Задача М.Гарднера

Задача М.Гарднера


Один молодой человек живет в Манхэттене возле станции метро. У него есть две знакомые девушки. Одна из них живёт в Бруклине, вторая – в Бронксе. Когда он едет к девушке из Бруклина, то садится в поезд, подходящий к платформе со стороны центра города. Когда же едет к девушке из Бронкса, то садится в поезд, идущий в центр. Поскольку обе девушки нравятся ему одинаково, он просто садится в тот поезд, который приходит первым. Таким образом, в выборе, куда ехать, он полагается на случай. Молодой человек приходит на станцию каждую субботу в разное время. И в Бруклин, и в Бронкс поезда ходят с одинаковым интервалом в 10 минут. Тем не менее по каким-то непонятным причинам большую часть времени он проводит с девушкой из Бруклина: в среднем из каждых десяти поездок девять приходится на Бруклин. Почему же у Бруклина такой огромный перевес?


Решение головоломки можно легко объяснить особенностью составления расписания поездов. Несложно составить его так, что поезд, следующий Бронкс, всегда прибывает на минуту позже бруклинского, в то время как интервалы движения обоих поездов одинаковы —10 минут. Отсюда ясно, что поезд в Бронкс прибудет раньше бруклинского только в том случае, если молодой человек явится на вокзал в течение этого минутного интервала. В любое же другое время (то есть в течение 9-минутного интервала) бруклинский поезд будет прибывать первым. Поскольку молодой человек приходит в совершенно произвольные моменты времени, он с вероятностью 0,9 отправляется в Бруклин.

Математическая эссенция


Report Page