Взаимосвязь обменов в организме. Патохимия сахарного диабета - Биология и естествознание курсовая работа

Взаимосвязь обменов в организме. Патохимия сахарного диабета - Биология и естествознание курсовая работа




































Главная

Биология и естествознание
Взаимосвязь обменов в организме. Патохимия сахарного диабета

Основные стадии метаболизма: анаболическая и катаболическая. Расчет уровня глюкозы в крови как индикатора состояния углеводного метаболизма. Алиментарная и эмоциональная гипергликемия. Липидный и азотистый обмен в организме. Патохимия сахарного диабета.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1. Понятие о метаболизме, его стадиях
Любой живой организм - это открытая система, то есть его жизнедеятельность тесно связана с окружающей средой, откуда он получает питательные вещества и кислород, а выделяет конечные продукты распада. Самые разнообразные преобразования, происходящие в организме с поступившими соединениями, носят название метаболизма, который включает две тесно взаимообусловленных фазы: анаболическую и катаболическую. Первая представляет эндогенный синтез веществ или их поступление извне. Катаболизм - прямо противоположный процесс: распад химической молекулы или выделение её из организма.
Естественно, чтобы организм функционировал нормально, необходимы тесные контакты между физическими и химическими превращениями самых разнообразных по природе соединений.
Особая роль в регулировании этих процессов принадлежит балансу энергии, причем катаболизм обычно сопровождается её высвобождением, а большинство реакций биосинтеза принадлежит к эндэргоническим.
Все известные классы органических веществ, обнаруживаемых в тканях, включают представителей от самых простых, не способных к гидролизу, до очень сложных биополимеров. Поэтому в катаболической фазе выделяют три стадии: гидролитическую, специфическую и неспецифическую. Гидролитическая стадия характеризуется распадом сложных углеводов, липидов, полинуклеотидов и белков до монопроизводных. Она локализуется в желудочно-кишечном тракте, где в роли субстратов выступают пищевые компоненты, а также в тканях - в этот процесс вовлекаются вышеперечисленные эндогенные представители.
Специфическая стадия - это дальнейший окислительный (аэробный, реже - анаэробный) распад моноструктур. Основная цель - привести специфические превращения к одному знаменателю (чтобы уменьшить количество необходимых ферментов). Такими общими метаболитами служат ацетил-КоА, пируват и некоторые соединения цикла трикарбоновых кислот (схема 1). После гидролиза полисахаридов образуются моносахариды, в первую очередь, глюкоза. Она поступает в клетку и фосфорилируется под действием фермента гексокиназы. Фосфорный эфир глюкозы (глюкозо-6-фосфат) подвергается гликолизу, конечным продуктом которого является пируват. В митохондриях эта -кетокислота под влиянием полиферментного комплекса преобразуется в ацетил-КоА (окислительное декарбоксилирование пирувата). Аналогичные изменения происходят с продуктом гидролиза многих дву- и более компонентных липидов (нейтральных жиров, глицерофосфатидов) - глицерином. Он также фосфорилируется и после окисления превращается в дигидроксиацетонфосфат или глицероальдегид-3-фосфат, которые являются метаболитами гликолиза. Конечное соединение последнего, как уже было указано выше, используется в процессе окислительного декарбоксилирования ПВК. Высшие жирные кислоты - компоненты большинства липидов - служат субстратами аэробного окисления, в результате образуется ацетил-КоА.
Рассмотрим синтез эндогенной воды. Дело в том, что кислород в принципе довольно токсичное соединение, поэтому фактически так называемый аэробный распад органических веществ осуществляется обычно не присоединением кислорода к субстрату, а отщеплением от последнего водорода. Электроны и протоны, проходя через ряд промежуточных переносчиков, достигают кислорода с последующим образованием воды (биологическое окисление). В этом процессе происходит ступенчатое высвобождение энергии (чаще три, реже два раза). Почти половина её используется для синтеза АТФ из АДФ и неорганического фосфата (окислительное фосфорилирование). Другая часть, выделяясь в виде тепла, обеспечивает постоянство температуры тела теплокровных животных, в том числе человека. В природе есть много веществ, в первую очередь, токсины патогенной микрофлоры, которые нарушают взаимодействие биологического окисления с окислительным фосфорилированием, в результате возрастает количество тепловой энергии (гипертермия) и снижается генез АТФ. Последний является универсальным макроэргом, который используется в мышечном сокращении, передаче нервного импульса, в биосинтезе различных соединений. Поэтому патология биоэнергетических процессов проявляется развитием мышечной слабости, общим недомоганием (симптоматика, характерная для большинства инфекционных заболеваний).
