Электромагнитное излучение - Безопасность жизнедеятельности и охрана труда реферат
Виды электромагнитных излучений. Влияние излучений монитора компьютера и экрана телевизора на человека. Биологическое действие электромагнитных излучений на организм человека. Санитарно-гигиенические требования при работе с компьютером и телевизором.
посмотреть текст работы
скачать работу можно здесь
полная информация о работе
весь список подобных работ
Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Сейчас почти в каждом доме стоит компьютер, ну и конечно без телевизора нет ни одной квартиры. Ученики выполняют домашнее задания, используя новые информационные технологии. Многие люди общаются через глобальную сеть Интернет. Создаются обучающие программы, игры. Дети и взрослые любят часами сидеть за компьютером, играя в свою любимую игру или перед экраном телевизора, когда смотрят свой любимый сериал. Мы забываем, какая опасность может таиться за ежедневным общением с этими «плодами» цивилизации.
С самого начала появления телевизора и монитора ученые начали думать, как защититься от его влияния. Создавались госты, защитные экраны для монитора. Рекламные ролики, призывая купить тот или иной телевизор или монитор. Уверяют нас в его безопасности. Так ли это?
Проблема моего исследования видится в необходимости выявления видов излучения от экрана телевизора и монитора компьютера и изучении влияния этого излучения на человеческий организм.
Цель исследования: Изучить влияние излучений монитора компьютера и экрана телевизора на человека.
1. Изучить литературу по данной проблеме.
2. Выявить какие виды электромагнитного излучения испускает монитор компьютера и телевизора.
3. Изучить влияние этих излучений на организм.
4. Вывести и сформулировать советы для учителей, родителей и детей при работе с этими приборами.
Объект исследования: излучения, создаваемыми мониторами компьютера и телевизионным экраном.
Предмет исследования: влияние излучения на организм человека.
Методы работы: наблюдения, сравнение и анализ результатов, анкетирование.
Гипотеза исследования: если соблюдать правила работы с монитором и телевизором, то можно обезопасить организм человека от отрицательного влияния излучений на здоровье.
Практическая значимость моего исследования заключается в сформулированных способах и методах защиты организма человека от отрицательного влияния излучений в школе, дома и офисе, которые оформлены в виде видеоролика, который можно использовать при размещении видеоаппаратуры в школе и дома.
2. Виды электромагнитных излучений
Электромагнитное излучение принято делить по частотным диапазонам (Приложение 1). Между диапазонами нет резких переходов, они иногда перекрываются, а границы между ними условны. Поскольку скорость распространения излучения постоянна, то частота его колебаний жёстко связана с длиной волны в вакууме.
Радиоволны - электромагнитное излучение с длинами волн 5 Ч 10-5 -- 1010 метров и частотами, соответственно, от 6 Ч 1012Гц и до нескольких Гц[1]. Радиоволны используются при передаче данных в радиосетях. Радиоволны возникают при протекании по проводникам переменного тока соответствующей частоты. И наоборот, проходящая в пространстве электромагнитная волна возбуждает в проводнике соответствующий ей переменный ток. Это свойство используется в радиотехнике при конструировании антенн. Естественным источником волн этого диапазона являются грозы.
Оптическую область спектра составляет видимое, инфракрасное и ультрафиолетовое излучение. Выделение такой области обусловлено не только близостью соответствующих участков спектра, но и сходством приборов, применяющихся для её исследования и разработанных исторически главным образом при изучении видимого света (линзы и зеркала для фокусирования излучения, призмы, дифракционные решётки, интерференционные приборы для исследования спектрального состава излучения и пр.).
Частоты волн оптической области спектра уже сравнимы с собственными частотами атомов и молекул, а их длины -- с молекулярными размерами и межмолекулярными расстояниями. Благодаря этому в этой области становятся существенными явления, обусловленные атомистическим строением вещества. По этой же причине, наряду с волновыми, проявляются и квантовые свойства света.
