Cosmos

Cosmos


V. Blues para un planeta rojo

Página 12 de 34

Inmediatamente después del aterrizaje tenían que enviarse las primeras imágenes. Sabíamos que habíamos elegido lugares poco interesantes. Pero podíamos tener esperanzas. La primera imagen que tomó el vehículo de aterrizaje del Viking 1 fue de uno de sus pies: si el vehículo se iba a hundir en las arenas movedizas de Marte, queríamos enteramos antes de que la nave espacial desapareciese. La imagen se fue formando, línea a línea, hasta que pudimos ver con gran alivio el pie asentado firmemente y sin mojarse sobre la superficie de Marte. Pronto se materializaron otras imágenes, con cada elemento de la fotografía transmitido por radio individualmente a la Tierra.

La primera imagen de la superficie de Marte que haya llegado a la Tierra, radiada el 20 de julio de 1976. A la derecha se observa parte del pie de aterrizaje número 2, asentado de modo seguro sobre la superficie. Más tarde se descubrió que otro pie de aterrizaje estaba enterrado en la arena. La roca vesicular del centro tiene unos diez centímetros de diámetro.

Recuerdo que me quedé asombrado ante la primera imagen del vehículo de aterrizaje que mostraba el horizonte de Marte. Aquello no era un mundo extraño, pensé; conocía lugares como aquel en Arizona, en Colorado y en Nevada.

Había rocas y arena acumulada y una eminencia en la distancia, todo tan natural y espontáneo como cualquier paisaje de la Tierra. Marte era un lugar. Por supuesto, me hubiera sorprendido ver a un explorador canoso surgir de detrás de una duna, conduciendo su mula, pero al mismo tiempo la idea no parecía descabellada. No me había pasado por la cabeza nada remotamente parecido durante todas las horas que pasé examinando las imágenes de la superficie de Venus tomadas por los Venera 9 y 10. Sabía que de un modo u otro ese era el mundo al cual regresaríamos.

La primera imagen a color de la superficie de Marte enviada por el Viking 2 desde la Utopia Planitia.

El paisaje es vigoroso, rojo y encantador: por encima del horizonte asoman rocas arrojadas en la creación de un cráter, pequeñas dunas de arena, rocas que han estado repetidamente cubiertas y descubiertas por el polvo de acarreo, plumas de un material de grano fino arrastradas por el viento. ¿De dónde provenían las rocas? ¿Cuánta arena había arrastrado el viento? ¿Cuál debió ser la historia anterior del planeta para poder crear esas rocas perdidas, esos peñascos sepultados, estas excavaciones poligonales del terreno? ¿De qué estaban hechas las rocas? ¿Del mismo material que la arena? ¿La arena era sólo roca pulverizada o algo más? ¿Por qué es rosáceo el cielo? ¿De qué está compuesto el aire? ¿A qué velocidad van los vientos? ¿Hay temblores de tierra marcianos? ¿Cómo cambian, según las estaciones, la presión atmosférica y el aspecto del paisaje?

El Viking ha proporcionado respuestas definitivas, o por lo menos aceptables, a cada una de estas preguntas. El Marte que nos revela la misión Viking es de un enorme interés, especialmente si recordamos que los lugares de aterrizaje fueron elegidos por su aspecto aburrido. Pero las cámaras no revelaron signo alguno de constructores de canales, ni de coches volantes barsoomianos, ni de espadas cortas, ni de princesas u hombres luchando, ni de thoats o huellas de pisadas, ni siquiera de un cactus o de una rata canguro. En todo lo que alcanzaba la mirada, no había señal alguna de vida.[29]

Quizás haya grandes formas de vida en Marte, pero no en nuestros dos lugares de aterrizaje. Quizás haya formas más pequeñas en cada roca y en cada grano de arena. Durante la mayor parte de su historia las regiones de la Tierra que no estaban cubiertas de agua se parecían bastante a lo que hoy en día es Marte: con una atmósfera rica en dióxido de carbono, con una luz ultravioleta incidiendo violentamente sobre la superficie a través de una atmósfera desprovista de ozono. Las plantas y animales grandes no colonizaron la Tierra hasta la última décima parte de la historia de nuestro planeta. Y sin embargo, durante tres mil millones de años hubo microorganismos por toda la Tierra. Si queremos buscar vida en Marte tenemos que buscar microbios.

