Виды испарений и распылений в технологии ЭОТ - Производство и технологии реферат

Виды испарений и распылений в технологии ЭОТ - Производство и технологии реферат




































Главная

Производство и технологии
Виды испарений и распылений в технологии ЭОТ

Принцип электронно-лучевого нагрева - кинетическая энергия потока ускоренных электронов при бомбардировке поверхности вещества превращается в тепловую энергию, оно же нагревается до температуры испарения. В работе рассматривается данная технология.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
"Виды испарений и распылений в технологии ЭОТ"
Рисунок 1. Эффект термоэмиссии (а), ускорение электронов (б) и формирование электронного луча (в):
1 - эмиттированные электроны, 2 - термокатод, 3 - стенка вакуумной камеры, 4 - изоляторы, 5 - источник питания термокатода, 7 - ускоренный электрон, 6,8 - аноды, Р - электронный луч
Спиральный термокатод 2 закрепляют на стенках 3 вакуумной камеры через изоляторы 4. При подаче тока накала от источника 5 происходит нагрев термокатода с испусканием электронов 1. Эти электроны обладают разной энергией и направление их движения от катода хаотично. Дня ускорения (повышения энергии) и направленного движения электронов необходимо создать ускоряющее электрическое поле.
Рассматривая движение электронов в электрическом поле, предполагают, что они находятся в достаточно разреженном пространстве. При этом взаимодействием между молекулами оставшегося в объеме газа и движущимися электронами можно пренебречь.
Как известно из электротехники, на заряженную частицу - электрон, находящуюся в электрическом поле, действует сила, пропорциональная напряженности этого поля, в результате чего частица ускоряется. Скорость (км/с), которую приобретет электрон под действием разности потенциалов И между двумя точками поля, равна
При этом кинетическая энергия (эВ) электрона
В устройстве для ускорения электронов (Рисунок 1, б) в нескольких сантиметрах от катода размещают анод 6, создающий электрическое поле Е, направление которого показано стрелкой. Между анодом 6 и катодом 2 образуется разность потенциалов от 5 до 10 кВ. Электроны, эмиттируемые катодом 2, притягиваются анодом 6 и образуют направленный поток ускоренных электронов 7.
Для формирования электронного луча 9 (Рисунок 1, в) используют анод 8 с отверстием, через которое проходит значительная часть электронного потока.
Рассмотрим движение электрона в магнитном поле и силу, действующую на электрон, влетающий в магнитное поле между полюсами постоянного магнита перпендикулярно силовым линиям этого поля (Рисунок 2).
Движущийся электрон можно представить как электрический ток, проходящий через проводник. Тогда по известному из электротехники правилу левой руки можно определить направление силы, действующей на электрон. Если расположить левую руку так, чтобы силовые линии магнитного поля упирались в ладонь, а вытянутые пальцы были направлены в сторону, противоположную направлению скорости V электрона то отогнутый большой палец покажет направление силы, действующей на летящий электрон. Эта сила будет пропорциональна напряженности магнитного поля и скорости электрона.
Рисунок 2. Движение электронов в магнитном поле
Рисунок 3. Электронно-лучевой испаритель:
1 - полюсный наконечник, 2 - электромагнит, 3 - водоохлаждаемый тигель, 4 - испаряемый материал, 5 - поток наносимого материала, 6 - термокатод, 7 - фокусирующая система, 8 - электронный луч, 9 - тонкая пленка, 10 - подложка
Таким образом, сила FЭ, действующая на электрон, перпендикулярна направлениям скорости его движения и силовых линий магнитного поля. Поскольку сила FЭ действует всегда перпендикулярно скорости движения электрона, она изменяет не скорость его, а только направление. Под действием этой силы траектория движения электрона непрерывно изменяется, т.е. искривляется (как это показано на рисунке 2 штриховой линией). Следовательно, если перпендикулярно электронному лучу приложить магнитное поле, он отклонится.
Фокусировка электронного луча позволяет получать большую концентрацию мощности на сравнительно малой поверхности (5 х 10 Вт/см2), а следовательно, испарять любые, даже самые тугоплавкие материалы с достаточно большой скоростью.
Электронно-лучевой испаритель (Рисунок 3) состоит из трех основных частей: электронной пушки, отклоняющей системы и водоохлаждаемого тигля.
Электронная пушка предназначена для формирования потока электронов и состоит из вольфрамового термокатода 6 и фокусирующей системы 7. Электроны, эмитируемые катодом, проходят фокусирующую систему, ускоряются за счет разности потенциалов между катодом и анодом (до 10 кВ) и формируются в электронный луч 8. Отклоняющая система предназначена для создания магнитного поля, перпендикулярного направлению скорости движения электронов, выходящих из фокусирующей системы пушки, и состоит из полюсных наконечников 1 и электромагнита 2. Между полюсными наконечниками расположены водоохлаждаемый тигель 3 и электронная пушка. Отклоняя электронный луч магнитным полем, его направляют в центральную часть водоохлаждаемого тигля 3. В месте падения луча создается локальная зона испарения вещества из жидкой фазы. Нагретый электронной бомбардировкой материал 4 испаряется, и поток паров 5 осаждается в виде тонкой пленки 9 на подложке 10. Изменяя ток в катушке электромагнита 2, можно сканировать лучом вдоль тигля, что предотвращает образование "кратера" в испаряемом материале.
