процесс построения глубинной модели легко управляемым в трёхмерном пространстве и в реальном времени. При этом возможно увязывать материалы бурения и сейсморазведки разных лет и модификаций между собой и с материалами ГИС, проводить расчёт и анализ множества атрибутов, выявлять многомерные связи с оценкой точности и достоверности малым числом специалистов-интерпретаторов при совмещении достоинств высокого разрешения по вертикали (ГИС) с высоким разрешением по горизонтали (сейсморазведка). Сочетание компьютерной техники с технологиями ИНТЕРНЕТа позволяет специалистам различных специальностей собираться вместе в надёжной виртуальной среде и обмениваться информацией в масштабе реального времени, не выходя из дома и используя общую базу данных. Принятие важных решений по разработке пласта и бурению скважин оптимизируется при объединении всей необходимой информации в «единой среде визуальной интерпретации», для чего все крупные нефтяные компании создают специальные «центры визуализации». Приборная оснастка скважин и системы разведочной геофизики уже сегодня позволяют перейти от сейсмической интерпретации к моделированию и оценке месторождений [1-6].
Публикуемые примеры успешного решения геологических задач стали многочисленными, но не массовыми и лишь подчёркивают парадокс невысокого роста геологической эффективности результатов применения сложных геофизических технологий по сравнению с ростом научного прогресса в техническом оснащении нефтяных, геофизических компаний и ростом затрат на ГРР. Чтобы понять причины парадокса достаточно сделать простое сравнение известных ошибок и достижений недалёкого прошлого и настоящего времени. Геологическая эффективность поискового и разведочного бурения, пути повышения эффективности ГРР с позиций подтверждаемости геофизических (сейсмических) моделей и количественные оценки характерных ошибок в СССР рассматривались уполномоченными министерствами и ведомствами ежегодно и по итогам пятилеток с их обобщением по всем нефтегазодобывающим регионам и по разным ведомствам [7, 8]. Интересно, что междуведомственная разобщённость и в тот период приводила «к хаосу при определении статистических данных» [7-Гогоненков Г.Н., Эскин В.М.]. Например, подтверждаемость подготовленных сейсморазведкой объектов в Волго-Уральской провинции по данным геофизических трестов составляла 80-90%, а по результатам оценки геологов ВО ИГиРГИ - 50%. В современной России таких периодически обновляемых обобщений невозможно делать из-за разделения общероссийского геологического пространства на лоскуты лицензионных участков с конфиденциальной информацией по геологии и геофизике в каждом из них. «Лоскутная геология» приводит к созданию недостоверных моделей, тиражированию ошибок при невозможности их типизации и учёта на новых участках. Хаос статистических данных лишь усугубился. Все нефтесервисные компании по Саратовскому региону показывают подтверждаемость подготовленных под поисковое бурение объектов от 70 до 100%, в то время как оценки геологов НВНИИГГ дают цифры гораздо ниже: подтверждаемость структурных объектов опустились до 30%, «средний коэффициент подтверждаемости перспективных ресурсов категории С3 за период 1995-2005 г.г. составил 0,22, средний коэффициент достоверности-0,06» [9]. Конкуренция мелких субъектов не приводит к успеху в геологоразведке, что ярко проявляется на примере Саратовского региона, где число недропользователей, занимающихся поисками месторождений нефти и газа, растёт, а геологическая эффективность, достоверность подготовленных под бурение объектов, прирост и подтверждаемость запасов падают [9, 10]. Судя по данным из работы [11] ЦГЭ 2010 года «успешность поисков залежей нефти и газа как была в пределах 10….30% в «низкотехнологичном» прошлом СССР и «высокотехнологичном» сегодня США, так и держится в этих пределах….и будет держаться завтра и послезавтра, и до тех пор, пока нефтяники от поиска структур (даже самыми технически продвинутыми методами) не перейдут к поискам нефтегазосодержащих ловушек, т.е. залежей нефти и газа». Такой переход по мнению Тимурзиева А. И. возможен на основе деидеологизации нефтегазовой геологии от устаревших догм губкинской руководящей гипотезы осадочно-миграционного происхождения нефти (ОМП) при реализации поисковой парадигмы на основе глубинно-фильтрационной модели нефтегазообразования и нефтегазонакопления.