El vehículo de aterrizaje Viking extiende las capacidades humanas a paisajes distintos y extraños. Según algunos criterios, es casi tan listo como un saltamontes; según otros, su inteligencia está al nivel de una bacteria. No hay nada insultante en estas comparaciones. La naturaleza tardó cientos de millones de años en crear por evolución una bacteria, y miles de millones de años para hacer un saltamontes. Tenemos solamente un poco de experiencia en estos asuntos, y ya nos convertiremos en expertos. El Viking tiene dos ojos como nosotros, pero a diferencia de los nuestros también trabajan en el infrarrojo; un brazo de muestreo que puede empujar rocas, excavar y tomar muestras del suelo; una especie de dedo que saca para medir la velocidad y la dirección de los vientos; algo equivalente a una nariz y a unas papilas gustativas, que utiliza para captar con mucha mayor precisión que nosotros la presencia de rastros de moléculas; un oído interior con el cual puede detectar el retumbar de los temblores marcianos y las vibraciones más suaves causadas por el viento en la nave espacial; y sistemas para detectar microbios. La nave espacial tiene su propia fuente independiente de energía radiactiva. Toda la información científica que obtiene la radia a la Tierra. Recibe instrucciones desde la Tierra, y de este modo los hombres pueden ponderar el significado de los resultados del Viking y comunicar a la nave espacial que haga algo nuevo.

Pero ¿cuál es el sistema mejor para buscar microbios en Marte, teniendo en cuenta las limitaciones de tamaño, coste y energía? De momento no podemos enviar allí microbiólogos. Yo una vez tuve un amigo, un extraordinario microbiólogo llamado Wolf Vishniac, de la Universidad de Rochester, en Nueva York. A fines de los años cincuenta, cuando apenas empezábamos a pensar seriamente en buscar vida en Marte, participó en una reunión científica en la que un astrónomo expresó su asombro al ver que los biólogos no disponían de ningún instrumento sencillo, fiable y automatizado para buscar microorganismos. Vishniac decidió hacer algo en este sentido.

Desarrolló un pequeño aparato para enviarlo a los planetas. Sus amigos lo llamaron la Trampa del Lobo. Había que transportar hasta Marte una pequeña ampolla de materia orgánica nutriente, obtener una muestra de tierra de Marte para mezclarla con ella, y observar los cambios en la turbidez del líquido a medida que los bacilos marcianos (suponiendo que los hubiese) crecían (suponiendo que lo hicieran). La Trampa del Lobo fue seleccionada junto con otros tres experimentos microbiológicos para viajar a bordo de los vehículos de aterrizaje del Viking. Dos de los otros tres experimentos también se basaban en dar comida a los marcianos. El éxito de la Trampa del Lobo depende de que a los bacilos les guste el agua. Algunos pensaron que Vishniac sólo conseguiría ahogar a sus marcianitos. Pero la ventaja de la Trampa del Lobo es que no imponía condiciones a los microbios marcianos sobre lo que debían hacer con su comida. Solamente tenían que crecer. Los demás experimentos formulaban suposiciones concretas sobre gases que los microbios iban a desprender o absorber, suposiciones que eran poco más que conjeturas.

La Administración Nacional de Aeronáutica y del Espacio (NASA), que dirige el programa de exploración planetario de los Estados Unidos, es propensa a recortar con frecuencia y de un modo imprevisible los presupuestos. Sólo en raras ocasiones hay incrementos imprevistos en los presupuestos. Las actividades científicas de la NASA tienen un apoyo gubernamental muy poco efectivo, y la ciencia es con frecuencia la víctima propiciatoria cuando hay que retirar dinero de la NASA. En 1971 se decidió que debía eliminarse uno de los cuatro experimentos microbiológicos y se cargaron la Trampa del Lobo. Esto fue una decepción abrumadora para Vishniac, que había dedicado doce años a esta investigación.

Wolf Vladimir Vishniac, microbiólogo (1922-1973). Fotografiado en 1973 en la Antártida. (Cedida por Zeddíe Bowen).