Самым известным источником оптического излучения является Солнце. Его поверхность (фотосфера) нагрета до температуры 6000 градусов и светит ярко-белым светом (максимум непрерывного спектра солнечного излучения расположен в "зелёной" области 550 нм, где находится и максимум чувствительности глаза). Именно потому, что мы родились возле такой звезды, этот участок спектра электромагнитного излучения непосредственно воспринимается нашими органами чувств.
Излучение оптического диапазона возникает, в частности, при нагревании тел (инфракрасное излучение называют также тепловым) из-за теплового движения атомов и молекул. Чем сильнее нагрето тело, тем выше частота, на которой находится максимум спектра его излучения . При определённом нагревании тело начинает светиться в видимом диапазоне (каление), сначала красным цветом, потом жёлтым и так далее. И наоборот, излучение оптического спектра оказывает на тела тепловое воздействие .
Оптическое излучение может создаваться и регистрироваться в химических и биологических реакциях. Одна из известнейших химических реакций, являющихся приёмником оптического излучения, используется в фотографии. Источником энергии для большинства живых существ на Земле является фотосинтез -- биологическая реакция, протекающая в растениях под действием оптического излучения Солнца.
Инфракрасное излучение -- электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны[1] л = 0,74 мкм) и микроволновым излучением (л ~ 1--2 мм).
Инфракрасное излучение было открыто в 1800 г. английским учёным У. Гершелем.
Сейчас весь диапазон инфракрасного излучения делят на три составляющих:
· коротковолновая область: л=0,74 - 2,5 мкм;
· средневолновая область: л=2,5 - 50 мкм;
· длинноволновая область: л=50 - 2000 мкм;
Последнее время длинноволновую окраину этого диапазона выделяют в отдельный, независимый диапазон электромагнитных волн -- терагерцовое излучение (субмиллиметровое излучение).
Инфракрасное излучение также называют «тепловым» излучением, так как все тела, твёрдые и жидкие, нагретые до определённой температуры, излучают энергию в инфракрасном спектре. При этом длины волн, излучаемые телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения. Спектр излучения абсолютно чёрного тела при относительно невысоких (до нескольких тысяч Кельвинов) температурах лежит в основном именно в этом диапазоне.
Ультрафиолетовое излучение (ультрафиолет, УФ, UV) -- электромагнитное излучение, занимающее диапазон между видимым и рентгеновским излучением (380 -- 10 нм, 7,9Ч1014 -- 3Ч1016 Гц). Диапазон условно делят на ближний (380--200 нм) и дальний, или вакуумный (200--10 нм) ультрафиолет, последний так назван, поскольку интенсивно поглощается атмосферой и исследуется только вакуумными приборами. Основной источник ультрафиолетового излучения на Земле -- Солнце. Длительное действие ультрафиолета способствует развитию меланомы, различных видов рака кожи.
Ионизирующее излучение -- в самом общем смысле -- различные виды микрочастиц и физических полей, способные ионизировать вещество. В более узком смысле к ионизирующему излучению не относят ультрафиолетовое излучение и излучение видимого диапазона света, которое в отдельных случаях также может быть ионизирующим.
Рентгеновское излучение -- электромагнитные волны, энергия фотонов которых лежит на энергетической шкале между ультрафиолетовым излучением и гамма-излучением, что соответствует длинам волн от 10?14 до 10?8 м. Рентгеновские лучи возникают при сильном ускорении заряженных частиц (тормозное излучение), либо при высокоэнергетичных переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках, в которых электроны, испущенные катодом, ускоряются под действием разности электрических потенциалов между анодом и катодом (при этом рентгеновские лучи не испускаются, т. к. ускорение слишком мало) и ударяются об анод, где они резко тормозятся (при этом испускаются рентгеновские лучи: т. н. тормозное излучение) и в то же время выбивают электроны из внутренних электронных оболочек атомов анода. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с характерным для материала анода спектром энергий.
