Випадкові процеси та одновимірні закони розподілу ймовірностей - Коммуникации, связь, цифровые приборы и радиоэлектроника реферат
Главная
Коммуникации, связь, цифровые приборы и радиоэлектроника
Випадкові процеси та одновимірні закони розподілу ймовірностей
Сигнали як носії інформації і випадкові функції часу, їх сутність. Випадкова функція - математична модель випадкового сигналу. Статистичні характеристики, властиві випадкового процесу. Одновимірна функція розподілу ймовірностей випадкового процесу.
посмотреть текст работы
скачать работу можно здесь
полная информация о работе
весь список подобных работ
Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Випадкові процеси та одновимірні закони розподілу ймовірностей
Характер прийнятих сигналів як носіїв інформації є випадковим і заздалегідь не є відомий, тому з цього погляду сигнали треба розглядати як випадкові функції часу. Крім того, передавання інформації завжди супроводжується дією різноманітних завад та шумів, тому реальні сигнали є сумішшю корисного сигналу та завади.
Ha відміну від детермінованих сигналів, які не несуть інформації і однозначно визначають значення конкретного процесу в будь-який момент часу, перебіг випадкових сигналів передбачити неможливо. Проте, спостерігаючи за численними реалізаціями одного і того ж випадкового процесу під імовірнісним кутом зору, можна виявити певні закономірності, що характеризують цей процес, та визначити сукупність невипадкових числових характеристик, які описують його.
Математичною моделлю випадкового сигналу є випадкова функція. Випадкова функція будь-якого аргументу - це функція, значення якої при кожному значенні аргументу є випадкове. Випадкову функцію часу називають випадковим процесом. Випадковий процес позначимо функцією . Спостерігаючи багаторазово за одним і тим же випадковим процесом, що перебігає в незмінних умовах, кожен раз отримуємо конкретні реалізації , не подібні одна на одну.
Крім того, неможливо передбачити, яку саме реалізацію отримаємо при даному конкретному спостереженні. Кожне окреме спостереження називають дослідом або випробуванням.
Випадковий процес повністю характеризується нескінченно великою кількістю реалізацій, які утворюють ансамбль реалізацій. Ha основі дослідження заданого ансамблю можна визначити статистичні характеристики, властиві випадковому процесові.
Розглянемо реалізацій випадкового процесу (рис. l). Сукупність миттєвих значень випадкового процесу, заданого ансамблем реалізацій у довільний момент часу, називають перетином випадкового процесу.
Ha рис. 1 показано перетин випадкового процесу в момент , який дає змогу визначити сукупність миттєвих значень процесу ;,... Ця сукупність дає можливість визначити одновимірну функцію розподілу ймовірностей випадкової величини . Для цього виділимо ті значення, які в момент часу задовольняють умову:
де - деяке вибране значення випадкового процесу.
Рисунок 1 - Ансамбль реалізацій випадкового процесу
Позначимо число цих значень як . Відношення називають у теорії ймовірностей частотою настання події. У даному разі під подією розуміємо виконання умови (1). При достатньо великому значенні відношення прямуватиме до постійного числа, яке називають ймовірністю того, що при випадкова функція менша від значення :
Ha практиці при достатньо великих можна наближено вважати:
Діючи аналогічно для інших значень в інтервалі можемо побудувати одновимірну функцію розподілу ймовірностей випадкового процесу (рис.2):
Рисунок 2 - Одновимірна функція розподілу ймовірностей випадкового процесу
Функція матиме ступінчастий характер у тому разі, якщо випадковий процес набирає дискретних значень. Якщо ж випадковий процес змінює свої значення неперервно, то функція теж матиме вигляд плавної кривої. Очевидно, що для її побудови треба зменшувати до нуля інтервал між сусідніми значеннями (рис.2). Зауважимо, що функція розподілу ймовірностей є неспадаючою функцією свого аргументу. Це випливає з її означення.
Тісно пов'язаною з одновимірною функцією розподілу ймовірностей випадкового процесу є одновимірна густина розподілу ймовірностей випадкового процесу, яку на основі ансамблю реалізацій наближено визначимо так:
де - кількість реалізацій, значення яких у момент були менші від визначаємо, як і раніше.
За такого визначення густина розподілу теж має ступінчастий вигляд, як показано нa рис.