Следует отметить, главная реакция, ответственная за перенос водорода на кислород, обеспечивается следующими переносчиками: НАД , ФАД или ФМН, витаминами Е или К, коэнзимом Q. Поэтому дефициты витаминов РР (компонент НАД + ), В 2 (составная часть ФАД, ФМН), К, токоферолов провоцируют развитие патологических состояний.
Если сопоставлять обе фазы метаболизма - анаболическую и катаболическую, окажется, что они тесно взаимосвязаны между собой. Продукты расщепления используются в организме для синтеза различных веществ, кроме того, энергия, высвобождающаяся при распаде соединений, необходима для образования макромолекул. И третье связующее звено: в реакциях окисления, характерных для катаболизма, образуются так называемые восстановительные эквиваленты (например, НАД+Н + , НАДФН+Н + , ФАДН 2 ), водороды которых входят в состав органических соединений.
Таким образом, в анаболической фазе также можно выделить три стадии, причем первая - неспецифическая - общая для обеих фаз. Её продукты могут поставляться для генеза продуктов липидного, углеводного и азотистого происхождения. Вторая стадия анаболизма завершается образованием простейших специфических представителей разных классов (моносахаридов, высших жирных кислот, аминокислот и др.). Синтез биополимеров может идти двумя способами. Для получения гликогена или гетерополисахаридов (гиалуроновой кислоты, хондроитинсульфата, гепарина) требуются лишь активированные субстраты (УДФ-глюкоза, УДФ-галактоза и их производные), соответствующие ферменты. Генез же полипептидов (белков) называется матричным, так как для обеспечения специфичности протеина необходима матрица, роль которой выполняет информационная РНК, в свою очередь, для синтеза последней матрицей служит транскриптон ДНК.
Как мы ни стараемся разделить все протекающие в клетке процессы, сделать это невозможно. Все они тесно связаны между собой, жёстко зависят друг от друга. Поэтому повреждение хотя бы одного звена всегда приводит к глубоким нарушениям самых разных сторон метаболизма. Для иллюстрации данного суждения остановимся на характеристике взаимоотношений углеводного метаболизма с другими видами обменов.
Практически все ткани способны накапливать глюкозу путем её полимеризации в гликоген, который затем при необходимости распадается (гликогенолиз). Вышеназванный процесс особенно активно протекает в гепатоцитах, так как они обладают самой высокой способностью депонировать этот гомополисахарид. А главное, в указанных клетках присутствует глюкозо-6-фосфатаза, с помощью которой цитозольный глюкозо-6-фосфат, лишаясь фосфата, приобретает способность преодолеть мембрану и выходить в сосудистое русло для поддержания гомеостаза глюкозы крови. Этот энзим регистрируется также в слизистой тонкого кишечника и, естественно, в почках (схема 2).
Но запасы гликогена в организме довольно ограничены, поэтому при высокой вероятности развития гипогликемии индуцируется глюконеогенез - синтез глюкозы из продуктов неуглеводного происхождения. К ним относятся много самых различных соединений, только они должны удовлетворять следующим условиям: в их составе должно быть не менее трёх атомов углерода; если в молекуле присутствует кето-группа, необходимо, чтобы она обязательно находилась в -положении.
Следовательно, источниками глюкозы могут быть метаболиты цикла трикарбоновых кислот (ЦТК), лактат, пируват, глицерин, многие аминокислоты (гликогенные). Но высшие жирные кислоты, продукты их распада - кетоновые тела, ацетил-КоА, некоторые аминокислоты (лейцин, валин, изолейцин, фенилаланин, тирозин) (кетогенные) не способны стать участниками глюконеогенеза.
Глюкоза из крови может проникнуть в нуждающиеся в ней клетки путем облегченной диффузии, в обеспечении которой большую положительную роль играет холестерин билипидного слоя плазмолемм. При гипогликемии этот способ не работает и тогда включается активный транспорт. Стимулируется локализующаяся в мембране АТФ-аза, точнее один из её вариантов - гексокиназа (глюкокиназа), с помощью её и энергии АТФ глицид уже в виде глюкозо-6-фосфата проникает в клетку.
