Вакуумный выключатель ВТБЭ-10/630-УХЛ3 - Физика и энергетика курсовая работа

Вакуумный выключатель ВТБЭ-10/630-УХЛ3 - Физика и энергетика курсовая работа




































Главная

Физика и энергетика
Вакуумный выключатель ВТБЭ-10/630-УХЛ3

Технические данные, конструкция и характеристики основных узлов вакуумного выключателя ВТБЭ-10. Устройство и работа составных частей, техническое обслуживание и ремонт, особенности эксплуатации. Экономическое обоснование выбора вакуумного выключателя.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1.1 Технические данные вакуумного выключателя ВТБЭ-10/630-УХЛ3
1.2 Конструкция и характеристики основных узлов выключателя
1.3 Устройство и работа выключателя
1.4 Устройство и работа составных частей вакуумного выключателя
1.5 Техническое обслуживание и ремонт вакуумных выключателей
1.6 Особенности эксплуатации вакуумных выключателей
2. Экономическое обоснование выбора вакуумного выключателя
3. Охрана труда при эксплуатации вакуумного выключателя
4. Правила пожарной безопасности при эксплуатации выключателя
Основным аппаратом, от работы которого в большинстве случаев зависят бесперебойность и надежность электроснабжения потребителей из всего оборудования, применяемого на любой подстанции, является выключатель. Он служит для включения и отключения токов любых режимов: номинальных, токов короткого замыкания (КЗ), токов холостого хода (хх) силовых трансформаторов, токов холостых линий и кабелей. Характерной особенностью этого аппарата является наличие дугогасительного устройства (ДУ), которое обеспечивает гашение дуги, возникающей в цепи высокого напряжения при ее размыкании.
Выключатель высокого напряжения является основным коммутационным аппаратом в электрических установках. Он служит для отключения и включения цепи в разных режимах: длительная нагрузка, перегрузка, короткое замыкание, холостой ход, несинхронная работа. Наиболее тяжелой и ответственной операцией является отключение токов КЗ и включение на существующее короткое замыкание.
К выключателям высокого напряжения предъявляют следующие требования:
- надежное отключение расчетных токов и токов короткого замыкания;
- быстрота действия, т.е. наименьшее время отключения;
- пригодность для быстродействующего автоматического повторного включения;
- возможность пофазного управления для выключателей 110 кВ и выше;
- легкость ревизии и осмотра контактов;
- удобство транспортировки и эксплуатации.
Основной принцип работы каждого выключателя является наличие дугогасительной камеры с токонепроводящей средой, в которой происходит гашение электрической дуги высокого напряжения в момент размыкания электрической сети и расхождения токопроводящих элементов выключателя.
Теоретически и практически доказано, что самый простой способ гашения электрической дуги - в вакуумных выключателях, так как в вакуумных камерах практически отсутствует среда, проводящая электрический ток. В этих выключателях контакты расходятся под вакуумом (давление равно 10-4 Па). Возникающая при расхождении контактов дуга быстро гаснет благодаря интенсивной диффузии зарядов в вакууме.
Поскольку разрежённый газ (10 ?6 …10 ?8 Н/смІ) обладает электрической прочностью, в десятки раз превышающей прочность газа при атмосферном давлении, то это свойство широко используется в высоковольтных выключателях: в них при размыкании контактов в вакууме сразу же после первого прохождения тока в дуге через ноль изоляция восстанавливается, и дуга вновь не загорается.
В момент размыкания контактов в вакуумном промежутке коммутируемый ток инициирует возникновение электрического разряда -- вакуумной дуги, существование которой поддерживается за счет металла, испаряющегося с поверхности контактов в вакуумный промежуток. Плазма, образованная ионизированными парами металла, проводит электрический ток, поэтому ток протекает между контактами до момента его перехода через ноль. В момент перехода тока через ноль дуга гаснет, а оставшиеся пары металла мгновенно (за 7--10 микросекунд) конденсируются на поверхности контактов и других деталей дугогасящей камеры, восстанавливая электрическую прочность вакуумного промежутка. В то же время на разведенных контактах восстанавливается приложенное к ним напряжение (см. иллюстрацию процесса отключения).