Muchos en su lugar se hubieran largado airadamente del Equipo Biológico del Viking. Pero Vishniac era un hombre apacible y perseverante. Decidió que como mejor podía servir a la causa de buscar vida en Marte era trasladándose al medio ambiente que en la Tierra más se parecía al de Marte: los valles secos de la Antártida. Algunos investigadores habían estudiado ya el suelo de la Antártida y llegaron a la conclusión de que los pocos microbios que pudieron encontrar no eran realmente nativos de los valles secos, sino que habían sido transportados allí por el viento desde otros ámbitos más clementes. Vishniac recordó los experimentos con los Botes marcianos, consideró que la vida era tenaz y que la Antártida era perfectamente consecuente con la microbiología. Pensó que si los bichitos terrestres podían vivir en Marte, también podían hacerlo en la Antártida, que era mucho más cálida y húmeda, y que tenía más oxígeno y mucha menos luz ultravioleta. Y a la inversa, pensó que encontrar vida en los valles secos de la Antártida mejoraría a su vez las posibilidades de vida en Marte. Vishniac creía que las técnicas experimentales utilizadas anteriormente para deducir la existencia de microbios no indígenas en la Antártida eran imperfectas. Los nutrientes eran adecuados para el confortable ámbito de un laboratorio microbiológico universitario, pero no estaban preparados para el árido desierto polar. Así pues, el 8 de noviembre de 1973, Vishniac, su nuevo equipo microbiológico, y un compañero geólogo fueron trasladados en helicóptero desde la Estación de Mc Murdo hasta una zona próxima al Monte Balder, un valle seco de la cordillera Asgard. Su sistema consistía en implantar las pequeñas estaciones microbiológicas en el suelo de la Antártida y regresar un mes más tarde a recogerlas. El 10 de diciembre de 1973 salió para recoger muestras en el Monte Balder; su partida se fotografió desde unos tres kilómetros de distancia. Fue la última vez que alguien le vio vivo. Dieciocho horas después su cuerpo fue descubierto en la base de un precipicio de hielo. Se había aventurado en una zona no explorada con anterioridad, parece ser que resbaló en el hielo y cayó rodando y dando saltos a lo largo de 150 metros. Quizás algo llamó su atención, un probable hábitat de microbios, por ejemplo, o una mancha verde donde no tenía que haber ninguna. Jamás lo sabremos. En el pequeño cuaderno marrón que llevaba aquel día, el último apunte dice Recuperada la estación 202. 10 de diciembre de 1973. 22 30 horas. Temperatura del suelo, -10°. Temperatura del aire, -16°. Había sido una temperatura típica de verano en Marte.

Muchas de las estaciones microbiológicas de Vishniac están aún instaladas en la Antártida. Pero las muestras recogidas fueron examinadas, siguiendo sus métodos, por sus colegas profesionales y sus amigos. Se encontró, en prácticamente cada lugar examinado, una amplia variedad de microbios que habrían sido indetectables con técnicas de tanteo convencionales. Su viuda, Helen Simpson Vishniac, descubrió entre sus muestras una nueva especie de levadura, aparentemente exclusiva de la Antártida. Grandes rocas traídas de la Antártida por esa expedición, y examinadas por Imre Friedmann, resultaron tener una fascinante microbiología: a uno o dos milímetros de profundidad dentro de la roca, las algas habían colonizado un mundo diminuto, en el cual quedaban aprisionadas pequeñas cantidades de agua y se hacían líquidas. Un lugar como este hubiera sido más interesante todavía en Marte, porque la luz visible necesaria para la fotosíntesis penetraría hasta esa profundidad, pero la luz ultravioleta bactericida quedaría por lo menos parcialmente atenuada.

Como el plan de una misión espacial queda concluido muchos años antes del lanzamiento, y debido a la muerte de Vishniac, los resultados de sus experimentos antárticos no influyeron en el sistema seguido por el Viking para buscar vida en Marte. En general, los experimentos microbiológicos no se llevaron a cabo en la baja temperatura marciana, y la mayoría no preveían tiempos largos de incubación. Todos ellos formulaban suposiciones bastante concretas sobre cómo tenía que ser el metabolismo marciano. No había posibilidad de buscar vida dentro de las rocas.

El brazo de muestreo del Viking 1, en Marte, recoge del suelo muestras para los experimentos microbiológicos, dejando luego (derecha) una zanja superficial. (Cedida por la NASA).

Cada vehículo de aterrizaje del Viking iba equipado con un brazo de muestreo para sacar material de la superficie y retirarlo lentamente hacia el interior de la nave espacial, a fin de transportar luego las partículas en pequeñas tolvas, como un tren eléctrico, hacia cinco experimentos diferentes: uno sobre la química inorgánica del suelo, otro para buscar moléculas orgánicas en el polvo y en la arena, y tres para buscar vida microbiana. Cuando buscamos vida en un planeta formulamos ciertas suposiciones. Intentamos en la medida de lo posible no dar por sentado que la vida será en otras partes como la de aquí. Pero lo que podemos hacer tiene sus límites. Sólo conocemos de modo detallado la vida en la Tierra. Los experimentos biológicos del Viking suponen un primer esfuerzo de exploración pero no representan en absoluto una búsqueda definitiva de vida en Marte. Los resultados han sido tentadores, fastidiosos, provocativos, estimulantes, y por lo menos hasta hace poco, no han llevado a ninguna conclusión definitiva.

Cada uno de los tres experimentos microbiológicos responde a un tipo de pregunta, pero siempre a una pregunta sobre el metabolismo marciano. Si hay microorganismos en el suelo de Marte, deben ingerir alimento y desprender gases de desecho; o deben de tomar gases de la atmósfera y convertirlos, quizás con la ayuda de luz solar, en materiales utilizables. Por lo tanto, llevamos comida a Marte confiando en que los marcianos, suponiendo que haya alguno, la encuentren sabrosa. Luego esperamos que se desprenda del suelo algún nuevo gas interesante. O bien suministramos nuestros propios gases marcados radiactivamente para ver si se convierten en materia orgánica, en cuyo caso deducimos la existencia de pequeños marcianos.