Рентгеновское излучение является ионизирующим. Оно воздействует на ткани живых организмов и может быть причиной лучевой болезни и злокачественных опухолей. По причине этого при работе с рентгеновским излучением необходимо соблюдать меры защиты. Рентгеновские лучи могут проникать сквозь вещество, причём различные вещества по-разному их поглощают.
Гамма-излучение, гамма-лучи (г-лучи) -- вид электромагнитного излучения с чрезвычайно маленькой длиной волны -- < 5Ч10-3 нм и вследствие этого ярко выраженными корпускулярными свойствами. Энергии квантов гамма-излучения лежат в диапазоне 105--109 эВ. На шкале электромагнитных волн оно граничит с рентгеновским излучением, занимая диапазон более высоких частот. Гамма-излучение испускается при переходах между возбуждёнными состояниями ядер элементов. Образуются при радиоактивных превращениях атомных ядер и при ядерных реакциях; г-лучи в отличие от б-лучей и в-лучей не отклоняются электрическими и магнитными полями и характеризуются большей проникающей способностью. Гамма-излучение используют при г-дефектоскопии, контроле изделий просвечиванием г-лучами и др.
электромагнитный компьютер организм излучение
3. Биологическое действие электромагнитных излучений на организм человека
Экспериментальные данные как отечественных, так и зарубежных исследователей свидетельствуют о высокой биологической активности электромагнитного поля (ЭМП) во всех частотных диапазонах. При относительно высоких уровнях облучающего ЭМП современная теория признает тепловой механизм воздействия. При относительно низком уровне ЭМП (к примеру, для радиочастот выше 300 МГц это менее 1 мВт/см2) принято говорить о нетепловом или информационном характере воздействия на организм. Механизмы действия ЭМП в этом случае еще мало изучены. Многочисленные исследования в области биологического действия ЭМП позволят определить наиболее чувствительные системы организма человека: нервная, иммунная, эндокринная и половая. Эти системы организма являются критическими. Реакции этих систем должны обязательно учитываться при оценке риска воздействия ЭМП на население.
Биологический эффект ЭМП в условиях длительного многолетнего воздействия накапливается, в результате возможно развитие отдаленных последствий, включая дегенеративные процессы центральной нервной системы, рак крови (лейкозы), опухоли мозга, гормональные заболевания. Особо опасны ЭМП могут быть для детей, беременных (эмбрион), людей с заболеваниями центральной нервной, гормональной, сердечно -сосудистой системы, аллергиков, людей с ослабленным иммунитетом.
Большое число исследований, выполненных в России, и сделанные монографические обобщения, дают основание отнести нервную систему к одной из наиболее чувствительных систем в организме человека к воздействию ЭМП. На уровне нервной клетки, структурных образований по передачи нервных импульсов (синапсе), на уровне изолированных нервных структур возникают существенные отклонения при воздействии ЭМП малой интенсивности. Изменяется высшая нервная деятельность, память у людей, имеющих контакт с ЭМП. Эти лица могут иметь склонность к развитию стрессорных реакций. Определенные структуры головного мозга имеют повышенную чувствительность к ЭМП. Изменения проницаемости гематоэнцефалического барьера может привести к неожиданным неблагоприятным эффектам. Особую высокую чувствительность к ЭМП проявляет нервная система эмбриона.
В настоящее время накоплено достаточно данных, указывающих на отрицательное влияние ЭМП на иммунологическую реактивность организма. Результаты исследований ученых России дают основание считать, что при воздействии ЭМП нарушаются процессы иммуногенеза, чаще в сторону их угнетения. Установлено также, что у животных, облученных ЭМП, изменяется характер инфекционного процесса - течение инфекционного процесса отягощается. Возникновение аутоиммунитета связывают не столько с изменением антигенной структуры тканей, сколько с патологией иммунной системы, в результате чего она реагирует против нормальных тканевых антигенов. В соответствии с этой концепцией. основу всех аутоиммунных состояний составляет в первую очередь иммунодефицит по тимусзависимой клеточной популяции лимфоцитов. Влияние ЭМП высоких интенсивностей на иммунную систему организма проявляется в угнетающем эффекте на Т-систему клеточного иммунитета. ЭМП могут способствовать неспецифическому угнетению иммуногенеза, усилению образования антител к тканям плода и стимуляции аутоиммунной реакции в организме беременной самки.
