Virtual Private

Virtual Private




🛑 ALL INFORMATION CLICK HERE 👈🏻👈🏻👈🏻

































Virtual Private
From Wikipedia, the free encyclopedia
Extension of a private network across a public one
"VPN" redirects here. For other uses, see VPN (disambiguation) .
For commercial services, see VPN service .
This article needs additional citations for verification . Please help improve this article by adding citations to reliable sources . Unsourced material may be challenged and removed. Find sources: "Virtual private network" – news · newspapers · books · scholar · JSTOR ( May 2021 ) ( Learn how and when to remove this template message )

^ "What Is a VPN? - Virtual Private Network" . Cisco . Retrieved 5 September 2021 .

^ Mason, Andrew G. (2002). Cisco Secure Virtual Private Network . Cisco Press. p. 7 . ISBN 9781587050336 .

^ "Virtual Private Networking: An Overview" . TechNet . Microsoft Docs . 4 September 2001 . Retrieved 7 November 2021 .

^ Davies, Joseph (July 2007). "IPv6 Traffic over VPN Connections" . The Cable Guy . TechNet Magazine . Retrieved 7 November 2021 – via Microsoft Docs . {{ cite magazine }} : External link in |department= ( help )

^ RFC 3809 - Generic Requirements for Provider Provisioned Virtual Private Networks . sec. 1.1. doi : 10.17487/RFC3809 . RFC 3809 .

^ RFC 6434 , "IPv6 Node Requirements", E. Jankiewicz, J. Loughney, T. Narten (December 2011)

^ "1. Ultimate Powerful VPN Connectivity" . www.softether.org . SoftEther VPN Project.

^ "OpenConnect" . Retrieved 8 April 2013 . OpenConnect is a client for Cisco's AnyConnect SSL VPN [...] OpenConnect is not officially supported by, or associated in any way with, Cisco Systems. It just happens to interoperate with their equipment.

^ "Why TCP Over TCP Is A Bad Idea" . sites.inka.de . Retrieved 24 October 2018 .

^ "Trademark Status & Document Retrieval" . tarr.uspto.gov .

^ "ssh(1) – OpenBSD manual pages" . man.openbsd.org .

^ c@cb.vu, Colin Barschel. "Unix Toolbox" . cb.vu .

^ "SSH_VPN – Community Help Wiki" . help.ubuntu.com .

^ Salter, Jim (30 March 2020). "WireGuard VPN makes it to 1.0.0—and into the next Linux kernel" . Ars Technica . Retrieved 30 June 2020 .

^ "Diff - 99761f1eac33d14a4b1613ae4b7076f41cb2df94^! - kernel/common - Git at Google" . android.googlesource.com . Retrieved 30 June 2020 .

^ Younglove, R. (December 2000). "Virtual private networks - how they work" . Computing & Control Engineering Journal . 11 (6): 260–262. doi : 10.1049/cce:20000602 . ISSN 0956-3385 .

^ Benjamin Dowling, and Kenneth G. Paterson (12 June 2018). "A cryptographic analysis of the WireGuard protocol". International Conference on Applied Cryptography and Network Security . ISBN 978-3-319-93386-3 .

^ "Configuring PFC3BXL and PFC3B Mode Multiprotocol Label Switching" (PDF) .

^ E. Rosen & Y. Rekhter (March 1999). "BGP/MPLS VPNs" . Internet Engineering Task Force (IETF). RFC 2547 .

^ Lewis, Mark (2006). Comparing, designing, and deploying VPNs (1st print. ed.). Indianapolis, Ind.: Cisco Press. pp. 5–6. ISBN 1587051796 .

^ Ethernet Bridging (OpenVPN)

^ Hollenbeck, Scott; Housley, Russell. "EtherIP: Tunneling Ethernet Frames in IP Datagrams" .

^ Glyn M Burton: RFC 3378 EtherIP with FreeBSD , 03 February 2011

^ net-security.org news: Multi-protocol SoftEther VPN becomes open source , January 2014

^ Address Allocation for Private Internets , RFC 1918 , Y. Rekhter et al. , February 1996

^ RFC 2917 , A Core MPLS IP VPN Architecture

^ RFC 2918 , E. Chen (September 2000)

^ Yang, Yanyan (2006). "IPsec/VPN security policy correctness and assurance". Journal of High Speed Networks . 15 : 275–289. CiteSeerX 10.1.1.94.8561 .