De acuerdo con los criterios fijados antes del lanzamiento, dos de los tres experimentos microbiológicos del Viking parecen haber dado resultados positivos. Primero, al mezclar el suelo marciano con una sopa orgánica de la Tierra, algo del suelo descompuso químicamente la sopa; casi como si hubiera microbios respirando y metabolizando un paquete de comida de la Tierra. Segundo, al introducir los gases de la Tierra en la muestra del suelo marciano, los gases se combinaron químicamente con el suelo; casi como si hubiera microbios fotosintetizadores, que generaron materia orgánica a partir de los gases atmosféricos. Los resultados positivos de la microbiología marciana se obtuvieron en siete muestreos diferentes y en dos lugares de Marte separados por 5000 kilómetros de distancia.

Roca con arena encima conocida como el «Gran Joe» en Crise. Si el Viking 1 hubiese aterrizado sobre ella, la nave espacial se habría estrellado. (Cedida por la NASA).

Pero la situación es compleja, y quizás los criterios de éxito experimental fueron inadecuados. Se hicieron enormes esfuerzos para montar los experimentos microbiológicos del Viking y ponerlos a prueba con toda una variedad de microbios. Pero se trabajó muy poco para calibrar los experimentos con probables materiales inorgánicos de la superficie de Marte. Marte no es la Tierra. Como nos recuerda el legado de Percival Lowell, podemos muy bien engañarnos. Quizás el suelo marciano contiene una química inorgánica exótica, capaz por sí misma y en ausencia de microbios marcianos, de oxidar las materias comestibles. Quizás hay algún catalizador inorgánico especial en el suelo, no vivo, capaz de atrapar gases atmosféricos y convertirlos en moléculas orgánicas.

Experimentos recientes sugieren que quizás sea así. En la gran tormenta de polvo marciana del año 1971, el espectrómetro infrarrojo del Mariner 9 obtuvo datos espectrales del polvo. Al analizar ese espectro, O. B. Tollon, J. B. Pollack y yo nos encontramos con que ciertos rasgos parecían responder mejor a la montmorillonita y a otros tipos de arcilla. Observaciones posteriores por el vehículo de aterrizaje del Viking apoyan la identificación de las arcillas arrastradas por el viento en Marte. Ahora bien, A. Banin y J. Rishpon se han encontrado con que podían reproducir algunos de los aspectos claves tanto los que parecían fotosíntesis como los que parecían respiración de los experimentos microbiológicos positivos del Viking, si en los experimentos de laboratorio ponían tales arcillas en lugar del suelo marciano. Las arcillas tienen una superficie activa compleja, propensa a absorber y a emitir gases y a catalizar reacciones químicas. Es demasiado pronto para decir que todos los resultados microbiológicos del Viking pueden explicarse por la química inorgánico, pero un resultado de este tipo ya no nos sorprendería. La hipótesis de la arcilla no excluye de ningún modo que haya vida en Marte, pero nos lleva realmente a un punto tal que nos permite decir que no hay pruebas convincentes para la microbiología en Marte.

Incluso así, los resultados de Banin y Rishpon son de una gran importancia biológica, pues demuestran que a pesar de la ausencia de vida puede haber un tipo de suelo que haga algunas de las cosas que hace la vida. Es posible que en la Tierra, antes de haber vida, ya hubiera habido procesos químicos en el suelo semejantes a los ciclos de respiración y fotosíntesis, que quizás luego incorporó la vida al nacer. Además, sabemos que las arcillas de montmorillonita son un potente catalizador para la combinación de aminoácidos en cadenas moleculares más largas, semejantes a las proteínas. Las arcillas de la Tierra primitiva pueden haber sido la forja de la vida, y la química del Marte actual puede ofrecer claves esenciales sobre el origen y la historia inicial de la vida en nuestro planeta.

La superficie marciana muestra muchos cráteres de impacto, cada uno llamado según el nombre de una persona, normalmente de un científico. El cráter Vishniac está situado de modo idóneo en la región antártica de Marte. Vishniac no dijo que hubiese vida en Marte, simplemente que era posible, y que era extraordinariamente importante saber si la había. Si existe vida en Marte, tendremos una oportunidad única para poner a prueba la generalidad de nuestra forma de vida. Y si no hay vida en Marte, un planeta bastante similar a la Tierra, debemos entender el porqué; ya que en ese caso, como recalcó Vishniac, tenemos la clásica confrontación científica del experimento y del control.