3.3 Влияние на эндокринную систему и нейрогуморальную реакцию
В работах ученых России еще в 60-е годы в трактовке механизма функциональных нарушений при воздействии ЭМП ведущее место отводилось изменениям в гипофиз-надпочечниковой системе. Исследования показали, что при действии ЭМП, как правило, происходила стимуляция гипофизарно-адреналиновой системы, что сопровождалось увеличением содержания адреналина в крови, активацией процессов свертывания крови. Было признано, что одной из систем, рано и закономерно вовлекающей в ответную реакцию организма на воздействие различных факторов внешней среды, является система гипоталамус-гипофиз-кора надпочечников. Результаты исследований подтвердили это положение.
Нарушения половой функции обычно связаны с изменением ее регуляции со стороны нервной и нейроэндокринной систем. С этим связаны результаты работы по изучению состояния гонадотропной активности гипофиза при воздействии ЭМП. Многократное облучение ЭМП вызывает понижение активности гипофиза.
Любой фактор окружающей среды, воздействующий на женский организм во время беременности и оказывающий влияние на эмбриональное развитие, считается тератогенным. Многие ученые относят ЭМП к этой группе факторов.
Первостепенное значение в исследованиях тератогенеза имеет стадия беременности, во время которой воздействует ЭМП. Принято считать, что ЭМП могут, например, вызывать уродства, воздействуя в различные стадии беременности. Хотя периоды максимальной чувствительности к ЭМП имеются. Наиболее уязвимыми периодами являются обычно ранние стадии развития зародыша, соответствующие периодам имплантации и раннего органогенеза.
Было высказано мнение о возможности специфического действия ЭМП на половую функцию женщин, на эмбрион. Отмечена более высокая чувствительность к воздействию ЭМП яичников, нежели семенников. Установлено, что чувствительность эмбриона к ЭМП значительно выше, чем чувствительность материнского организма, а внутриутробное повреждение плода ЭМП может произойти на любом этапе его развития. Результаты проведенных эпидемиологических исследований позволят сделать вывод, что наличие контакта женщин с электромагнитным излучением может привести к преждевременным родам, повлиять на развитие плода и, наконец, увеличить риск развития врожденных уродств.
В Японии приняты самые жесткие нормы работы с ПЭВМ, в особенности для детей и молодежи (по 20 мин 2 раза в неделю). В возрасте 20 - 30 лет вероятность заболеваний у тех, кто подвергся облучению, в 5,5 раза выше, чем у их ровесников, не работавших с ПЭВМ.
В случаях появления у работающих дискомфорта или неприятных ощущений администрация обязана ввести индивидуальный график работы или перевести на работу, не связанную с ПЭВМ. Беременным женщинам и матерям, кормящим грудью, работать с компьютерами категорически запрещено.
В соответствии с СанПиН: 2.2.2.542-96 "Гигиенические требования к ВДТ и ПЭВМ. Организация работы" все вредности, возникающие при работе видеотехники (ВДТ) и электронно-вычислительных машин (ПЭВМ) можно разделить на три группы:
1. Параметры рабочего места и рабочей зоны.
2. Визуальные факторы (яркость, контрастность, мерцание изображения, блики).
3. Излучения (рентгеновское, электромагнитное излучение ВЧ и СВЧ диапазона, гамма-излучение, электростатические поля).
Условия труда работающих с ЭВМ характеризуются возможностью воздействия на них следующих производственных факторов: шума, тепловыделений, вредных веществ, статического электричества, ионизирующих и неионизирующих излучений, недостаточной освещенности, параметров технологического оборудования и рабочего места.