В эксплуатации вакуумный выключатель также более прост, чем маломасляный и электромагнитный. Прекрасные дугогасящие свойства глубокого вакуума позволили создать выключатели на напряжение 10 кВ, которые благодаря своим преимуществам вытесняют маломасляные и электромагнитные выключатели. В вакуумных дугогасительных камерах реализуется два очень важных свойства вакуумных промежутков: высокая электрическая прочность (выше, чем у трансформаторного масла, не говоря о воздухе,) и высокая дугогасительная способность.
Вакуумные ДУ могут успешно отключать постоянный ток. При токе 1000 А и напряжении 10 кВ отключение происходит путем расхождения контактов в вакууме. При больших значениях тока постоянный ток с помощью конденсатора превращается в переменный и ДУ отключает его при первом прохождении через нуль. При двух последовательно соединенных ДУ отключался ток 5 к А при напряжении 60 кВ. Вспомогательный конденсатор имел емкость 3 мкФ.
Достоинства вакуумных выключателей: 1. Отсутствие необходимости в замене и пополнении дугогасящей среды и масляного хозяйства.
1. Высокая износостойкость при коммутации номинальных токов и токов КЗ.
2. Снижение эксплуатационных затрат, простота эксплуатации.
3. Быстрое восстановление электрической прочности.
4. Полная взрыво- и пожаробезопасность.
5. Повышенная устойчивость к ударным и вибрационным нагрузкам.
6. Произвольное рабочее положение вакуумной дугогасительной камеры (ВДК) в конструкции выключателя.
7. Широкий диапазон температур окружающей среды, в котором может работать ВДК (от -70° до + 200° С).
8. Безшумность, чистота, удобство обслуживания, обусловленные малым выделением энергии в дуге и отсутствием внешних эффектов при отключении токов КЗ.
9. Отсутствие загрязнения окружающей среды.
10. Высокое быстродействие, применение для работы в любых циклах АПВ.
11. Сравнительно малые массы и габариты, небольшие динамические на грузки на конструкцию при работе из-за относительно малой мощности привода.
К недостаткам можно отнести: 1. Возможные коммутационные перенапряжения при отключении малых индуктивных токов.
1. Трудности при создании и изготовлении, связанные с созданием контактных материалов, сложностью вакуумного производства, склонностью материалов контактов к сварке в условиях вакуума.
2. Большие вложения, необходимые для осуществления технологии производства, и поэтому большая стоимость.
1.1 Технические данные вакуумного выключателя ВТБЭ-10/630-УХЛ3
Выключатели нагрузки вакуумные разъединяющие предназначены для установки в шкафах комплектных распределительных устройствах (КРУ), камерах стационарного одностороннего обслуживания (КСО), и комплектных трансформаторных подстанций (КТП) и обеспечивают включение и отключение под нагрузкой участков цепи трехфазного переменного тока частотой 50-60 Гц, номинальным напряжением 10 кВ, с заземленной или изолированной нейтралью, а также заземление отключенных участков при помощи встроенных ножей заземлителей. В отключенном положении выключатели образуют видимый разрыв, то есть выполняют функции разъединителей. Конструкция выключателей имеет широкий ряд исполнений, что позволяет применять их без значительных затрат для замены устаревших аппаратов, находящихся в эксплуатации. Такая конструкции вакуумного выключателя позволяет достичь определенных технических характеристик ( Таблица 1.1.).
Таблица 1.1 - Основные технические характеристики выключателей BB/TEL
Номинальный ток отключения (Iо ном.), кА
начальное действующее значение периодической составляющей
Нормированное процентное содержание апериодической составляющей, %
Среднеквадратическое значение тока за время его протекания (ток термической стойкости), кА
Время протекания тока термической стойкости, с
Собственное время отключения выключателя, с, не более
Полное время отключения, в зависимости от типа БУ/TEL, с, не более
Собственное время включения, с, не более
Полное время включения, в зависимости от типа БУ/TEL, с, не более
Неодновременность замыкания и размыкания контактов, с, не более
Номинальное напряжение питания катушек электромагнитов (постоянное), В
Номинальные параметры оперативного напряжения питания - переменное, В
Ресурс по коммутационной стойкости:
при номинальном токе Iном., операций «ВО»
при токах короткого замыкания I=(60-100)% от (Iо.ном.), операций «ВО»
Электрическое сопротивление главной цепи полюса, мкОм, не более, при номинальном токе:
Масса, кг: BB/TEL-10 конструктивные исполнения 41; 42; 44; 45; 46; 48; 51;52 BB/TEL-10 конструктивные исполнения 43; 47 BB/TEL-10 конструктивные исполнения 59; 70 BB/TEL-10 конструктивные исполнения 60; 71
Структура условного обозначения выключателей:
Климатическое исполнение и категория размещения
Конструктивное исполнение по каталогу.