^ "Overview of Provider Provisioned Virtual Private Networks (PPVPN)" . Secure Thoughts . Retrieved 29 August 2016 .

^ RFC 1702 : Generic Routing Encapsulation over IPv4 networks. October 1994.

^ IETF (1999), RFC 2661 , Layer Two Tunneling Protocol "L2TP"

^ Cisco Systems, Inc. (2004). Internetworking Technologies Handbook . Networking Technology Series (4 ed.). Cisco Press. p. 233. ISBN 9781587051197 . Retrieved 15 February 2013 . [...] VPNs using dedicated circuits, such as Frame Relay [...] are sometimes called trusted VPN s, because customers trust that the network facilities operated by the service providers will not be compromised.

^ Layer Two Tunneling Protocol "L2TP" , RFC 2661 , W. Townsley et al. , August 1999

^ IP Based Virtual Private Networks , RFC 2341 , A. Valencia et al. , May 1998

^ Point-to-Point Tunneling Protocol (PPTP) , RFC 2637 , K. Hamzeh et al. , July 1999

^ Phifer, Lisa. "Mobile VPN: Closing the Gap" , SearchMobileComputing.com , July 16, 2006.

^ Willett, Andy. "Solving the Computing Challenges of Mobile Officers" , www.officer.com , May, 2006.

^ Cheng, Roger. "Lost Connections" , The Wall Street Journal , December 11, 2007.

^ Sowells, Julia (7 August 2017). "Virtual Private Network (VPN) : What VPN Is And How It Works" . Hackercombat . Retrieved 7 November 2021 .

^ Jump up to: a b O'sullivan, Fergus. "VPN Myths Debunked: What VPNs Can and Cannot Do" . How-To Geek . Retrieved 16 January 2022 .


Italics indicates that maintenance of the tool has been discontinued. Category Commons
A virtual private network ( VPN ) extends a private network across a public network and enables users to send and receive data across shared or public networks as if their computing devices were directly connected to the private network. [1] The benefits of a VPN include increases in functionality, security , and management of the private network. It provides access to resources that are inaccessible on the public network and is typically used for remote workers . Encryption is common, although not an inherent part of a VPN connection. [2]

A VPN is created by establishing a virtual point-to-point connection through the use of dedicated circuits or with tunneling protocols over existing networks. A VPN available from the public Internet can provide some of the benefits of a wide area network (WAN). From a user perspective, the resources available within the private network can be accessed remotely. [3]

Virtual private networks may be classified into several categories:

Typically, individuals interact with remote access VPNs, whereas businesses tend to make use of site-to-site connections for business-to-business , cloud computing, and branch office scenarios. Despite this, these technologies are not mutually exclusive and, in a significantly complex business network, may be combined to enable remote access to resources located at any given site, such as an ordering system that resides in a data center.

VPN systems also may be classified by:

VPNs cannot make online connections completely anonymous, but they can increase privacy and security. To prevent disclosure of private information or data sniffing , VPNs typically allow only authenticated remote access using tunneling protocols and secure encryption techniques.

Secure VPN protocols include the following:

Tunnel endpoints must be authenticated before secure VPN tunnels can be established. User-created remote-access VPNs may use passwords , biometrics , two-factor authentication or other cryptographic methods. Network-to-network tunnels often use passwords or digital certificates . Depending on the VPN protocol, they may store the key to allow the VPN tunnel to establish automatically, without intervention from the administrator. Data packets are secured by tamper proofing via a message authentication code (MAC), which prevents the message from being altered or tampered without being rejected due to the MAC not matching with the altered data packet.

Tunneling protocols can operate in a point-to-point network topology that would theoretically not be considered a VPN because a VPN by definition is expected to support arbitrary and changing sets of network nodes. But since most router implementations support a software-defined tunnel interface, customer-provisioned VPNs often are simply defined tunnels running conventional routing protocols.