Основными источниками шума в помещениях, оборудованных вычислительной техникой, являются принтеры, плоттеры, множительная техника и оборудование для кондиционирования воздуха, вентиляторы систем охлаждения, трансформаторы.
Для снижения шума и вибрации в помещениях вычислительных центров оборудование, аппараты необходимо устанавливать на специальные фундаменты и амортизирующие прокладки, предусмотренные нормативными документами.
Уровень шума на рабочих местах не должен превышать 50 дБА. Нормируемые уровни шума обеспечиваются путем использования малошумного оборудования, применением звукопоглощающих материалов (специальные перфорированные плиты, панели, минераловатные плиты). Кроме того, необходимо использовать подвесные акустические потолки.
В помещениях с избытком тепла необходимо предусматривать регулирование подачи теплоносителя для соблюдения нормативных параметров микроклимата. Микроклиматические условия на рабочих местах в помещениях с вычислительной техникой должны соответствовать требованиям (Приложение 3)
Воздух, поступающий в рабочие помещения операторов ЭВМ, должен быть очищен от загрязнений, в том числе от пыли и микроорганизмов. Патогенной микрофлоры быть не должно.
Кондиционирование воздуха должно обеспечивать поддержание параметров микроклимата в необходимых пределах в течение всех сезонов года, очистку воздуха от пыли и вредных веществ, создание необходимого избыточного давления в чистых помещениях для исключения поступления неочищенного воздуха. Температура подаваемого воздуха должна быть не ниже 19oС.
Температуру в помещении следует регулировать с учетом тепловых потоков от оборудования. Предпочтение должно отдаваться оборудованию с малой электрической мощностью. Оборудование надо устанавливать так, чтобы тепловые потоки от него не были направлены на операторов. Следует также ограничивать количество вычислительной техники в помещении и избегать напольных отопительных систем.
Для предотвращения образования и защиты от статического электричества необходимо использовать нейтрализаторы и увлажнители, а полы должны иметь антистатическое покрытие. Допустимые уровни напряженности электростатических полей не должны превышать 20 кВ в течение 1 часа.
К числу вредных факторов, с которыми сталкивается человек, работающий за монитором электромагнитное излучения. ПЭВМ являются источниками широкополосных электромагнитных излучений:
Экспозиционная мощность дозы рентгеновского излучения в любой точке пространства на расстоянии 5 см от поверхности ПЭВМ не должна превышать 7,74·10-12 А/КГ, что соответствует эквивалентной дозе 0,1 мБэр/ч или 100 мкр/ч, согласно санитарным нормам и правилам работы с источниками рентгеновского излучения. Ультрафиолетовое излучение в диапазоне 200-315 нм не должно превышать 10 мкВт/м2, излучение в диапазоне 315-400 нм и видимом диапазоне 400-750 нм -0,1 Вт/м2, в ближнем ИК- диапазоне - 2000нм - 1мм-4 Вт/м2. Уровни напряженности электростатического поля не должны превышать 15 кВ/м.
В целях предосторожности следует обязательно использовать защитные экраны, а также рекомендуется ограничивать продолжительность работы с экраном ВДТ, не размещать их концентрированно в рабочей зоне и выключать их, если на них не работают.
Наряду с этим нужно устанавливать в помещении с ВДТ ионизаторы воздуха, чаще проветривать помещение и хотя бы один раз в течение рабочей смены очищать экран от пыли.
Важное место в комплексе мероприятий по созданию условий труда, работающих с ПЭВМ, занимает создание оптимальной световой среды, т.е. рациональная организация естественного и искусственного освещения помещения и рабочих мест.
Предусматриваются меры ограничения слепящего воздействия светопроемов, имеющих высокую яркость (8000 кд/м2 и более), и прямых солнечных лучей для обеспечения благоприятного распределения светового потока в помещении и исключения на рабочих поверхностях ярких и темных пятен, засветки экранов посторонним светом, а также для снижения теплового эффекта от инсоляции.