Медные водоохлаждаемые тигли емкостью 50 см3 и более обеспечивают длительную непрерывную работу без добавки испаряемого материала, который, кроме того, не контактирует в расплавленном виде с медными стенками тигля ("автотигельное испарение"), а значит, и исключается их взаимодействие.
Электронно-лучевые испарители могут быть одно-и многотигельной конструкции, с разворотом луча на 5.3.30 и 180°. При угле отклонения электронного луча до 270° исключается попадание испаряемого материала на катод и загрязнение наносимых пленок материалом катода, который во время работы также испаряется.
Недостатки этих испарителей - сложность аппаратуры питания и управления, трудность испарения металлов высокой теплопроводности (медь, алюминий, серебро, золото) из водоохлаждаемого тигля, необходимость частой замены и юстировки катода, а также питание высоким напряжением, что требует соблюдения соответствующих правил техники безопасности.
Рисунок 5. Схемы высокочастотного распыления при отрицательном (а) и положительном (б) полупериодах напряжения:
7 - экран, 2 - катод, 3 - ионы, 4 - плазма, 5 - электроны, б - молекулы
Недостаток реактивного распыления - возможность осаждения соединений на катоде, что существенно уменьшает скорость роста пленки.
При реактивном распылении реакции могут протекать как на мишени, так и в растущей пленке, что зависит от соотношений реактивного газа и аргона. В отсутствие аргона реакции происходят на мишени. При этом разряд протекает вяло, так как большинство атомов реактивного газа расходуется на образование на поверхности мишени соединений, которые препятствуют распылению. Чтобы реактивные процессы проходили на подложке, количество реактивного газа не должно превышать 10%; остальное составляет аргон.
При реактивном распылении кремния напускаемый в рабочую камеру кислород взаимодействует с конденсирующими на поверхности подложки атомами кремния, в результате чего образуется пленка SiO2.
При нанесении реактивным распылением диэлектрических пленок нитрида кремния Si3N4 происходит аналогичный процесс. В рабочую камеру напускают тщательно осушенный и очищенный от кислорода аргон с добавкой азота. Ионы этих газов, бомбардируя кремниевый катод, выбивают из него атомы кремния и на подложке вследствие большой химической активности ионизированных атомов азота образуется пленка нитрида кремния Si3N4, отличающаяся высокой химической стойкостью.
Так как условия реакции при нанесении диэлектрических пленок существенно зависят от постоянства в рабочем газе процентного содержания напускаемого реактивного газа, необходимо строго следить за его подачей. Напуск газов в рабочую камеру обычно производят двумя способами:
· вводят оба газа (аргон и реактивный) из магистралей или баллонов, контролируя расход реактивного газа микрорасходомером и поддерживая постоянное давление;
· вводят заранее подготовленную определенного состава рабочую смесь газов из резервуара.
Черняев В.Н. Технология производства интегральных микросхем и микропроцессоров. Учебник для ВУЗов - М; Радио и связь, 2007 - 464 с: ил.
Технология СБИС. В 2 кн. Пер. с англ. /Под ред.С. Зи, - М.: Мир, 2006. -786 с.
Готра З.Ю. Технология микроэлектронных устройств. Справочник. - М.: Радио и связь, 2001. -528 с.
Достанко А.П., Баранов В.В., Шаталов В.В. Пленочные токопроводящие системы СБИС. -Мн.: Выш. шк., 2000. -238 с.
Таруи Я. Основы технологии СБИС Пер. с англ. - М.: Радио и связь, 2000-480 с.
Сравнительный анализ переплавных агрегатов для получения специальных сталей. Основные технологические возможности переплавных процессов. Сущность электронно-лучевого нагрева. Применение вакуумно-дугового, электрошлакового и плазменно-дугового переплавов. контрольная работа [357,4 K], добавлен 12.10.2016
Состав природного газа и мазута. Низшая теплота сгорания простейших газов. Определение количества и состава продуктов сгорания и калориметрической температуры горения, поверхности нагрева и основных параметров регенератора. Удельная поверхность нагрева. курсовая работа [25,0 K], добавлен 25.03.2009
Проведение ускоренных испытаний на надёжность - форсирование режимов работы гидроприводов. Принятые допущения и методические указания. Определение скорости движения, приращения температуры в резиновом уплотнении и амплитуды перемещений выходного звена. лабораторная работа [227,7 K], добавлен 22.12.2010
Использование электронного луча для обработки материалов. Электронно-лучевая сварка (ЭЛС) основана на использовании для нагрева энергии электронного луча. Технологические возможности и преимущества электронно-лучевой сварки. Сварочные манипуляторы. курсовая работа [129,0 K], добавлен 27.03.2008
Технологии производств и применение СВЧ технологии в промышленности. Преимущества и проблемы микроволнового нагрева. Правила безопасности при работе с СВЧ установками. Получение зависимостей коэффициента ослабления от параметров запредельных волноводов. курсовая работа [2,2 M], добавлен 09.09.2016
Исследование структуры, фазового состава и свойств покрытий системы Ti–Si–B, полученных электронно-лучевой наплавкой в вакууме и методом электронно-лучевого оплавления шликерной обмазки. Получение и перспективы применения МАХ-материалов на основе титана. дипломная работа [4,0 M], добавлен 14.06.2013
Функции и классификация индукционных промышленных печей по принципу тепловыделения. Установка электро-лучевого нагрева. Применение электрического нагрева и его особенности. Расчет эквивалентного сопротивления и коэффициента полезного действия индуктора. курсовая работа [774,1 K], добавлен 01.09.2014
Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д. PPT, PPTX и PDF-файлы представлены только в архивах. Рекомендуем скачать работу .

