maximum-absolute-sum-of-any-subarray

maximum-absolute-sum-of-any-subarray


You are given an integer array nums. The absolute sum of a subarray [numsl, numsl+1, ..., numsr-1, numsr] is abs(numsl + numsl+1 + ... + numsr-1 + numsr).



Return the maximum absolute sum of any (possibly empty) subarray of nums.



Note that abs(x) is defined as follows:




  • If x is a negative integer, then abs(x) = -x.

  • If x is a non-negative integer, then abs(x) = x.



 


Example 1:



Input: nums = [1,-3,2,3,-4]
Output: 5
Explanation: The subarray [2,3] has absolute sum = abs(2+3) = abs(5) = 5.


Example 2:



Input: nums = [2,-5,1,-4,3,-2]
Output: 8
Explanation: The subarray [-5,1,-4] has absolute sum = abs(-5+1-4) = abs(-8) = 8.


 


Constraints:




  • 1 <= nums.length <= 105

  • -104 <= nums[i] <= 104


Report Page