Находясь в цитоплазме, фосфопроизводное моносахарида может использоваться в следующих направлениях. Большая часть, естественно, подвергается распаду, в первую очередь, гликолизу. Этот процесс в зависимости от наличия кислорода может заканчиваться двумя продуктами: при гипоксии - лактатом, при нормоксии - пируватом, который, попадая в митохондрии, после окислительного декарбоксилирования сгорает в цитратном цикле, полностью высвобождая заложенную в глюкозе энергию.
Но для клеток характерно и другое направление катаболизма данного углевода, что обычно не служит поставщиком энергии; локализуется тоже в цитоплазме и часто называется пентозофосфатным путём (ПФП). Его конечным продуктом является СО 2 , и кроме того окисление глюкозы сопровождается восстановлением НАДФ. Последний не идёт в митохондрии, а используется как источник водорода в различных процессах синтеза. В первую очередь, в образовании холестерина, стероидных гормонов, жёлчных кислот, а также высших жирных кислот (ВЖК) - обязательного компонента большинства липидов. Кроме того, НАДФН+Н + - одно из важных звеньев антирадикальной защиты (АРЗ) - системы, борющейся с накоплением токсических радикалов (схема 2).
Участие восстановленного НАДФ в микросомальном окислении позволяет получить тирозин, катехоламины, серотонин; этот кофермент преобразует также витамин В с в активную форму - тетрагидрофолиевую кислоту, рибонуклеотиды в дезоксипроизводные.
Метаболитом и гликолиза, и ПФП служит глицероальдегид-3-фосфат (ГА-3Ф), который после изомеризации в дигидроксиацетонфосфат с последующим восстановлением становится глицеро-1-фосфатом - субстратом в синтезе нейтральных жиров и глицерофосфатидов.
Судя по названию, пентозофосфатный путь является источником различных пентоз, главная роль из которых принадлежит рибозо-5-фосфату, последний входит в состав нуклеотидов. Самые простейшие из них - мононуклеотиды - могут быть макроэргами (АТФ, ГТФ, УТФ, ЦТФ), коферментами (ФМН), внутриклеточными гормонами (циклический АМФ). Динуклеотиды обычно входят в состав ферментов в виде коэнзимов (НАД + , НАД + Ф, ФАД, КоА-SН). Нуклеиновые кислоты (РНК, ДНК) - биополимеры, химическое название которых полинуклеотиды, служат матрицами в синтезе белков, а также хранителями и передатчиками генетической информации.
Схема 2. Взаимосвязь углеводного обмена с другими видами обменов
Но не вся клеточная глюкоза обязательно подвергается распаду. Часть её активируется в УДФ-глюкозу, которая используется или в синтезе гликогена, или после преобразований в другие моносахариды и их производные - в генезе гетерополисахаридов: гиалуроновой кислоты межклеточного вещества, хондроитинсульфата хрящевой и костной тканей, гепарина - антикоагулянта, гликолипидов любых плазмолемм и специфических структур нервных клеток, гликопротеидов, служащих рецепторами в мембранах, группоспецифических веществ крови и т.д.
Кроме этих, существуют и тканевые разновидности взаимоотношений обменов. В эритроцитах гликолиз протекает только в анаэробных условиях (в этих клетках полностью отсутствуют органоиды, в том числе и митохондрии - всё направлено на выполнение главной цели - как можно больше транспортировать кислорода). Конечным продуктом такого процесса (схема 3) будет лактат, он же образуется и в интенсивно работающей мышце. Механизм реакции следующий.
Схема 3. Механизм образования лактата в клетке
В гликолизе происходит восстановление НАД + . Обычно высвободившийся водород в условиях нормоксии переносится в электронно-транспортную цепь (то есть вступает в процесс биологического окисления). Если же в клетке - гипоксия, это грозит накоплением протонов (НАДН+Н + ), сдвигом рН (ацидозом). Чтобы предотвратить подобную опасность и осуществляется восстановление пирувата в лактат. Последнее соединение выходит из эритроцитов и мышц в кровь, доставляется в печень, где под влиянием изоэнзима ЛДГ (лактатдегидрогеназы) и окисленного НАД + преобразуется в пируват, который, вступая в глюконеогенез, индуцирует синтез глюкозо-6-фосфата, являющегося субстратом в гликогеногенеза. При необходимости стимулируется распад гомополисахарида (гликогена) и глюкоза попадает в сосудистое русло, откуда в мышцы, где вновь может подвергнуться гликолизу (эта циркуляция называется циклом Кори).
