count-special-triplets

count-special-triplets


You are given an integer array nums.



A special triplet is defined as a triplet of indices (i, j, k) such that:




  • 0 <= i < j < k < n, where n = nums.length

  • nums[i] == nums[j] * 2

  • nums[k] == nums[j] * 2



Return the total number of special triplets in the array.



Since the answer may be large, return it modulo 109 + 7.



 


Example 1:




Input: nums = [6,3,6]



Output: 1



Explanation:



The only special triplet is (i, j, k) = (0, 1, 2), where:




  • nums[0] = 6, nums[1] = 3, nums[2] = 6

  • nums[0] = nums[1] * 2 = 3 * 2 = 6

  • nums[2] = nums[1] * 2 = 3 * 2 = 6




Example 2:




Input: nums = [0,1,0,0]



Output: 1



Explanation:



The only special triplet is (i, j, k) = (0, 2, 3), where:




  • nums[0] = 0, nums[2] = 0, nums[3] = 0

  • nums[0] = nums[2] * 2 = 0 * 2 = 0

  • nums[3] = nums[2] * 2 = 0 * 2 = 0




Example 3:




Input: nums = [8,4,2,8,4]



Output: 2



Explanation:



There are exactly two special triplets:




  • (i, j, k) = (0, 1, 3)


    • nums[0] = 8, nums[1] = 4, nums[3] = 8

    • nums[0] = nums[1] * 2 = 4 * 2 = 8

    • nums[3] = nums[1] * 2 = 4 * 2 = 8



  • (i, j, k) = (1, 2, 4)

    • nums[1] = 4, nums[2] = 2, nums[4] = 4

    • nums[1] = nums[2] * 2 = 2 * 2 = 4

    • nums[4] = nums[2] * 2 = 2 * 2 = 4






 


Constraints:




  • 3 <= n == nums.length <= 105

  • 0 <= nums[i] <= 105


Report Page