Depending on whether a provider-provisioned VPN (PPVPN) operates in Layer 2 (L2) or Layer 3 (L3), the building blocks described below may be L2 only, L3 only, or a combination of both. Multi-protocol label switching (MPLS) functionality blurs the L2-L3 identity. [18] [ original research? ]

RFC 4026 generalized the following terms to cover L2 MPLS VPNs and L3 ( BGP ) VPNs, but they were introduced in RFC 2547 . [19] [20]

A device that is within a customer's network and not directly connected to the service provider's network. C devices are not aware of the VPN.

A device at the edge of the customer's network which provides access to the PPVPN. Sometimes it is just a demarcation point between provider and customer responsibility. Other providers allow customers to configure it.

A device, or set of devices, at the edge of the provider network which connects to customer networks through CE devices and presents the provider's view of the customer site. PEs are aware of the VPNs that connect through them, and maintain VPN state.

A device that operates inside the provider's core network and does not directly interface to any customer endpoint. It might, for example, provide routing for many provider-operated tunnels that belong to different customers' PPVPNs. While the P device is a key part of implementing PPVPNs, it is not itself VPN-aware and does not maintain VPN state. Its principal role is allowing the service provider to scale its PPVPN offerings, for example, by acting as an aggregation point for multiple PEs. P-to-P connections, in such a role, often are high-capacity optical links between major locations of providers.

VLAN is a Layer 2 technique that allows for the coexistence of multiple local area network (LAN) broadcast domains interconnected via trunks using the IEEE 802.1Q trunking protocol. Other trunking protocols have been used but have become obsolete, including Inter-Switch Link (ISL), IEEE 802.10 (originally a security protocol but a subset was introduced for trunking), and ATM LAN Emulation (LANE).

Developed by Institute of Electrical and Electronics Engineers , VLANs allow multiple tagged LANs to share common trunking. VLANs frequently comprise only customer-owned facilities. Whereas VPLS as described in the above section (OSI Layer 1 services) supports emulation of both point-to-point and point-to-multipoint topologies, the method discussed here extends Layer 2 technologies such as 802.1d and 802.1q LAN trunking to run over transports such as Metro Ethernet .

As used in this context, a VPLS is a Layer 2 PPVPN, emulating the full functionality of a traditional LAN. From a user standpoint, a VPLS makes it possible to interconnect several LAN segments over a packet-switched, or optical, provider core, a core transparent to the user, making the remote LAN segments behave as one single LAN. [21]

In a VPLS, the provider network emulates a learning bridge, which optionally may include VLAN service.

PW is similar to VPLS, but it can provide different L2 protocols at both ends. Typically, its interface is a WAN protocol such as Asynchronous Transfer Mode or Frame Relay . In contrast, when aiming to provide the appearance of a LAN contiguous between two or more locations, the Virtual Private LAN service or IPLS would be appropriate.

EtherIP ( RFC 3378 ) [22] is an Ethernet over IP tunneling protocol specification. EtherIP has only packet encapsulation mechanism. It has no confidentiality nor message integrity protection. EtherIP was introduced in the FreeBSD network stack [23] and the SoftEther VPN [24] server program.

A subset of VPLS, the CE devices must have Layer 3 capabilities; the IPLS presents packets rather than frames. It may support IPv4 or IPv6.

This section discusses the main architectures for PPVPNs, one where the PE disambiguates duplicate addresses in a single routing instance, and the other, virtual router, in which the PE contains a virtual router instance per VPN. The former approach, and its variants, have gained the most attention.

One of the challenges of PPVPNs involves different customers using the same address space, especially the IPv4 private address space. [25] The provider must be able to disambiguate overlapping addresses in the multiple customers' PPVPNs.

In the method defined by RFC 2547 , BGP extensions advertise routes in the IPv4 VPN address family, which are of the form of 12-byte strings, beginning with an 8-byte route distinguisher (RD) and ending with a 4-byte IPv4 address. RDs disambiguate otherwise duplicate addresses in the same PE.

PEs understand the topology of each VPN, which are interconnected with MPLS tunnels either directly or via P routers. In MPLS terminology, the P routers are label switch routers without awareness of VPNs.

The virtual router architecture, [26] [27] as opposed to BGP/MPLS techniques, requires no modification to existing routing protocols such as BGP. By the provisioning of logically independent routing domains, the customer operating a VPN is completely responsible for the address space. In the various MPLS tunnels, the different PPVPNs are disambiguated by their label but do not need routing distinguishers.