Учитывая, что лактатдегидрогеназа обладает тканевой специфичностью (в миоцитах работает на образование молочной кислоты, а в гепатоцитах - наоборот, на окисление её до ПВК), можно предположить определённые специфические особенности в их строении, и отсюда в их физических свойствах. А это, как известно, используется в дифференциальной диагностике болезней миокарда и печени.
3. Взаимоотношения обмена липидов с другими звеньями метаболических процессов
В отличие от представителей других классов простейшие липиды не могут полимеризоваться, а усложнение их осуществляется за счет присоединения самых разных по природе соединений. Простые липиды не способны к гидролизу, это в первую очередь, ВЖК, высшие спирты, в том числе сфингозин, холестерин. Двухкомпонентные же - обычно сложные эфиры, то есть продукты взаимодействия высших жирных кислот с различными спиртами (глицерином - нейтральные жиры, с высшими ациклическими спиртами - воска, с холестерином - его эфиры). Своеобразным исключением служат церамиды, являющиеся, как видно, из названия амидами ВЖК и аминоспирта сфингозина. Все получившиеся двухкомпонентные структуры очень плохо растворяются в воде, но так как в клетке много гидрофильных соединений, с которыми возникает необходимость вступать в различные контакты, липиды усложняют строение, включая в свой состав полярные компоненты (фосфорилированные азотистые основания, моносахариды, полипептиды). Получившиеся мицеллы представляют из себя уже амфифилы (вещество, часть молекулы которого гидрофильна, другая же - гидрофобна).
Функции липидов самые разнообразные: нейтральные жиры - источники энергии и способны депонироваться. Их накопители - липоциты, объединённые в жировую ткань, могут быть использованы как амортизаторы, защитники органов брюшной полости от механических повреждений. Обладая высокой теплоёмкостью и низкой теплопроводностью, адипоциты участвуют в поддержании постоянной температуры тела. Все виды мембран (клеточные и органоидные) построены однотипно, облигатным компонентом является билипидный слой, включающий холестерин и различные фосфолипиды. Особую роль - изолятора - выполняет холестерин, входя в состав миелиновых оболочек. Находясь в коже, он преобразуется в холекальциферол (витамин D); в коре надпочечников и в половых железах из него синтезируются соответствующие гормоны (схема 5).
Нервная ткань в отличие от многих других, построена в основном из специфических, сложных по структуре липидов. Интересно, что половина высших жирных кислот фосфолипидов мембран обязательно полиненасыщеннная, что сказывается на свойствах этого органоида (текучесть и проницаемость). Мало того, такие ВЖК очень чувствительны к действию различных радикалов, в первую очередь, активных форм кислорода (АФК): супероксида аниона О 2 .- , пероксида водорода, радикала гидроксила, которые индуцируют перекисное окисление липидов (ПОЛ), что является причиной развития многих патологических состояний. Однако звенья этого процесса используются организмом в самообновлении мембран, в работе фагоцитов, в синтезе БАВ.
Схема 4. Взаимосвязь липидного обмена с другими видами обменов
Особая роль среди полиненасыщенных жирных кислот (ПНЖК) принадлежит арахидоновой кислоте, из которой в клетках различных органов и тканей осуществляется генез биологически активных веществ: простагландинов, лейкотриенов, тромбоксанов, простациклинов.
Вообще следует отметить, что в отличие от углеводов, все необходимые представители которых способны синтезироваться в организме, часть ПНЖК принадлежит к незаменимым, жизненно необходимым, поэтому их объединяют под термином витамин F .
Катаболическая фаза для большинства липидов также складывается из трёх стадий. Если молекула липида состоит из двух и более компонентов, то она гидролизуется, затем продукты подвергаются специфическому распаду. Высвобождающийся глицерин фосфорилируется и окисляется до дигидроксиацетонфосфата или в его изомер - ГА-3-Ф, которые вступают в гликолиз, повторяя судьбу глюкозо-6-фосфата.