На российском рынке нефтесервиса обострилась неконструктивная конкуренция геологии, геофизики, геохимии, бурения в то время когда ведущие мировые компании отдают приоритет широкой интеграции геодисциплин поиска, разведки и разработки нефтегазовых резервуаров, объединяемых в западной литературе аббревиатурой «Exploration and Production». Успех применения современных технологий определяется интеграцией всех знаний о месторождении, системным подходом и конструктивным сотрудничеством геодисциплин [1-3, 26, 27]. Конструктивное сотрудничество геодисциплин наглядно проявляется в экономике нефтяных западных компаний. Нефтяная компания «Экссон» стала самой прибыльной за счёт слияния геологии и сейсморазведки в новую геонауку СЕЙСМОСТРАТИГРАФИЮ, получившую всемирное признание. Двухтомник «Сейсмическая стратиграфия» [12] был издан в 1982 году в СССР на русском языке и нашёл живейший отклик отечественных геоучёных [13-19]. Эта публикация ускорила оформление российской школы структурно-формационной интерпретации (СФИ) [20, 21, 29].
Напомним, что сейсмическая стратиграфия (СС) была создана американскими геологами, постоянно использующими сейсмические временные и глубинные разрезы в качестве обязательных атрибутов интерпретации как природные обнажения геологического разреза. По мнению И.А. Мушина, «этот, несомненно, плодотворный взгляд на сейсмические разрезы позволил сразу же включить в процесс их интерпретации геологический интеллект, т. е. весь огромный арсенал геологических представлений, закономерностей, накопленных десятилетиями эвристических связей. Рассуждение геолога здесь выглядит вполне разумным и логически обоснованным: коль скоро мы имеем дело с одним геологическим разрезом - то и в соответствие ему должен быть поставлен один конкретный сейсмический разрез!» [20]. Для достижения этой цели разрабатываются средства и методы получения такого конечного сейсмического разреза, который легко читался бы, как геологический разрез в глубинном изображении. Основным таким средством сейчас считается глубинная миграция до суммирования (PSDM- Pre-Stack Depth Migration) [23-25].
Структурно-формационная интерпретация (СФИ) изначально появилась как ответ геофизиков-сейсмиков на сейсмостратиграфический вариант геологической интерпретации, как его альтернатива. Его авторы И.А. Мушин, Л.Ю. Бродов, Е.А. Козлов, Ф.И. Хатьянов [21] исходили из известного всем сейсморазведчикам факта, что вид окончательного сейсмического разреза сильно зависит от критерия, по которому он строился. «Можно, например, стремиться к максимальной прослеживаемости горизонтов - важнейшей задачи для структурных построений - и в результате применения множества целенаправленных процедур фильтрации, регулировки, коррекции и т. п. получить один из возможных разрезов. Можно сконцентрироваться на контрастном выделении дизъюнктивных нарушений - получится другой разрез. Может быть, наконец, получен разрез, на котором наилучшим образом проявляется внутренняя структура искомого геологического объекта - и это будет третий разрез, отличный от предыдущих. Таким образом, каждому геологическому разрезу может быть поставлено в соответствие множество сейсмических отображений, специальным образом подчеркивающих те или иные свойства разреза: его иерархическую структуру; морфологию его основных границ; внутреннее строение слагающих его тел; ранговую совокупность дизъюнктивных нарушений; степень регулярности прослеживания слоистости; типы слоистости, цикличности и т. д.». При этом сам разрез получается на основе информации о среде, записанной на сейсмограммах в виде годографов и полей времён. Извлечение этой информации о среде из полей времён и называется геофизической интерпретацией.