Рисунок 3 - Одновимірна густина розподілу ймовірностей
Підвищення точності визначення густини розподілу можна досягти зменшенням інтервалу до нуля:
Із (6) бачимо, що густина розподілу є похідною по одновимірної функції розподілу. Узагальнюючи, можемо записати:
Очевидно, що в загальному випадку графік функції має вигляд плавної кривої (рис. 3):
з якого випливає, що значення функції розподілу ймовірностей для аргументу дорівнює площі під кривою густини розподілу ймовірностей у межах від до .
Очевидно, що ймовірність того, що значення випадкового процесу лежить у межах від до , дорівнює одиниці, тобто
а ймовірність того, що випадкова функція у момент перебуває в інтервалі між та , дорівнює:
Отже, ймовірність того, що значення випадкової функції у момент перебувають у заданому інтервалі, дорівнює різниці значень функції розподілу ймовірностей для верхньої та нижньої меж заданого інтервалу.
Співвідношення (9) називають умовою нормування.
Зауважимо також, що функції та для довільних значень та завжди приймають додатні значення.
Часто функцію розподілу ймовірностей називають інтегральним законом розподілу, а густину розподілу ймовірностей - диференціальним законом розподілу ймовірностей.
Функції та статистично повністю характеризують значення випадкової функції у заданий момент часу і тому їх називають одновимірними. Ці функції є найпростішими характеристиками випадкового процесу, оскільки вони дають уявлення про процес лише в окремі фіксовані моменти часу.
У таблицях 1 та 2. подані деякі найбільш поширені одновимірні закони розподілу ймовірностей випадкових процесів.
Для прикладу визначимо моменти першого та другого порядку для рівномірного та експоненційного закону розподілу ймовірностей (табл. 1 та 2).
Взаємозв'язок між формою закону розподілу ймовірностей та його числовими характеристиками стає більш наочним при використанні поняття центрованої випадкової величини. Випадкова величина називається центрованою, якщо її середнє значення дорівнює нулеві.
Отже, випадкова величина центрується відніманням від неї середнього значення :
Із (18) випливає, що центрування випадкової величини є рівнозначне зміщенню початку координат на графіку одновимірної густини розподілу ймовірностей на величину вздовж осі абсцис і не приводить до деформації закону розподілу. Сказане ілюструє рис. 4.
Рисунок 4 - Центрування випадкової величини
Ha відміну від початкових моментів, які визначають за формулою (11), моменти центрованої величини називають центральними моментами.
Центральний момент ro порядку визначають за формулою:
Центральний момент першого порядку центрованої випадкової величини завжди дорівнює нулеві за означенням:
Із (21) випливає, що другий центральний момент можна визначити через початкові моменти таким чином:
Цей момент характеризує розсіювання можливих значень випадкової величини відносно її середнього значення і називається дисперсією. Стосовно електричних сигналів дисперсія характеризує потужність відхилень випадкової величини від середнього значення, яка виділяється на навантаженні в 1 Ом.
Часто використовують таке позначення дисперсії:
Величину , що дорівнює додатному значенню кореня квадратного з центрального моменту другого порядку, називають середнім квадратичним відхиленням випадкової величини .
Розмірність збігається із розмірністю випадкової величини і тому її можна використовувати для оцінювання ширини кривої густини розподілу ймовірностей: чим більше значення , тим ширшим є графік функції .
На основі ансамблю з реалізацій випадкового процесу статистичне визначення дисперсії проводимо за формулою:
Визначимо перший та другий центральні моменти для рівномірного та експоненційного законів (табл.1 та 2).
Рівномірний закон. Оскільки математичне сподівання для цього випадку дорівнює нулеві, то обидва центральні моменти збігаються з початковими моментами, тобто
Експоненційний закон. Перший центральний момент за означенням дорівнює нулеві. Другий центральний момент (дисперсія), згідно з (22), визначаємо за формулою:
При розв'язуванні багатьох практичних завдань доводиться додавати, віднімати та перемножувати випадкові сигнали. При цьому числові характеристики результуючих сигналів достатньо просто визначають через числові характеристики первинних сигналів.
Наприклад, якщо та є первинними незалежними сигналам, - постійна величина, то справедливі такі співвідношення:
Подані співвідношення можна узагальнити на випадок більшої кількості випадкових сигналів. У загальному випадку числові характеристики одновимірних розподілів залежать від часу. Це зумовлюється часовою залежністю функції розподілу та одновимірної густини розподілу . Тому в цьому разі числові характеристики замість чисел стають функціями часу і їх називають моментними функціями. На рис. 5a зображена реалізація випадкового процесу, перша моментна функція якого (середні значення) не змінюється в часі і дорівнює нулеві, а центральна моментна функція другого порядку (дисперсія) з часом зростає. Рисунок 5б ілюструє варіант реалізації випадкового процесу з незмінною дисперсією та змінним у часі середнім значенням.