Высшие жирные кислоты, точнее их активные формы (ацил-КоА), попадая в митохондрии клеток, служат субстратами в-окисления, конечным продуктом которого является ацетил-КоА, сгорающий в цикле трикарбоновых кислот (схема 4).
Схема 5. Пути использования эфиров холестерина в клетке
Схема 6. Пути использования ацетил-КоА в зависимости от скорости распада глюкозы: а - в норме; б - при замедлении окисления моносахарида
Как известно, основными энергоисточниками в клетках являются глюкоза и высшие жирные кислоты, но последние для своего полного распада (до углекислого газа и воды) требуют больших количеств кислорода, что, естественно, затрудняет этот процесс (отсюда понятно, почему пополнев, трудно похудеть). Но с такой целью могут использоваться так называемые кетоновые тела (ацетоуксусная, в-оксимасляная кислоты). В физиологических условиях их основная масса образуется в печени из ацетил-КоА в том случае, если меняется молярное соотношение между последним соединением и оксалоацетатом (схема 6).
Основные поставщики ацетил-КоА - глюкоза и высшие жирные кислоты, а ОА образуется, в первую очередь, из глюкозы. Поэтому, когда подавляется расщепление этого моносахарида, например, при сахарном диабете, уменьшается синтез оксалоацетата, что замедляет его взаимодействие с ацетил-КоА, и последний конденсируется в ацето-ацетат (схема 6).
Следует отметить, что субстратом в генезе холестерина и ВЖК тоже служит ацетил-КоА, только данное вещество используется на эти цели тогда, когда угнетается его распад в ЦТК. Подобная ситуация возникает в тех условиях, когда в результате работы цикла Кребса и связанного с ним биологического окисления и окислительного фосфорилирования образуется много молекул АТФ. Избыток последних ингибирует дальнейшее преобразование цитрата в цикле лимонной кислоты, он выходит из митохондрий, распадается на исходные составные части. При этом высвобождается ацетил-КоА, который конденсируясь, и дает или ВЖК, или холестерин (схемы 4, 7). Особую роль в синтезе этих соединений играет НАДФН+Н + , источником которого служит только пентозофосфатный путь окисления глюкозы (схема 2).
Мало того, в жировой ткани накопление нейтральных жиров определяется достаточным количеством моносахаридов (схема 7). Как видно из схемы оба компонента нейтрального жира: и ВЖК, и глицерол-1-фосфат - образуются из фосфорилированной глюкозы.
Если в липоцит и попадёт глицерин, он не способен участвовать в генезе ТАГ-ов, так как в этих клетках отсутствует глицерокиназа - фермент, активирующий данный спирт, без чего последний не может вступать в реакции. Кроме того, цитоплазматический ацетил КоА используется в различных реакциях ацетилирования с образованием ацетилхолина, ацетилглюкозамина и других производных моносахаридов - составных частей гетерополисахаридов.
Особая роль в жизнедеятельности организма принадлежит перекисному окислению липидов. Как уже отмечалось, его индукторами служат АФК (см. выше), которые могут генерироваться и в небольших количествах и в физиологических условиях. При гипероксии, гипоксии, действии различных лучей (рентген,- ультрафиолетовых, инфракрасных и т.д.), токсинов и других факторов уровень активных форм кислорода будет расти. Их называют радикалами за счёт наличия неспаренного электрона. Активность липопероксидации подавляется веществами, которые имеются в норме в клетках и в плазме крови. Это как энзимы: глутатион-пероксидазу (селен-содержащий энзим), глутатион-редуктазу, каталазу, пероксидазу, глюкозо-6-фосфат-дегидрогеназу (из ПФП), так и соединения, неферментативной природы (каротины, витамины А, Е, С, Р, рибофлавин, глутатион, цистеин и др.), обладающие способностью обезвреживать АФК, и являющиеся ловушками радикалов.
Если же почему-то не справляется антиокислительная защита или слишком много накапливается свободных радикалов, последние начинают воздействовать на ВЖК липидов, локализованных в мембранах, разрушая их. Деструкция плазмолемм нарушает жизнедеятельность клеток. Этот процесс неспецифичен и служит звеном в патогенезе многих заболеваний (атеросклероза, панкреатита, ревматоидного артрита и т.д.) (free radical diseases).