Пример записи обозначения выключателя напряжением 10 кВ с номинальным током отключения 12,5 кА, номинальным током 630 А, климатического исполнения У2, конструктивного исполнения по каталогу.
Климатическое исполнение и категория размещения У2 по ГОСТ1550, условия эксплуатации при этом:
· наибольшая высота над уровнем моря до 3000 м;
· верхнее рабочее значение температуры окружающего воздуха в КРУ (КСО) принимают равным плюс 55°С, эффективное значение температуры окружающего воздуха КРУ и КСО - плюс 40°С;
· нижнее рабочее значение температуры окружающего воздуха - минус 40°С;
· верхнее значение относительной влажности воздуха 100% при плюс 25°С;
· окружающая среда невзрывоопасная, не содержащая газов и паров, вредных для изоляции, не насыщенная токопроводящей пылью в концентрациях, снижающих параметры электропрочности изоляции выключателя.
Параметры вспомогательных контактов выключателя приведены в таблице 1.2.
Таблица 1.2 - Параметры вспомогательных контактов вакуумного выключателя
Максимальное рабочее напряжение, В (перем. и пост.)
Максимальная коммутируемая мощность в цепях постоянного тока при t=1 ms, Вт
Максимальная коммутируемая мощность в цепях переменного тока при cos j= 0,8, ВА
Испытательное напряжение, В (пост.)
Сопротивление контактов, мкОм, не более
Коммутационный ресурс при максимальном токе отключения, циклов В-О
Развитие вакуумных выключателей связано с тем, что вакуум является идеальной изоляционной средой, так как ионизация молекул газа путем соударения с ними электронов чрезвычайно мала, а значит, практически исключено лавинообразное нарастание количества заряженных частиц из-за весьма низкой плотности газа. Поэтому электрическая прочность изоляционного межконтактного промежутка в вакууме значительно выше, а длина дуги значительно меньше, чем в масляных, элегазовых и воздушных выключателях. Это позволяет существенно снизить габариты дугогасительной камеры вакуумного выключателя. Сравнение разрядного импульсного пробивного напряжения Uпр в зависимости от величины межконтактного промежутка S в различных дугогасящих средах представлено на рис. 1.1.
Рисунок 1.1- График разрядного импульсного пробивания напряжения в различных коммутационных аппаратах.
1.2 Конструкция и характеристики основн ых узлов вакуумного выключателя
В отличие от большинства существующих выключателей, в основу устройства BB/TEL заложен принцип раздельного управления контактами вакуумных дугогасительных камер фаз аппарата. Данный принцип позволил существенно уменьшить количество движущихся частей привода.
Вакуумные дугогасительные камеры установлены внутри полых опорных изоляторов, закреплённых на общем основании (см. рис. 1, 2). Подвижные контакты дугогасительных камер жестко соединены со своими приводами посредством изоляционных тяг, которые также располагаются внутри опорных изоляторов. Таким образом, все элементы конструкции полюса имеют общую ось симметрии, вдоль которой совершают возвратно-поступательное движение детали механизма. Это позволяет существенно упростить кинематическую схему BB/TEL, отказаться от применения нагруженных шарнирных и рычажных звеньев, что, в свою очередь, делает возможным создание коммутационного аппарата с высоким механическим ресурсом, не требующего обслуживания и регулировки в течение всего срока службы.
Приводы фаз располагаются внутри основания выключателя. Они механически соединены между собой посредством общего вала, который выполняет следующие функции:
· обеспечивает синхронизацию фаз, предохраняя от неполнофазных режимов работы;
· приводит в действие вспомогательные контакты выключателя;
· обеспечивает механическую блокировку работы РУ, в котором установлен BB/TEL;
· управляет визуальными индикаторами положения BB/TEL.
На рис. 1, 2 представлен пример конструкции выключателя с номинальным током 1000 А. Конструкция выключателя с номинальным током 1600 А аналогична, но имеет отличия в части устройства элементов главной токоведущей цепи с целью обеспечения большей пропускной способности.