Эти два разных подхода к применению сейсморазведки были детально рассмотрены академиком Гольдиным С. В. в 1989 г. [22]: «Яркая черта современного этапа сейсморазведки - формирование двух весьма различных и дополняющих друг друга направлений, которые можно охарактеризовать терминами ''сейсмоизмерение'' (т. е. определение параметров среды) и ''сейсмовидение'' (т. е. изображение среды). К сейсмовидению мы относим сейсмоголографию, Д-преобразование, преобразование временных разрезов в глубинные, а так же использование временного разреза, как изображения среды (что допустимо при изучении достаточно простых сред). Оба направления, будучи в методологическом отношении почти противоположными, во многих аспектах удачно дополняет друг друга. В повседневной жизни тоже необходимо и обозревать рельеф местности в целом, и измерять его геодезическими средствами. Помимо «информационной» дополнительности, следует ещё упомянуть и «физическую», обусловленную тем, что сейсмоизмерение, связанное с ''лучевым'' представлением поля отражённых волн, эффективно при изучении зеркальных отражающих объектов, тогда как базирующееся на кирхгофовском представлении поля сейсмовидение более применимо для изучения шероховатых и неровных объектов. Если бы распределение скорости в среде над исследуемыми объектами было известно, то можно было бы рассчитывать на доминирующую роль сейсмовидения. Но знать распределение скорости в сложно построенной среде (среда считается сложной, если при ее исследовании нельзя изучать распределение скорости без одновременного изучения структурных параметров) - это фактически решить задачу интерпретации, поэтому роль сейсмоизмерения в будущем вряд ли уменьшится». При сейсмоизмерении в МОВ-ОГТ-ПГР имеются широкие возможности для использования годографов разных типов волн - полей времён - с целью извлечения информации о скоростях, форме границ и других свойствах среды, включая вещественный состав (ПГР-прогнозирование геологического разреза и ПП -прямой прогноз флюидонасыщения). Большая часть этих возможностей практически не используется. Система многократного перекрытия даёт избыточную наблюдённую информацию потребление которой для целей геологической интерпретации по мнений большинства специалистов задействовано примерно на 30%. Работа с сейсмограммами и годографами даже в технологичных автоматизированных пакетах АВО-АВА - анализов требует более глубоких знаний и больших затрат времени на извлечение геологической информации, чем работа с временными и/или глубинными разрезами профилей. СВАН-технологии российского производства также используются сравнительно редко и в основном разработчиками программных пакетов. Не хватает прямых измерений декрементов поглощения и параметров скорости продольных, обменных и поперечных волн, плотностного каротажа и массового изучения керна не только продуктивных интервалов разреза, но и интервалов вмещающих пород для достоверной параметризации среды при построении физико-геологических моделей (ФГМ) [4-7, 17, 21, 25, 26, 28, 29, 57, 58]. По этой причине мнение российского академика не разделяют американские геофизики.
Наметился явный крен в сторону сейсмовидения и в научном, и в методическом, и в технологическом плане. Известный американский сейсморазведчик У.А. Шнайдер ещё в 1980 г. отметил: «Если бы миграцию изобрели несколько раньше, никакого ОГТ уже бы не потребовалось». Основные усилия зарубежных технологов сосредоточены именно на миграционных преобразованиях [12, 23-26]. В своём обзоре истории обработки-интерпретации Карл Линер назвал период 1982-2000 годов «золотым периодом сейсмической миграции» [23]. Основой эффективности интерпретации 3D-PSDM служит возможность получения четвёртого измерения при просмотре не суммированных сейсмограмм в режиме киносейсмики. Преимущество интерпретации на видеоэкране в 3D-пространстве по сравнению с просмотром последовательности профилей (вертикальных сечений куба) в плоскости (на бумаге или экране) считается революционным достижением многими известными геофизиками, в том числе автором миграции методом конечных разностей Д.Ф. Клаербоутом, прогнозирующим смену поколения сейсморазведчиков-интерпретаторов, использующих лишь отсуммированные разрезы, интерпретаторами исходных данных, осуществляющими суммирование их зрительным просмотром (например, простым увеличением скорости протяжки киноленты) [24]. Однако, пока миграционные изображения в сейсмостратиграфии интерпретируются больше качественно, чем количественно, что видно даже по названию таблицы из [12]:
Параметры сейсмической записи, используемые в сейсмостратиграфии, и их геологическое толкование (Сейсмическая стратиграфия. Книга 1 под ред. Ч. Пейтона, М., Мир, 1982, стр.224.)