метаболизм глюкоза гипергликемия диабет
Торможение гликогенолиза, кетогенеза
Активирование синтеза глицерина, биосинтеза ВЖК
Стимулирование поступления аминокислот в клетку, биосинтеза белков, синтеза гликогена,
Углеводы и их роль в животном организме. Всасывание и обмен углеводов в тканях. Роль жиров в животном организме. Регуляция углеводно-жирового обмена. Особенности углеводного обмена у жвачных. Взаимосвязь белкового, углеводного и жирового обмена. презентация [2,0 M], добавлен 07.02.2016
Рассмотрение глюкозы как одного из основных энергетических ресурсов живого организма. Регулирование гормонами, вырабатываемыми разными железами, обмена глюкозы в организме и поддержании ее нормального уровня в крови. Сахарный диабет и гипогликемия. курсовая работа [1,0 M], добавлен 21.04.2012
Состав крови человека. Транспорт газов, питательных веществ и конечных продуктов метаболизма. Поддержка водного баланса в организме. Структура защитной системы. Клетки крови: эритроциты, лейкоциты, тромбоциты. Белки плазмы крови: образование, разрушение. презентация [322,4 K], добавлен 17.03.2013
Обмен веществ в организме - взаимосвязанное единое целое. Взаимопереходы между отдельными классами органических соединений - естественное, неизбежное и крупномасштабное явление в живой природе. Взаимосвязь обменов нуклеиновых кислот, углеводов и липидов. презентация [919,4 K], добавлен 13.10.2013
Сущность метаболизма организма человека. Постоянный обмен веществ между организмом и внешней средой. Аэробное и анаэробное расщепление продуктов. Величина основного обмена. Источник тепла в организме. Нервный механизм терморегуляции организма человека. лекция [22,3 K], добавлен 28.04.2013
Процессы энергетического метаболизма и основные энергетические параметры эритроцитов. Выяснение условий, при которых может происходить переход метаболизма эритроцитов из одной устойчивой точки в другую. Анализ строения и функций гемоглобина, эритроцитов. дипломная работа [3,5 M], добавлен 17.10.2012
Типовые нарушения белкового обмена. Несоответствие поступления белка потреблению. Нарушение расщепления белка в ЖКТ и содержания белка в плазме крови. Расстройство конечных этапов катаболизма белка и метаболизма аминокислот. Нарушения липидного обмена. презентация [201,8 K], добавлен 21.10.2014
Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д. PPT, PPTX и PDF-файлы представлены только в архивах. Рекомендуем скачать работу .

© 2000 — 2021



Взаимосвязь обменов в организме. Патохимия сахарного диабета курсовая работа. Биология и естествознание.
Курсовая работа: Роль нанотехнологий в обществе будущего
Реферат: Основы финансового контроля и регулирования
Реферат: Идеальное государство Платона как нереализуемый идеал. Скачать бесплатно и без регистрации
Конспекты лекций: Электротехника
Дипломная работа: Фармакоэкономический анализ эффективности антибиотиков при лечении пневмонии у детей старшего возраста. Скачать бесплатно и без регистрации
Амфитеатров Собрание Сочинений
Сочинение Описание Василия Блаженного
Сочинение Дети Никогда Не Запоминают Мать Молодой
Реферат: Банковская система и её элементы
Курсовая работа по теме Умышленное причинение тяжкого вреда здоровью
Сочинение Язык Мой Друг Мой 4
Контрольная работа по теме Анализ современных технологий изготовления гибридных микросборок
Курсовая работа по теме Состав и структура государственных расходов и доходов
Сочинение по теме Искусство публицистики
Курсовая работа по теме Выявление особенностей организации защиты конфиденциальной информации средствами вычислительной техники
Реферат: «Организационная культура»
Отчет По Практике Управление Образования
Курсовая работа по теме Экономический рост и проблема его осуществления в странах с переходной экономикой
Дипломные Работы Учителя Технологии
Строительные Растворы Реферат
Біологічна роль кальцію в організмі людини і тварин - Биология и естествознание курсовая работа
Современное состояние пожарной безопасности в мире и в Украине. Основные причины пожаров - Безопасность жизнедеятельности и охрана труда доклад
Биологические ритмы - Биология и естествознание доклад


Report Page