Для работы на ЭВМ с ВДТ рекомендуются помещения с односторонним боковым естественным освещением с северной, северо-восточной или северо-западной ориентацией светопроемов. Площадь световых проемов должна составлять 25% площади пола. Удовлетворительное естественное освещение проще создать в небольших помещениях на 5-6 рабочих мест, а больших помещений с числом работающих более 20, лучше избегать. В случае, если экран ПЭВМ обращен к окну, должны быть предусмотрены специальные экранизирующие устройства.
Искусственное освещение в помещениях и на рабочих местах должны создавать хорошую видимость информации на экране ЭВМ. При этом в поле зрения работающих должны быть обеспечены оптимальные соотношения яркости рабочих и окружающих поверхностей. Наиболее оптимальной для работы с экраном является освещенность 200 лк, при работе с экраном в сочетании с работой над документами - 400 лк.
На рабочем месте необходимо обеспечивать наибольшую равномерность яркости, исключая наличие ярких и блестящих предметов, для снижения монотонности в поле зрения рекомендуется отдельные пестрые поверхности.
Для освещения рабочих мест применяется комбинированное освещение (общее плюс местное), хотя более предпочтительно общее освещение из-за большего перепада яркостей на рабочем месте при использовании светильников местного освещения.
Для общего освещения используются в основном потолочные или встроенные светильники с люминесцентными лампами. Яркость должна быть не более 200 кд/м2. Источники света лучше использовать нейтрально-белого или "теплого" белого цвета с индексом цветопередачи не менее 70. Для исключения засветки экранов прямыми световыми потоками светильники общего освещения располагают сбоку от рабочего места, параллельно линии зрения оператора.
Наиболее подходящими светильниками являются светильники типа ЛПО 36, ЛБ, ЛПО 36 с ВУПРА и другие аналогичные. При использовании светильников с люминесцентными лампами необходимо принимать меры по ограничению пульсации освещенности в пределах до 5 %.
Местное освещение на рабочих местах обеспечивается светильниками, устанавливаемыми непосредственно на рабочем столе или на вертикальных панелях специального оборудования. Они должны иметь непросвечивающий отражатель и располагаться ниже или на уровне линии зрения операторов, чтобы не вызывать ослепления.
Так как при работе на компьютере основная нагрузка ложится на глаза, поэтому большие требования предъявляются к видеотерминальным устройствам (экранам). Предпочтительным является плоский экран, позволяющий избежать наличие на нем ярких пятен за счет отражения световых потоков. Особенно важен цвет экрана. Он должен быть нейтральным. Допустимы ненасыщенные светло-зеленые, желто-зеленые, желто-оранжевые, желто-коричневые тона.
О качестве экранов судят по отсутствию мерцания и постоянству яркости. При прямом контрасте (темные символы на светлом фоне) частота мельканий должна быть не менее 80Гц. Оптимальная высота расположения экрана должна соответствовать направлению взгляда оператора в секторе 5-35o по отношению к горизонтали. Большой наклон экрана может привести к появлению бликов от светильников. При работе с ЭВМ взгляд должен падать на экран под прямым углом и отклоняться от горизонтали на 20o.
Условия зрительного восприятия информации на экране зависят от параметров экрана, плотности их размещения, контраста и соотношения яркостей символов и фона экрана.
Видеотерминальное устройство должно отвечать следующим техническим требованиям:
· яркость свечения экрана - не менее 100 кд/м2;
· минимальный размер светящейся точки - не более 0,4 мм для монохромного дисплея и не более 0,6 мм - для цветного;
· контрастность изображения знака - не менее 0,8;
· частота регистрации изображения при работе с позитивным контрастом в режиме обработки текста - не менее 72 Гц;
· количество точек на строке - не менее 640;
· низкочастотное дрожание изображения в диапазоне 0,05-1,0 Гц должно находиться в пределах 0,1 мм;
· экран должен иметь антибликовое покрытие;
· размер экрана должен быть не менее 31 см по диагонали, а высота символов на экране не менее 3,8 мм, при этом расстояние от газ оператора до экрана должно быть в пределах 40-80 см.