El descubrimiento de que los resultados microbiológicos del Viking pueden ser explicados por las arcillas, de que no implican necesariamente la existencia de vida, ayuda a resolver otro misterio: el experimento de química orgánica del Viking no manifestó ni rastro de materia orgánica en el suelo de Marte. Si hay vida en Marte, ¿dónde están los cuerpos muertos? No pudo hallarse molécula orgánica alguna; ni los bloques constructivos de proteínas y de ácidos nucleicos, ni hidrocarbonos simples, es decir, ningún rastro de la sustancia de la vida en la Tierra. No es necesariamente una contradicción, porque los experimentos microbiológicos del Viking son un millar de veces más sensibles (por átomo de carbono equivalente) que los experimentos químicos del Viking, y parece que detectan materia orgánica sintetizada en el suelo marciano. Pero esto no deja mucho margen. El suelo terrestre está cargado con residuos orgánicos de organismos vivos anteriormente; el suelo de Marte tiene menos materia orgánica que la superficie de la Luna. Si nos aferramos a la hipótesis de vida, podemos suponer que los cuerpos muertos han sido destruidos por la superficie de Marte, que es químicamente reactiva y oxidante, como un germen en una botella de peróxido de hidrógeno; o que hay vida, pero de una clase en la cual la química orgánica juega un papel menos básico que el que tiene en la vida de la Tierra.

Pero esta última alternativa me parece un argumento especioso: soy, aunque me pese, un declarado chauvinista del carbono. El carbono abunda en el Cosmos. Construye moléculas maravillosamente complejas, buenas para la vida. También soy un chauvinista del agua. El agua constituye un sistema solvente ideal para que pueda actuar en él la química orgánica, y permanece liquida en una amplia escala de temperaturas. Pero a veces me pregunto: ¿Es posible que mi cariño por estos materiales se deba, en cierto modo, a que estoy compuesto principalmente por ellos? ¿Estamos basados en el carbono y en el agua porque esos materiales eran abundantes en la Tierra cuando apareció en ella la vida? ¿Es posible que la vida en otro lugar en Marte, por ejemplo esté compuesta de sustancias distintas?

El vehículo de aterrizaje Viking, simulando una operación en el Valle de la Muerte, California. Entre las dos torres que contienen las cámaras de televisión está la funda que guarda el brazo de muestreo todavía sin desplegar. (Fotografía, Bill Ray).

Yo soy un conjunto de agua, de calcio y de moléculas orgánicas llamado Carl Sagan. Tú eres un conjunto de moléculas casi idénticas, con una etiqueta colectiva diferente. Pero ¿es eso todo? ¿No hay nada más aparte de las moléculas? Hay quien encuentra esta idea algo degradante para la dignidad humana. Para mí es sublime que nuestro universo permita la evolución de maquinarias moleculares tan intrincadas y sutiles como nosotros.

Pero la esencia de la vida no son tanto los átomos y las simples moléculas que nos constituyen como la manera de combinarse entre sí. De vez en cuando alguien nos recuerda que las sustancias químicas que forman el cuerpo humano cuestan noventa y siete centavos o diez dólares o alguna cifra de este tipo; es algo deprimente descubrir que nuestros cuerpos están tan poco valorados. Sin embargo, estas estimaciones son válidas sólo para los seres humanos reducidos a sus componentes más simples posibles. Nosotros estamos constituidos principalmente por agua, que apenas cuesta nada; el carbono se valora en forma de carbón; el calcio de nuestros huesos en forma de yeso; el nitrógeno de nuestras proteínas en forma de aire (también barato); el hierro de nuestra sangre en forma de clavos herrumbrosos. Si sólo supiésemos esto, podríamos sentir la tentación de reunir todos los átomos que nos constituyen, mezclarlos en un gran recipiente y agitar. Podemos estarnos todo el tiempo que queramos haciéndolo. Pero al final lo único que conseguiremos es una aburrida mezcla de átomos. ¿Qué otra cosa podíamos esperar?

Harold Morowitz ha calculado lo que costaría reunir los constituyentes moleculares correctos que componen un ser humano, comprando las moléculas en casas de suministros químicos. La respuesta resulta ser de diez millones de dólares aproximadamente, lo cual debería de hacernos sentir a todos un poco mejor. Pero ni aún así podríamos mezclar esas sustancias químicas y ver salir del bote a un ser humano. Eso está muy por encima de nuestras posibilidades, y lo estará probablemente durante un período muy largo de tiempo. Afortunadamente hay otros métodos menos caros y más seguros de hacer seres humanos.