Some virtual networks use tunneling protocols without encryption for protecting the privacy of data. While VPNs often do provide security, an unencrypted overlay network does not fit within the secure or trusted categorization. [28] For example, a tunnel set up between two hosts with Generic Routing Encapsulation (GRE) is a virtual private network but is neither secure nor trusted. [29] [30]

Native plaintext tunneling protocols include Layer 2 Tunneling Protocol (L2TP) when it is set up without IPsec and Point-to-Point Tunneling Protocol (PPTP) or Microsoft Point-to-Point Encryption (MPPE). [31]

Trusted VPNs do not use cryptographic tunneling; instead they rely on the security of a single provider's network to protect the traffic. [32]

From the security standpoint, VPNs either trust the underlying delivery network or must enforce security with mechanisms in the VPN itself. Unless the trusted delivery network runs among physically secure sites only, both trusted and secure models need an authentication mechanism for users to gain access to the VPN.

Mobile virtual private networks are used in settings where an endpoint of the VPN is not fixed to a single IP address , but instead roams across various networks such as data networks from cellular carriers or between multiple Wi-Fi access points without dropping the secure VPN session or losing application sessions. [36] Mobile VPNs are widely used in public safety where they give law-enforcement officers access to applications such as computer-assisted dispatch and criminal databases, [37] and in other organizations with similar requirements such as field service management and healthcare. [38] [ need quotation to verify ] .

A limitation of traditional VPNs is that they are point-to-point connections and do not tend to support broadcast domains ; therefore, communication, software, and networking, which are based on layer 2 and broadcast packets , such as NetBIOS used in Windows networking , may not be fully supported as on a local area network . Variants on VPN such as Virtual Private LAN Service (VPLS) and layer 2 tunneling protocols are designed to overcome this limitation. [39]





What is a virtual private cloud (VPC)?


Features


Benefits


Architecture


Three-tier architecture in a VPC


Security


VPC vs. …


VPC FAQ


Pricing


VPC and IBM Cloud





Jump to ...
What is a virtual private cloud (VPC)?
Features
Benefits
Architecture
Three-tier architecture in a VPC
Security
VPC vs. …
VPC FAQ
Pricing
VPC and IBM Cloud




menu icon



This guide explores how virtual private clouds work and discusses the features and benefits of this emerging offering that provides public cloud tenants a private cloud-like experience.







Featured products


IBM Cloud Virtual Server for VPC



A VPC is a public cloud offering that lets an enterprise establish its own private cloud-like computing environment on shared public cloud infrastructure. A VPC gives an enterprise the ability to define and control a virtual network that is logically isolated from all other public cloud tenants, creating a private, secure place on the public cloud.
Imagine that a cloud provider’s infrastructure is a residential apartment building with multiple families living inside. Being a public cloud tenant is akin to sharing an apartment with a few roommates. In contrast, having a VPC is like having your own private condominium—no one else has the key, and no one can enter the space without your permission.
A VPC’s logical isolation is implemented using virtual network functions and security features that give an enterprise customer granular control over which IP addresses or applications can access particular resources. It is analogous to the “friends-only” or “public/private” controls on social media accounts used to restrict who can or can’t see your otherwise public posts.
VPCs are a “best of both worlds” approach to cloud computing . They give customers many of the advantages of private clouds, while leveraging public cloud resources and savings. The following are some key features of the VPC model:
Each VPC’s main features readily translate into a benefit to help your business achieve agility, increased innovation, and faster growth.
In a VPC, you can deploy cloud resources into your own isolated virtual network. These cloud resources—also known as logical instances—fall into three categories.
The majority of today’s applications are designed with a three-tier architecture comprised of the following interconnected tiers:
To create a three-tier application architecture on a VPC, you assign each tier its own subnet, which will give it its own IP address range. Each layer is automatically assigned its own unique ACL.
For a more detailed explanation of how to create this architecture in a VPC and deploy applications to it, see the blog post “ Virtual Private Cloud: The Tech and the Test .”
VPCs achieve high levels of security by creating virtualized replicas of the security f
Femdom Scat Pee
Sienna West Double Penetration
3 Ass Fucking

Report Page