© 2000 — 2021



Виды испарений и распылений в технологии ЭОТ реферат. Производство и технологии.
Реферат По Географии Природные Ресурсы
Доклад: Королёв Сергей Павлович
Понимание Другого Человека Сочинение
Сочинение Достоевский Преступление И Наказание Раскольников
Контрольная работа по теме Понятие и состав судебных расходов
Дипломная работа: Корпоративная культура как фактор повышения успешности деятельности турпредприятий. Скачать бесплатно и без регистрации
Реферат по теме Фонетика эмоциональной речи в ее устной и письменной реализации
Доклад по теме Класс рыбы
Курсовая Работа На Тему Роль Гостиниц И Предприятий Питания В Индустрии Туризма
Реферат: Понятие и типы цивилизаций
Оценка Качества Игрушек Курсовая
Курсовая работа: Лидеры детского коллектива, воспитательная работа с ними
Таможенный Тариф Реферат
Реферат На Тему Структура Характера
Пример Титульного Листа Реферата Для Школы
Сочинение Образы Троекурова И Дубровского
Реферат по теме Особенности организации труда руководителя
Правовые Акты Курсовая
Реферат по теме Обеспечение безопасности в компьютерных сетях
Декабрьское Сочинение 11 Класс 2022
Аппаратное резервирование в промышленной автоматизации - Коммуникации, связь, цифровые приборы и радиоэлектроника статья
Экономические преступления - Государство и право реферат
Використання методів адміністративного менеджменту на підприємстві ПАТ "Прем'єр Палац" - Менеджмент и трудовые отношения курсовая работа


Report Page