Параметры, характеризующие сейсмические фации
Соотношение значений скорости и плотности
Расположение пластов относительно друг друга
Геометрическая форма сейсмической фациальной единицы и ее расположение относительно других фациальных единиц
Региональная обстановка осадконакопления
Геологические условия осадконакопления
В США и Европе сейсмостратиграфия считается искусством. Это очевидно из цитаты Р. Шериффа [25]: «Чем является стратиграфическая интерпретация сейсмических данных - искусством или наукой? Сегодня это скорее искусство-выделение на разрезах характерных комбинаций отражений и их интерпретация с помощью изрядной доли воображения. Однако это искусство, не терпящее вольностей, не выходящее за рамки, определяемые фундаментальными положениями. Успешное решение стратиграфических задач путём интерпретации данных сейсморазведки зависит от правильного сочетания трёх элементов: знания физических законов, опыта и воображения. Сейсмические материалы обычно интерпретируются геофизиками и геологами. Идеальный интерпретатор сочетает в себе знания из двух областей. Он хорошо разбирается в процессах, связанных с возбуждением и распространением сейсмических волн, с влиянием на получаемые данные регистрирующей аппаратуры и цифровой обработки, а также понимает физический смысл сейсмических данных. В то же время его геологический опыт помогает ему осознать массу информации, значительная часть которой противоречива, и прийти к наиболее правдоподобной геологической картине. К сожалению, не все интерпретаторы имеют необходимые знания и опыт одновременно и в геологии, и в геофизике, и поэтому часто наилучшая альтернатива-работа геофизика и геолога в тесном контакте». В качестве справки можно добавить, что путь от обычного геолога или геофизика до сейсмостратиграфа по опыту специалистов компании Экссон занимает 9 лет при постоянном и интенсивном обучении.
В настоящее время искусство сейсмостратиграфии достигается организационно через синтез знаний геологии и геофизики путём создание мультидисциплинарных групп в многоцелевых проектах и супервайзерское сопровождение всей технологической цепочки проектов [27]. Создание мультидисциплинарных групп стало технически возможным с появлением интегрирующих интерпретационных программно-методических комплексов с разделённым доступом и общей базой данных. Известные технологии «брендовых» компаний Шлюмберже, Халибартон-Лэндмарк, Парадайм Геофизикал, Роксар, СЖЖ, ЦГЭ функционально однотипны и используются практически всеми российскими компаниями. Из «разделённой модели недр» по версии Шлюмберже из [2]. вытекает, что построение интерпретационных моделей среды в рамках отдельных геодисциплин необходимо интегрировать в общую модель на самых ранних этапах её согласования, что делается с контролем качества каждой частной модели и общей согласованной модели в рамках интегрированного проекта, контролируемого руководителем мультидисциплинарной группы и супервайзером. Отраслевые стандарты брендовых технологий регламентированы собственной технико-методической документацией и обычно сопровождаются специальным сертификатом. Доступ к разделённой модели недр общий для всех участников проекта, но её коррекция выполняется руководителем мультидисциплинарной группы единолично. Это сделано потому, что крайне мало специалистов обладает широкими знаниями фундаментальных положений геологии и геофизики, которые необходимы для сближения модели и реальной среды. Далеко не все геологи или геофизики могут претендовать на роль руководителя проекта на этапе интерпретации. Известно, что подлинное искусство - штучный товар и массовым не бывает. Объединение разнородной геолого-геофизической информации на самой ранней стадии проекта позволяет быстро выявлять основные противоречия и несогласованности данных, ликвидировать грубые ошибки и найти варианты согласования. Проблема выбора лучшего варианта интерпретации остаётся и зависит от выбора критерия. По канонам сейсмостратиграфии «оптимистичная» интерпретация предпочтительнее «наиболее вероятной», так как первая вызовет дополнительные действия для проверки [25], в то время как неоптимистичная, но «наиболее вероятная» интерпретация может привести к отказу от площади и не обнаружить возможность открытия месторождения, что рассматривается, как «непростительный грех».