На напряжение 10 кВ разработаны вакуумные дугогасительные камеры (ВДК) с токами отключения 40 и 50 кА. На рис. 3 показан схематический разрез вакуумной дугогасительной камеры с поперечным магнитным дутьем с серповидными контактами, применяемой в вакуумных выключателях на номинальные напряжения 10 кВ с номинальным током 3150 А и током отключения до 20 кА. Поперечное магнитное поле быстро перемещает дугу, что позволяет уменьшить износ контактов и улучшает процесс гашения дуги.
Электромагнитный привод может находиться в двух устойчивых положениях - ОТКЛЮЧЕНО и ВКЛЮЧЕНО. Фиксация якоря в этих положениях производится без применения механических защёлок, и обеспечивается:
· силой упругости отключающей пружины в положении ОТКЛЮЧЕНО;
· силой, создаваемой остаточным магнитным потоком кольцевого постоянного магнита, в положении ВКЛЮЧЕНО.
Операция включения и отключения производится путём подачи управляющих импульсов напряжения разной полярности на однообмоточную катушку электромагнитного привода.
Рисунок 1 Конструкция вакуумного выключателя.
Для управления (включения и отключения) выключателями, а также для сопряжения с существующими цепями релейной защиты и управления предназначены блоки управления BU/TEL различных типов. При выполнении операций ВКЛ/ОТКЛ на катушки электромагнитных приводов выключателя разряжаются предварительно заряженные конденсаторы блоков управления. Таким образом обеспечивается строгое дозирование электрической энергии, что позволяет снизить совокупное разрушительное воздействие на контактную систему ВДК электроэрозионных, тепловых и механических факторов, что в свою очередь способствует повышению коммутационного и механического ресурса всего вакуумного выключателя.
Применяются следующие типы блоков управления предприятия «Таврида Электрик»:
· BU/TEL-220-05A (ИТЕА468332.021РЭ) с блоком питания ВР/TEL-220-02A (ИТЕА436535.007РЭ)№
· БУ/TEL-220-10 (ИТЕА468332.017РЭ);
· БУ/TEL-100/220-12-01; (БУ/TEL-12/64-12-01); (АРТА468332.001РЭ);
· БУ/TEL-100/220-12-02; (БУ/TEL-12/64-12-02); (АРТА468332.001РЭ);
· БУ/TEL-100/220-12-03; (БУ/TEL-12/64-12-03); (АРТА468332.001РЭ).
Блок управления BU/TEL-220-05A используется только в комплекте с блоком питания BP/TEL-220-02A. Остальные типы блоков управления имеют встроенные блоки питания. Выбор типа блока управления зависит от рода оперативного напряжения (постоянное, переменное, выпрямленное), его источников, функционального назначения ячейки, объёма РЗиА, типа используемой аппаратуры и др. параметров.
1.3 Устройство и работа выключателя
Включение и отключение коммутационного аппарата осуществляется за счет соответствующих пружин. Срабатывание пружин осуществляется воздействием специальных электромагнитов (соленоидов) включения и отключения, либо нажатием кнопок включения и отключения непосредственно в приводе ВВ.
Перед включением выключателя необходимо привести в рабочее положение пружину включения, то есть взвести ее. Взвод пружины происходит при подаче оперативного тока на электпродвигатель привода ВВ. При отсутствии возможности подачи оперативного тока, например при обесточении распределительного щита постоянного тока, взвести пружину можно вручную при помощи специальной рукоятки.
Итак, для включения выключателя дистанционно, через ключ управления подается оперативный ток (как правило постоянный) на соленоид включения. Для управления выключателем с места нажимается кнопка включения. В обоих случаях происходит воздействие на защелку включения, которая освобождает пружину включения, которая включает вакуумный выключатель . При этом заводится пружина отключения. Электрическая схема привода устроена таким образом, что после включения аппарата происходит автоматический взвод пружины включения.
Рисунок 2. Конструкция и устройство вакуумного выключателя.