Рисунок 5 - Варіанти реалізацій випадкового процесу із змінними в часі числовими характеристиками.
Функції розподілу ймовірностей вищих порядків та випадкових процесів, статистичний зв'язок між ними; кореляційні моменти. Стаціонарні та ергодичні випадкові процеси, їх реалізація з однаковими часовими залежностями математичного сподівання та дисперсії. реферат [140,7 K], добавлен 10.01.2011
Специфіка різних сфер застосування систем зв'язку. Структурні схеми каналів передачі інформації, перетворення інформації в кодуючому пристрої. Поняття детермінованого, недетермінованого, випадкового сигналу. Особливості передачі і збереження інформації. реферат [286,2 K], добавлен 03.04.2010
Аналогові та дискретні сигнали та кола. Узгоджені фільтри (випадкові сигнали). Проходження сигналів через лінійні кола. Амплітудна та кутова модуляція. Коефіцієнт передачі та імпульсний відгук узгодженого фільтра. Смуга пропускання селективного кола. курсовая работа [2,5 M], добавлен 19.10.2010
Спектральний аналіз детермінованого сигналу. Дискретизація сигналу Sv(t). Модуль спектра дискретного сигналу та періодична послідовність дельта-функцій. Модулювання носійного сигналу. Амплітудні та фазові спектри неперіодичних та періодичних сигналів. курсовая работа [775,5 K], добавлен 05.01.2014
Характеристика сутності типових вхідних сигналів, які використовуються для теоретичного й експериментального дослідження автоматичних систем. Східчаста, імпульсна, лінійно-зростаюча вхідна дія. Білий шум, імпульсна перехідна функція. Підсилювальна ланка. контрольная работа [653,0 K], добавлен 04.12.2010
Дослідження відкритих марковских і полумарковских мереж масового обслуговування із трьома вузлами й циклічною маршрутизацією. Рівняння глобальної рівноваги. Відшукання стаціонарних ймовірностей. Достатня умова ергодичності. Вид стаціонарного розподілу. дипломная работа [405,2 K], добавлен 26.12.2010
Передаткова функція замкненої та розімкненої схеми регулювання. Перевірка на стійкість отриманої схеми системи автоматичного регулювання. Оцінка якості процесу регулювання в системі за показниками та допустимої інструментальної похибки в сталому режимі. контрольная работа [956,2 K], добавлен 03.12.2013
Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д. PPT, PPTX и PDF-файлы представлены только в архивах. Рекомендуем скачать работу .
© 2000 — 2021
Випадкові процеси та одновимірні закони розподілу ймовірностей реферат. Коммуникации, связь, цифровые приборы и радиоэлектроника.
Контрольная работа: Правовая система Великобритании
Отчет по практике: Организация бухгалтерского учета на предприятии нефтегазодобывающей промышленности
Эссе Здоровые Дети Здоровая Нация
Курсовая работа: Сортность молока. Пути уменьшения количества соматических клеток
День Здоровья Эссе
Организационно Экономическая Практика Отчет
Контрольная работа по теме Основы региональной экономики
Курсовая работа: Обогащение словарного запаса учащихся при подготовке к сочинению в седьмом классе
Контрольная Работа Для Первого Класса По Математике
Контрольная работа: Органический мир Южной Америки. Скачать бесплатно и без регистрации
Курсовая работа по теме Системы обнаружения атак
Контрольная работа: Частная теория относительности Эйнштейна
Реферат по теме Современная теория издержек производства и прибыли
Реферат: Законодательство Украины относительно рекламы
Наследственное правоприемство по Российскому гражданскому праву
Сочинение: Пространственно-временная структура романа М. А. Булгакова «Мастер и Маргарита»
Курсовая работа по теме Составление платежного баланса и его оценка
Отчет По Практике Банковское Дело Сбербанк
Контрольная работа по теме Коррекция настроения и эмоционального состояния с помощью книг
Сочинение По Литературе 350 Слов
Реализация идеи создания делового журнала - Журналистика, издательское дело и СМИ дипломная работа
Особенности формирования учётной политики организации на примере ЗАО "Бизнес-Профит-Консалт" - Бухгалтерский учет и аудит курсовая работа
Понятие наследования по действующему законодательству Российской Федерации - Государство и право дипломная работа