Мультидисциплинарные группы успешны не везде и не всегда. Видимо западным геоучёным не удалось в полной мере наладить конструктивное сотрудничество геодисциплин и полностью объединить геологию и геофизику в одну геонауку о продуктивном пласте, что планировалось сделать к 2005 году [26]. Причины неудач и достижений являются предметом обсуждения на всех последних конференциях геолого-геофизических сообществ. Россия с 2000 года участвует в этом процессе через Европек [27]. Но именно в России в большей части сервисных компаний обработка и интерпретация разделены уже при проектировании и представляются в виде самостоятельных этапов последовательного процесса с собственными временными рамками и бюджетом. По современным стандартам обработка и интерпретация должны представлять собой единый интерактивный и итерационный процесс. При разделении его на этапы обработки и интерпретации потеря качества возникает на их стыке. На самом деле, таких этапов быть не должно. Здесь уместно привести цитату маститого бакалавра по геологии и геофизике, сотрудника фирмы Seiscom Delta United Лесли Р.Денэма , ещё в 1984 году написавшего: «Ведь давно известно (хотя об этом редко говорят), вся обработка сейсмических данных по существу и есть интерпретация». Важно помнить, что обработка в настоящее время - «модельбазированная», а модели сред в алгоритмах обработки и интерпретации могут не стыковаться [28]. Поэтому качество геологической интерпретации страдает от нерешённости вопроса структурно-организационного плана внутри нефтяных или сервисных геофизических организаций, но не технологического. Именно сама технология, блестяще программно реализованная в пакетах брендовых компаний требует интеграции дисциплин обработки и интерпретации, геологии и геофизики, планирования и бурения, создания ПДГТМ и её мониторинга в рамках единого проекта. Запредельная стоимость полных пакетов заставляет сервисные компании покупать только часть брендовой технологии с пристыковкой собственного или более дешёвого программного продукта малоизвестных производителей. Эти проблемы внутри компаний тщательно скрываются или афишируются, как «усовершенствование бренда». Бывает и так, но чаще желаемое выдаётся за действительное.
Для ограничения фантазии «толкователей» и обеспечения паритета сейсмовидения и сейсмоизмерения был предложен отраслевой стандарт СФИ [21]. Стандарт СФИ унифицирует конечный результат сейсморазведочных работ для всех этапов (от регионального до разведочного) в виде построения единой совокупности шести моделей : структурной, стратиграфической, структурно-формационной, литологофациальной, ёмкостной и фильтрационной. В СФИ используется комплексирование всех геофизических методов и геохимии для надёжности геологических прогнозов, сейсмовидение и сейсмоизмерение используются на паритетных началах, а сейсмостратиграфия и ПГР рассматриваются в качестве равноправных разделов СФИ, что видно из работ [21, 29] и сравнения таблиц из работ [12 и 29] :
Геологическая информативность сейсмических характеристик
Геологическое значение сейсмических характеристик
Качественные характеристики рисунка записи
Геометрия осей синфазности отражения
Закономерности напластования. Характер процесса осадконакопления. Эффекты палеоэрозии и палеотектоники
Характер процесса осадконакопления. Непрерывность напластования. Размеры бассейна осадконакопления
Характер процесса осадконакопления.
Количественные параметры волнового поля
Дифференциация плотности и скорости. Мощности слоев. Литология отложений. Возраст отложений. Пористость. Пластовое (поровое) давление. Состав флюида
Литология отложений. Возраст отложений. Пористость. Пластовое (поровое) давление. Состав флюида
Возраст отложений. Пористость. Состав флюида
Отраслевой стандарт СФИ получил признание геолого-геофизической общественности и отображён в ряде отраслевых справочников [28, 29] и новых руководящих документов [30-37]. Он объективно отражает современные возможности геофизики при решении геологических задач «от поисков до нефтепровода», даёт типовые схемы и инструменты их решения с перечислением требований к входной и результативной информации на каждой из технологических цепочек построения единой совокупности физико-геологических моделей. Однако обязательность его выполнения многими нефтесервисными компаниями игнорируется, что снижает качество и геофизической и геологической интерпретации. Соблюдение отраслевых стандартов СФИ должны обеспечивать руководитель проекта и супервайзер. При выборе супервайзера определяющим фактором являются его личный опыт и база знаний в смежных геонауках. Выбирают не организацию, а конкретного специалиста. Здесь уместна поговорка: «И один в поле воин!». Качество интерпретации пока невозможно формализовать полностью и роль супервайзера, как оценщика правильности применённых технологий построения единой совокупности моделей, позволяет исправлять ошибки стыковки отдельных технологий без навязывания собственного видения геологической модели только при условии признания отраслевого стандарта СФИ Заказчиком. Спецификой же российского рынка является геофизическая малограмотность Заказчика, что побудило председателя ЕАГО Савостьянова Н.А. в 2000 году говорить о необходимости создания института супервайзеров и через этот институт проводить геофизическое просвещение Заказчиков [38]. Однако, не каждый супервайзер признаёт новые отраслевые стандарты и не каждый Заказчик следует рекомендациям супервайзера [39].