Pienso que las formas de vida de muchos mundos estarán compuestas en principio por los mismos átomos que tenemos aquí, quizás también por muchas de las mismas moléculas básicas, como proteínas y ácidos nucleicos; pero combinados de modos desconocidos. Quizás si hay organismos flotando en las densas atmósferas planetarias tendrán una composición atómica muy parecida a la nuestra, pero es posible que carezcan de huesos y que por lo tanto no necesiten mucho calcio. Quizás en otros lugares se utilice un solvente diferente del agua. El ácido fluorhídrico puede servir bastante bien, aunque no haya una gran cantidad de flúor en el Cosmos; el ácido fluorhídrico causaría mucho daño al tipo de moléculas de que estamos hechos; pero otras moléculas orgánicas, las ceras de parafina, por ejemplo, se mantienen perfectamente estables en su presencia. El amoníaco líquido resultaría un sistema solvente todavía mejor, ya que el amoníaco es muy abundante en el Cosmos. Pero sólo es líquido en mundos mucho más fríos que la Tierra o que Marte. El amoníaco es normalmente un gas en la Tierra, como le sucede al agua en Venus. O quizás haya cosas vivas que no tienen ningún sistema solvente: una vida de estado sólido donde en lugar de moléculas flotando hay señales eléctricas que se propagan.

Pero estas suposiciones no salvan la idea de que los experimentos del vehículo de aterrizaje Viking indican la presencia de vida en Marte. En ese mundo bastante parecido a la Tierra, con abundancia de carbono y de agua, la vida, si es que existe, debería estar basada en la química orgánica. Los resultados de química orgánica, como los resultados fotográficos y microbiológicos, coinciden todos ellos en que a finales de los setenta no hay vida en las partículas finas de Crise y Utopía. Quizás a algunos milímetros de profundidad bajo las rocas (como en los valles secos de la Antártida), o en algún otro lugar del planeta, o en una época anterior, de clima más benigno. Pero no en el lugar y en el momento en que nosotros buscábamos.

La exploración de Marte por el Viking constituye una misión de la mayor importancia histórica; es la primera búsqueda seria de otros posibles tipos de vida, la primera supervivencia de una nave espacial funcionando durante más de una hora en cualquier otro planeta (el Viking 1 sobrevivió durante años), el origen de una rica cosecha de datos de geología, sismología, mineralogía, meteorología y media docena más de ciencias de otro mundo.

¿Cómo deberíamos proseguir estos espectaculares avances? Algunos científicos quieren enviar un aparato automático capaz de aterrizar, sacar muestras del suelo y devolverlas a la Tierra, para examinarlas con gran detalle en los grandes y complejos laboratorios de la Tierra y no en los limitados laboratorios microminiaturizados que podemos enviar a Marte.

De este modo podrían resolverse la mayor parte de las ambigüedades que comportan los experimentos microbiológicos del Viking. Podríamos determinar la química y la mineralogía del suelo; podríamos abrir las rocas en busca de vida subsuperficial; podríamos realizar cientos de pruebas en busca de química orgánica y de vida, incluyendo exámenes microscópicos directos, en una amplia gama de condiciones. Podríamos utilizar incluso las técnicas de tanteo de Vishniac. Una misión así resultaría bastante cara, pero probablemente entra dentro de nuestras capacidades tecnológicas.

Sin embargo, se nos plantea un nuevo problema: la contaminación de retorno. Si deseamos examinar en la Tierra muestras del suelo marciano en busca de microbios, no podemos por supuesto esterilizar de antemano las muestras. El objetivo de la expedición es traerlas vivas hasta aquí. Pero ¿y entonces qué? ¿Podrían plantear un riesgo para la salud pública los microorganismos marcianos llegados a la Tierra? Los marcianos de H. G. Wells y de Orson Welles no se dieron cuenta hasta que fue demasiado tarde que sus defensas inmunológicas resultaban inútiles contra los microbios de la Tierra. ¿Es posible lo contrario? El problema es serio y difícil. Puede que no haya micromarcianos. Si existen, quizás podamos comernos un kilo sin sufrir efectos negativos. Pero no es seguro, y está en juego algo muy valioso. Si queremos llevar a la Tierra muestras marcianas sin esterilizar, hay que disponer de un sistema de contención asombrosamente seguro. Hay naciones que desarrollan y almacenan reservas de armas bacteriológicas. Parece que han sufrido accidentes ocasionales, pero sin producir todavía, según creo, pandemias globales: quizás sea posible enviar sin riesgo muestras marcianas a la Tierra. Quisiera estar muy seguro antes de proyectar una misión para el envío a la Tierra de estas muestras.