В момент размыкания контактов в вакуумном промежутке коммутируемый ток инициирует возникновение электрического разряда, называемого «вакуумная дуга». Существование «вакуумной дуги» поддерживается за счёт металла, испаряющегося с поверхности контактов в вакуумный промежуток. Плазма, образованная ионизированными парами металла, является проводником тока и поддерживает его протекание между контактами до момента перехода через ноль. В этот момент дуга гаснет, а оставшиеся пары металла мгновенно (за 7-10 микросекунд) конденсируются на поверхности контактов и других деталей дугогасительной камеры, восстанавливая электропрочность вакуумного промежутка. В это же время на разведенных контактах восстанавливается приложенное к ним напряжение. Если при восстановлении напряжения на поверхности контакта (как правило, анода) остаются перегретые участки, они могут служить источником эмиссии заряженных частиц, вызывающих пробой вакуумного промежутка, с последующим протеканием тока через него. Для избежания подобных отказов необходимо управлять вакуумной дугой, равномерно распределяя тепловой поток по всей поверхности контактов. Наиболее эффективным способом управления дугой является наложение на неё продольного (сонаправленного с направлением тока) магнитного поля, которое индуцируется самим током. Данный способ применён в вакуумных дугогасительных камерах, которые разработаны и производятся предприятием «Таврида Электрик». Эта конструкция имеет явные преимущества:
· малая величина тока среза (4-5 ампер), ограничивающая коммутационные перенапряжения до безопасных величин;
· продольное магнитное поле минимизирует коммутационный износ контактов (эрозию) и обеспечивает значительный коммутационный ресурс.
Для управления (включения и отключения) выключателями, а также для сопряжения с существующими цепями релейной защиты и управления предназначены блоки управления BU/TEL различных типов.
При выполнении операций ВКЛ/ОТКЛ на катушки электромагнитных приводов выключателя разряжаются предварительно заряженные конденсаторы блоков управления. Таким образом обеспечивается строгое дозирование электрической энергии, что позволяет снизить совокупное разрушительное воздействие на контактную систему ВДК электроэрозионных, тепловых и механических факторов, что в свою очередь способствует повышению коммутационного и механического ресурса всего вакуумного выключателя.
1.4 Устройство и работа составных частей вакуумного выключателя
Блок дугогасительный состоит из вакуумной дугогасительной камеры (ВДК), гибкого токоподвода со стороны подвижного контакта ВДК и механизма поджатия, выводов для внешнего присоединения подвижного и неподвижного контактов ВДК. Выводы от подвижного и неподвижного контактов ВДК выполняются для присоединения переходных шин и для установки ламельных узлов.
Привод состоит из несущей панели выключателя 4, установленного на ней мотор-редуктора 10 для заводки включающих пружин, синхронизирующего вала привода 2, электромагнита отключения МХ 7, электромагнита включения XF 8, блока коммутирующих контактов для внешних вспомогательных цепей 6, органы управления выключателем (кнопка включения 5 и отключения 1), указатели состояния пружин 11 и положения выключателя 12. На синхронизирующем валу привода 2 установлен компенсатор 13 и закреплена одним концом пружина демпфера 3. Вал служит для передачи усилия возникающего при освобождении запасенной энергии включающих и отключающих пружин через управляющую и изоляционную тягу к дугогасительным блокам.
На напряжение 10 кВ разработаны вакуумные дугогасительные камеры (ВДК) с токами отключения 40 и 50 кА. На рис. 3 показан схематический разрез вакуумной дугогасительной камеры с поперечным магнитным дутьем с серповидными контактами, применяемой в вакуумных выключателях на номинальные напряжения 10 кВ с номинальным током 3150 А и током отключения до 20 кА. Поперечное магнитное поле быстро перемещает дугу, что позволяет уменьшить износ контактов и улучшает процесс гашения дуги.
Рисунок 3 - Вакуумная дугогасительная камера вакуумного выключателя на 10 кВ, 3150 А. а- схематический разрез камеры; б- контактная система камеы;1-контакты; 2-дугогасящие электроды; 3-зазор между контактами и дугогасящими электродами; 4-медный неподвижный ввод; 5-то же подвижный; 6- концевые фланцы; 7- сильфон из нержавеющей стали; 8- экран, изолированный от вводов; 9-концевые экраны, находящиеся под потенциалом соответствующего ввода; 10-керамические изоляторы;11-металлическая прокладка;12- напрявляющая из силумина
Механизм свободного расцепления включает в себя два рычага 6, приваренных к валу 10 выключателя, коромысло 8 с роликами на обеих концах и защелками 9. Коромысло 8 установлено на оси 5 между рычагами 6. Благодаря пружине 4 коромысло постоянно стремится повернуться против часовой стрелки, его движение ограничено осью 7 между рычагами 6, положение защелки 9 устанавливается с помощью болта 13 и пружины, которая стремится повернуть защелку 9 относительно ее оси против часовой стрелки. Главная защелка 3, фиксирующая включенное положение выключателя, может поворачиваться вокруг своей оси и под действием пружины стремится повернуться по часовой стрелке.