Несогласованность геологических, геофизических, буровых моделей сказывается снижением качества разработки месторождений. Так директором по науке НК «Роснефть» М.М. Хасановым отмечалось: «При экспертизе и рассмотрении на научно-технических советах подсчёта запасов и проектов разработки нефтяных и газовых месторождений очень часто приходится констатировать парадокс: авторы проектов все время жалуются на недостаток исследований, и в то же время крайне неэффективно используют имеющиеся данные, «выжимая» лишь малую часть содержащейся в них полезной информации» [3]. При этом данные даже 3Д-сейсморазведки до появления регламентов [30-37] зачастую не рассматривались. Аналогичный парадокс можно наблюдать при рассмотрении отчётов по обобщениям и интегрированной интерпретации результатов сейсморазведки 2Д, 3Д, ГИС и промысловых данных, где зачастую не задействуются материалы изучения керна, анализы флюидов, гидрогеологические, термометрические и геохимические показатели, данные разработки продуктивных пластов. Происходит это потому, что искусством стопроцентной «утилизации» разнородной геолого-геофизической информации обладают только люди, имеющие системные и достаточно глубокие знания во всех областях нефтяного инжиниринга - от сбора полевых геофизических данных до построения 3Д-геологической модели, от моделирования бассейнов и резервуаров до бурения и эксплуатации скважин, расчета поверхностного оборудования и оценки экономики проектов. Узким специалистам непонятно, «что очень многие проблемы возникают преимущественно на стыке геологических дисциплин. И по своему влиянию на окончательные управленческие решения они существенно превосходят погрешности в каждом отдельном звене. В результате чрезвычайно высокая специализация в геофизике и геологии стала фактически тормозом в объективном познании недр, а взаимная невостребованность смежных специалистов - основным источником большинства ошибок» [1].
Для преодоления невостребованности смежных специалистов и повышения геологической эффективности интегрированной интерпретации в России и выпущены новые отраслевые стандарты 21 века [21, 28-37]. Строгое соблюдение отраслевых стандартов автоматически обеспечивает требуемое качество работ с решением технических, методических и геологических задач Заказчика [39]. Однако выполнение этих стандартов оставляет желать много лучшего, что и обуславливает отсутствие роста геологической эффективности СФИ при высочайшем уровне развития техники получения и сбора полевой геофизической информации, технологий её обработки и визуализации [9, 10, 40-42]. Рассмотрим это утверждение на конкретном примере «рифового направления ГРР», как наиболее эффективного с позиций геологии Нижнего Поволжья [43-47].
Успех сейсмостратиграфии компании Экссон был основан на успешном поиске неглубоко залегающих (до 2000 м) высокоёмких ловушек неантиклинального типа: рифовых, стратиграфических, литологических, сложноэкранированных [12]. Не секрет, что самая низкая геологическая эффективность ГРР в России наблюдается на направлении поиска именно таких ловушек, которые открываются бурением, в основном, случайно при поиске антиклинальных структур [7, 8]. Типичным примером поисков объектов типа «риф» в Саратовском Правобережье может служить история геологического изучения Иловлинско-Белогорского и вложенного в него Южно-Белогорского участков недр (рис.1).