Клавиатура дисплея не должна быть жестко связана с монитором. Она должна располагаться на расстоянии 600-700 мм. В клавиатуре необходимо предусмотреть возможность звуковой обратной связи от включения клавиш с возможностью регулировки. Размер клавиш - в пределах 13-15 мм, сопротивление - 0,25-1,5 Н. Поверхность клавиш должна быть вогнутой, расстояние между ними - не менее 3мм. Наклон клавиатуры должен находиться в пределах 10-15o. Клавиатура располагается на поверхности стола на расстоянии 100-300 мм от края.
Видеомонитор должен быть оборудован поворотной площадкой, позволяющей перемещать ВДТ в горизонтальной и вертикальной плоскостях в пределах 130-220 мм и изменять угол наклона экрана на 30o во фронтальной плоскости.
При работе с текстовой информацией (в режиме ввода данных, редактирования текста и чтения с экрана ВДТ) наиболее физиологичным является предъявление черных знаков на светлом фоне.
При расстоянии от глаз до экрана - 600-700 мм, высота знака должна быть не менее 3-4 мм, расстояние между знаками - 15-20; от его высоты. Количество точек на строке - не менее 640.
Яркость символов на экране должна согласовываться с яркостью фона экрана и окружающим освещением. Нижней границей уровня яркости светящихся символов считается 30 кд/м2, верхняя определяется значением слепящей яркости. При прямом контрасте яркостный контраст должен составлять 75-80% с возможностью регулировки яркости фона экрана, а при обратном контрасте (светлые символы на темном фоне) - 85-90% с возможностью регулировки яркости фона экрана. Коэффициент контрастности символов на экране при их оптимальных размерах считается благоприятным в пределах 5-10 для обратного контраста и в пределах 8-12 - для прямого.
Для устранения бликов и снижения влияния электромагнитного излучения экраны ВДТ должны быть снабжены защитными фильтрами.
Требования к оборудованию рабочих мест
· Рабочий стол должен регулироваться по высоте в пределах 680-800 мм; при отсутствии такой возможности его высота должна составлять 725 мм. Оптимальные размеры рабочей поверхности столешницы - 1400х1000 мм. Под столешницей рабочего стола должно быть свободное пространство для ног с размером по высоте не менее 600 мм, по ширине - 500 мм, по глубине - 650 мм. На поверхности рабочего стола для документов необходимо предусматривать размещение специальной подставки, расстояние которой от глаз должно быть аналогично расстоянию от глаз до клавиатуры, что позволяет снизить зрительное утомление.
· Рабочий стул (кресло) должен быть снабжен подъемно-поворотным устройством, обеспечивающим регуляцию высоты сидений и спинки; его конструкция должна предусматривать также изменение угла наклона спинки. Рабочее кресло должно иметь подлокотники. Регулировка каждого параметра должна легко осуществляться, быть независимой и иметь надежную фиксацию. Высота поверхности сидения должна регулироваться в пределах 400-500 мм. Ширина и глубина сиденья должна составлять не менее 400 мм. Высота опорной поверхности спинки должна быть не менее 300 мм, ширина - не менее 380мм. Радиус ее кривизны в горизонтальной плоскости - 400 мм. Угол наклона спинки должен изменяться в пределах 90-110o к плоскости сиденья. Материал покрытия рабочего стула должен обеспечивать возможность легкой очистки от загрязнения. Поверхность сиденья и спинки должна быть полумягкой, с нескользящим, не электризующим и воздухопроницаемым покрытием.