Hay otro modo de investigar Marte y todo el conjunto de delicias y descubrimientos que nos reserva este planeta heterogéneo. La emoción más constante que sentía al trabajar con las imágenes del vehículo de aterrizaje Viking fue la frustración provocada por nuestra inmovilidad. Inconscientemente empecé a pedir a la nave espacial que se pusiese al menos de puntillas, como si este laboratorio diseñado para la inmovilidad, se negara obstinadamente a dar un miserable saltito. ¡Cómo nos hubiese gustado quitar aquella duna con el brazo de muestreo, buscar vida debajo de aquella roca, comprobar si aquella cresta lejana era la muralla de un cráter! Sabía además que no muy lejos, hacia el sudeste, estaban los cuatro sinuosos canales de Crise. Los resultados del Viking eran tentadores y provocativos, pero yo conocía un centenar de lugares en Marte mucho más interesantes que nuestras zonas de aterrizaje. El instrumento ideal es un vehículo de exploración capaz de llevar a cabo experimentos avanzados, especialmente en el campo de la imagen, de la química y de la biología. La NASA está desarrollando prototipos de tales vehículos exploradores: saben por sí solos pasar sobre las rocas, evitar la caída en un barranco, salir de lugares difíciles. Entra dentro de nuestras posibilidades depositar un vehículo de exploración en Marte capaz de echar un vistazo a su entorno, descubrir el lugar más interesante de su campo de visión, y estar allí a la mañana siguiente. Cada día un nuevo lugar, una travesía compleja y zigzagueante por la variada topografía de este atractivo planeta.

Los beneficios científicos de una misión tal serían enormes, aunque no haya vida en Marte. Podríamos pasearnos por los antiguos valles fluviales, subir las laderas de una de las grandes montañas volcánicas, atravesar los extraños terrenos escalonados de las terrazas polares heladas, o acercarnos hasta las llamativas pirámides de Marte.[30] El interés público en tal misión sería considerable. Cada día llegaría una nueva serie de imágenes a las pantallas de televisión de nuestras casas. Podríamos trazar la ruta, ponderar lo descubierto, sugerir nuevos destinos. El viaje sería largo y el vehículo de exploración obedecería a las órdenes radiadas desde la Tierra. Contaríamos con mucho tiempo para incorporar al plan de la misión nuevas y buenas ideas. Mil millones de personas podrían participar en la exploración de otro mundo.

El área de la superficie de Marte equivale exactamente a la de la tierra firme en la Tierra. Es evidente que un reconocimiento completo nos ocupará durante siglos. Pero llegará un día en que Marte esté totalmente explorado; cuando aeronaves automáticas lo hayan cartografiado desde lo alto, cuando los vehículos de exploración hayan registrado con minuciosidad su superficie, cuando sus muestras hayan llegado sin peligro a la Tierra, cuando los hombres se hayan paseado por las arenas de Marte. ¿Y entonces qué? ¿Qué haremos con Marte?

Hay tantos ejemplos de abuso humano de la Tierra que el mero hecho de formular esta pregunta da escalofríos. Si hay vida en Marte creo que no deberíamos hacer nada con el planeta. Marte pertenecería entonces a los marcianos, aunque los marcianos fuesen sólo microbios. La existencia de una biología independiente en un planeta cercano es un tesoro incalculable y creo que la conservación de esa vida debe reemplazar a cualquier otra posible utilización de Marte. Sin embargo, supongamos que Marte no tiene vida. El planeta no constituye una fuente plausible de materias primas porque durante muchos siglos el flete desde Marte a la Tierra será demasiado caro. Pero ¿podríamos vivir en Marte? ¿Podríamos en algún sentido hacer habitable Marte?

Se trata sin duda de un mundo encantador, pero desde nuestro limitado punto de vista hay muchas cosas inadecuadas en Marte, principalmente la escasa abundancia de oxígeno, la ausencia de agua líquida y el elevado flujo ultravioleta (las bajas temperaturas no suponen un obstáculo insuperable, como demuestran las estaciones científicas que funcionan todo el año en la Antártida). Todos estos problemas se podrían solventar si pudiésemos hacer más aire. Con presiones atmosféricas mayores sería posible tener agua líquida. Con más oxígeno podríamos respirar la atmósfera, y se formaría ozono que protegería la superficie de la radiación solar ultravioleta. Los canales sinuosos, las placas polares superpuestas y otras pruebas indican que Marte tuvo alguna vez una atmósfera más densa. Es improbable que esos gases hayan escapado de Marte. Están, por lo tanto, en algún lugar del planeta. Algunos se han combinado químicamente con las rocas de la superficie. Algunos están en la subsuperficie helada. Pero la mayoría pueden estar en los actuales casquetes polares de hielo.

Izquierda: Casquete polar septentrional de Marte, rodeado de campos de dunas de arena oscura. Este casquete está formado principalmente de agua helada; el casquete polar meridional lo está principalmente de dióxido de carbono congelado. Para oscurecer los casquetes sería más fácil desplazar la arena circundante que transportar el material desde la Tierra. Pero los vientos volverían a limpiar los casquetes. Foto del Mariner 9. (Cedida por la NASA). Derecha: Imagen moderna del polo norte de Marte, tomada por el Mars Global Surveyor (NASA/JL).