Участки расположены на границе Волгоградской и Саратовской областей в пределах южного обрамления Каменско-Золотовского выступа, где высокие перспективы «рифового направления» были обоснованы уже открытыми барьерными рифами бортов Уметовско-Линёвской средне-позднефранской некомпенсированной палеовпадины и внутрибассейновыми рифами Лимано-Грачевским, Белокаменным и Памятно-Сасовским с доказанными запасами УВ на уровне средних месторождений (по крупности) [43-47]. Границу между Умётовско-Линёвской палеодепрессией и Каменско-Золотовским палеошельфом трассирует среднепозднефранский барьерный риф, установленный бурением на Южно-Белогорском участке [48].
Период открытия барьерных рифов карбонатных бортов Умётовско-Линёвской палеодепрессии в Волгоградской области и одиночных верхнефранских рифов в Саратовской, а затем и в Волгоградской области был не случаен и обусловлен объединением научных и практических задач в рамках единой программы по разработке Миннефтепромом и Академией наук СССР методики поисков залежей нефти и газа в ловушках неантиклинального типа на опорных полигонах. Это был первый в практике работ научно-производственный эксперимент, осуществленный по инициативе ИГиРГИ в отрасли совместно с ЦГЭ, ВО ИГиРГИ при активном участии геологических («Саратовнефтегаз») и геофизических («Саратовнефтегеофизика») производственных объединений и территориальных научно-исследовательских проектных институтов (НВНИИГГ, ВолгоградНИПИнефть и др.). Итоговые документы этого эксперимента [49, 50],. определили средства и методы поисков залежей нефти в ловушках неантиклинального типа, включая сейсмостратиграфический анализ, типовую форму паспорта на объект, подготовленный под поисково-разведочное бурение геофизическими методами и требования к представительности геолого-геофизической информации. Также были разработаны и апробированы на практике морфогенетическая и модельно-признаковая классификации сложноэкранированных ловушек и сделаны реальные открытия новых месторождений, в том числе в Волгоградской области - 2 месторождения (Памятное, Макаровское). В Саратовской области-1 месторождение (Белокаменное).
Несмотря на то, что «эталон рифового направления» для Саратовской области - Белокаменное месторождение - было открыто в 1989 году и хорошо изучено бурением, его рифовый генезис оспаривается частью геологов до сих пор, что вкупе с многовариантностью трактовки тектоники и нефтегазоносности говорит либо о слабой изученности сложнопостроенных месторождений средствами только поисково-разведочного бурения и необходимости проведения 3Д-сейсморазведки на рифовых объектах, либо о неполной информированности исследователей об объекте [51-54]. Газоконденсатная залежь в бобриковских отложениях открыта в 1992 году, а в 2009 году на баланс ОАО «Саратовнефтегаз» поставлены запасы углеводородного сырья по вновь открытой залежи заволжско-малевског
Геологическая эффективность структурно-формационной интерпретации и её контроль на примере "рифового направления" ГРР статья. Геология, гидрология и геодезия.
Дипломная работа по теме Идеальный город в литературе и искусстве эпохи кватроченто: миф и реальность
Дипломная Работа Казахстан
Курсовая работа по теме Коммуникации в современном обществе
Курсовая работа по теме Сборочный чертеж с простановкой посадок типовых соединений
Пример Оформления Реферата По Госту 2022
Реферат: Greek Vase Painting Essay Research Paper Greek
Контрольная работа по теме Операционная система: назначение, свойства, возможности
Информатика 7 Класс Контрольная Работа 2
Эссе Природа Моего Родного Края
Реферат: Классификация банковских розничных услуг. Скачать бесплатно и без регистрации
Лабораторная Работа Алгоритмы Обработки Текстов Python
Реферат На Тему Олимпийские Игры На Английском
Реферат по теме Обезжелезивание природных вод
Отчет По Производственной Практике Оптовой Торговли
Курсовая На Тему Инвестиции
Доклад: Державна фінансова підтримка санації підприємств
Заболевание Век И Слезных Органов Реферат
Темы Сочинений По Направлениям 20 21
Курсовая Работа Скачать Пример
Гдз 1 10 Класс Контрольная Работа
Обмен веществ и энергии - Биология и естествознание реферат
Получение аудиторских доказательств в соответствии с международными стандартами аудита - Бухгалтерский учет и аудит курсовая работа
Бухгалтерский учет и анализ основных средств (на примере ООО "Аристон Термо Русь") - Бухгалтерский учет и аудит дипломная работа


Report Page