· На рабочем месте необходимо предусматривать подставку для ног. Ее длина должна составлять 400 мм ширина - 300 мм. Необходимо предусматривать регулировку высоты в пределах от 0 - 150 мм и угла её наклона в пределах 0 - 200. Она должна иметь рифленое покрытие и бортик высотой 10 мм по нижнему краю.
Режим труда и отдыха при работе с ПЭВМ и ВДТ должен организовываться в зависимости от вида и категории деятельности.
Виды деятельности подразделяются на следующие группы:
· группа А - работа по считыванию информации с ВДТ или ПЭВМ с предварительным запросом;
· группа Б - работа по вводу информации;
· группа В - творческая работа в режиме диалога.
Для видов деятельности устанавливаются три категории (I, II, III) тяжести и напряженности работы с ПЭВМ и ВДТ
Время непрерывной работы для I кат. - 2 часа; для II и III категории 1,5-2 часа. Сумма времени регламентированных перерывов при 8 - часовом рабочем дне составляет для I кат. - 30 мин.; для II кат. - 50 мин.; для III кат. - 70 мин.
Режим труда и отдыха операторов, работающих с ЭВМ, должен быть следующим: продолжительность непрерывной работы взрослого пользователя персональной электронно-вычислительной машины (ПЭВМ) не должна превышать 2 ч, ребенка - от 10 до 20 мин в зависимости от возраста: для детей 5 - 6 лет - 10 мин, младших школьников - 15, для 5 - 7-х классов - 20, для 8 - 9-х классов - 25 мин. Для старшеклассников рекомендуется работать 30 мин на первом уроке и 20 мин - на втором. Минимальный перерыв определен в 15 мин. Для учащихся 10 - 11 классов должно быть не более 2 уроков в неделю, а для учащихся остальных классов - не более 1 урока в неделю с использованием ПЭВМ.
Эффективность регламентируемых перерывов повышается при их сочетании с производственной гимнастикой. Производственная гимнастика должна включать комплекс упражнений, направленных на восполнение дефицита двигательной активности, снятие напряжения мышц шеи, спины, снижение утомления зрения. Она проводится в течение 5 - 7 мин. 1 - 2 раза в смену.
При профессиональном отборе работников ЭВМ основное внимание обращается на состояние органов зрения: состояния мышечного равновесия глаз, положительный запас аккомодации, цветовую чувствительность, остроту зрения, рефракционную способность глаз, контрастную чувствительность и поле зрения.
1. Анализ результатов измерений интенсивности электромагнитного излучения мониторов персональных компьютеров / В.В. Коломиец [и др.]
Электромагнитное излучение реферат. Безопасность жизнедеятельности и охрана труда.
Реферат по теме Спорт в постсоциалистическом обществе
Курсовая работа по теме База данных "Успеваемость"
Реферат: Сканеры
Способы Обеспечения Исполнения Обязательств Курсовая
Реферат На Тему Загальні Питання Методики Розв’Язування Складених Задач
Смысл Жизни Человека Реферат По Философии
Курсовая Работа По Маркетингу Маркетинговые Исследования
Эссе Развитие Педагога
Реферат: Ancient 2 Essay Research Paper In history
Дипломная работа: Информационные технологии в системах управления гостиничным предприятием
Реферат: Women In Men
Компромисс Сочинение 11 Класс
Сочинение На Тему Отец И Сын Дубровские
Дипломная работа по теме Процесс расчета заработной платы путем разработки и внедрения современной ЭИС
Портрет Базарова Сочинение
Реферат по теме Использование сжатых дисков
Роберт Говард Полное Собрание Сочинений Скачать Бесплатно
Эссе По Английскому Как Писать Шаблон
Контрольная Работа По Математике Подготовка
Реферат: Children In Blake
Разработка мероприятий по предупреждению и ликвидации последствий химической аварии с выбросом аммиака - Безопасность жизнедеятельности и охрана труда дипломная работа
Стихийные бедствия - Безопасность жизнедеятельности и охрана труда реферат
Поняття безпеки й гігієни праці - Безопасность жизнедеятельности и охрана труда статья