Para evaporar los casquetes tenemos que calentarlos; quizás podríamos cubrirlos con un polvo oscuro, que los calentara al absorber más luz solar, lo contrario de lo que hacemos en la Tierra cuando destruimos bosques y prados. Pero el área superficial de los casquetes es muy grande. Se precisarían 1200 cohetes Saturno 5 para transportar el polvo necesario desde la Tierra a Marte; incluso así los vientos podrían eliminar el polvo de los casquetes polares. Un sistema mejor sería inventar algún material oscuro capaz de realizar copias de sí mismo, una pequeña máquina de polvo que entregaríamos a Marte y que se dedicaría a reproducirse por todo el casquete polar utilizando los materiales indígenas. Hay una categoría de máquinas como estas. Las llamamos plantas. Algunas son muy duras y resistentes. Sabemos que hay por lo menos algunos microbios terrestres que pueden sobrevivir en Marte. Se necesita un programa de selección artificial y de ingeniería genética de las plantas oscuras —quizás líquenes— que puedan sobrevivir en el ambiente mucho más severo de Marte. Si pudiésemos criar tales plantas, podríamos imaginárnoslas sembradas en las grandes extensiones de los casquetes polares de Marte, echando raíces, creciendo, ennegreciendo los casquetes de hielo, absorbiendo la luz solar, calentando el hielo, y liberando a la vieja atmósfera marciana de su largo cautiverio. Incluso podemos imaginarnos una reencarnación del pionero norteamericano Johnny Appleseed marciano, robot o persona, que recorría los desiertos helados de los polos cumpliendo una tarea que beneficiaría solamente a las futuras generaciones de humanos.

Este concepto general se llama terraformación: el cambio de un paisaje extraño por otro más adecuado a los seres humanos. Durante miles de años los hombres con cambios en el efecto de invernadero y en el albedo, sólo han conseguido perturbar la temperatura global de la Tierra un grado aproximadamente, aunque si sigue el ritmo actual de quema de combustibles fósiles y de destrucción de los bosques y praderas podremos cambiar la temperatura de la Tierra un grado más en sólo un siglo o dos. Estas y otras consideraciones sugieren que la escala temporal de una terraformación significativa en Marte es probablemente de cientos a miles de años. En una época futura con una tecnología muy avanzada podríamos desear no solamente incrementar la presión atmosférica total y posibilitar la presencia de agua líquida, sino también conducir agua líquida desde los casquetes polares en fusión hasta las regiones ecuatoriales más calientes. Hay desde luego un método para esto: construir canales.

El hielo en fusión de la superficie y de la subsuperficie sería transportado a través de una gran red de canales. Pero esto fue propuesto, erróneamente, por Percival Lowell no hace aún cien años, como un hecho real que sucedía ya en Marte. Tanto Lowell como Wallace comprendieron que el carácter relativamente inhóspito de Marte se debía a la escasez de agua. Bastaba disponer de una red de canales para remediar esta escasez, y la habitabilidad de Marte se convertía en una realidad. Lowell realizó sus observaciones en unas condiciones visuales muy difíciles. Otros, como Schiaparelli, habían observado ya algo parecido a canales; recibieron el nombre de canali antes de que Lowell iniciara la relación amorosa que mantuvo con Marte toda su vida. Los seres humanos tienen un talento manifiesto para engañarse a sí mismos cuando se ven afectadas sus emociones, y hay pocos conceptos más conmovedores que la idea de un planeta vecino habitado por seres inteligentes.

Es posible en cierto modo que el poder de la idea de Lowell resulte una especie de premonición. Su red de canales fue construida por los marcianos. Incluso puede que esto sea una profecía correcta: si alguna vez se terraforma aquel planeta, será una obra realizada por hombres cuya residencia permanente y su afiliación planetaria será Marte. Los marcianos seremos nosotros.

Mosaico de Marte, compuesto por más de 100 imágenes obtenidas por el orbitador Viking (NASA/JPL).

La gran Mancha Roja de Júpiter, un sistema tormentoso gigante de 40.000 kilómetros de longitud y 11.000 de ancho que se eleva por encima de las nubes adyacentes. Robert Hooke lo observó por primera vez en 1664 y lo confirmó más tarde Christiaan Huygens. El material de la Mancha Roja gira una vez cada seis días terrestres; el óvalo blanco, abajo a la derecha, gira en sentido contrario. Arriba a la izquierda hay nubes que están adelantando a la Mancha Roja de derecha a izquierda. Se desconoce el motivo de que la Mancha sea roja, y la razón de que haya solamente una Mancha Roja de este tamaño. Imagen del Voyager 2. (Cedida por la NASA).

Ir a la siguiente página

Report Page