В исходном состоянии выключатель отключен. Положение элементов механизма свободного расцепления, вала выключателя и контактов ВДК показана на рисунке 3, а. Рассмотрим включение выключателя. Толкатель электромагнита включения 1, перемещаясь, начинает воздействовать на ролик коромысла 8 механизма свободного расцепления. Другой ролик коромысла 8 находится на защелке 9, поэтому оно не может повернуться вокруг своей оси вращения 5, т.е. вал выключателя поворачивается по часовой стрелке, и через рычаги 11, изоляционные тяги 12, узлы поджатия происходит замыкание контакт-деталей 15 и 16 ВДК. Одновременно взводится пружина отключения 2. В конце хода толкателя электромагнита под действием прижимной силы пружины возврата защелка 3 поворачивается, фиксируя выключатель во включенном положении. Под действием возвратной пружины 9 электромагнита включения его якорь возвращается в исходное положение после обесточивания катушки.
Положение элементов механизма свободного расцепления при включенном положении выключателя показана на рисунке 3, б. Для отключения выключателя необходимо вывести из зацепления с роликом коромысла 8 защелку 9 (повернуть вокруг своей оси по часовой стрелке). Это можно выполнить вручную посредствам воздействия на рычаг 20 кнопкой ручного отключения 19 или толкателем 18 электромагнита отключения 17. Когда защелка 9 выйдет из зацепления, становится возможным поворот вала 10 против часовой стрелки за счет энергии пружины электромагнита отключения 17 и пружины узлов поджатия. При повороте вала 10 разводятся контакт-детали 15 и 16 ВДК 14, и коромысло 8, поворачивается по часовой стрелке. Примерно этот момент в процессе отключения выключателя приведен на рисунке 6, в. Далее при повороте коромысло 8 по часовой стрелке его ролик соскальзывает с защелки 3, и выключатель отключается. Коромысло 8 под действием пружины 4 становится на защелку 9. Механизм готов к включению.
Кроме механизма свободного расцепления выключатель снабжен блоком сигнализации и пневматическим буфером. Блок сигнализации может содержать от 8 до 16 коммутирующих контактов для внешних вспомогательных цепей. Пневматический буфер предназначен для амортизации удара при отключении выключателя.
Для надежной работы выключатель должен быть правильно отрегулирован.
1.5 Техническое обслуживание и ремонт вакуумных выключателей
Основными задачами технического обслуживания высоковольтных выключателей являются:
* систематическое наблюдение за их техническим состоянием, в особенности за состоянием приводов к ним, обеспечение их работоспособности с номинальными параметрами;
*устранение в них в возможно короткие сроки неисправностей, которые могут привести к аварии;
* своевременный ремонт и профилактические испытания элементов выключателей и приводов.
Сроки проведения внеочередных и плановых ремонтов выключателей и приводов к ним зависят от коммутационной и механической износостойкости контактов выключателей, степени изменения технических характеристик с течением времени вследствие высыхания смазки, загрязнения изоляции, отказа отдельных узлов и т.д. Эти сроки, в зависимости от конструктивного исполнения этих коммутационных аппаратов, обычно регламентируются заводами-изготовителями. При этом маломасляные и электромагнитные выключатели и особенно приводы к ним требуют постоянного устранения неполадок и неисправностей, в то время как современные вакуумные и элегазовые выключатели отличаются повышенным механическим и коммутационным ресурсом, что позволяет осуществлять их гарантированную эксплуатацию в течение 25 и более лет без проведения капитального ремонта.
Вакуумные выключатели не требуют проведения периодических (плановых) текущих, средних и капитальных ремонтов в течение всего срока их службы.
Профилактический контроль технического состояния выключателей рекомендуется проводить в следующие сроки: первую проверку - через 1-2 года эксплуатации, повторные - через каждые 10 лет. При эксплуатации выключателей в цепи приемников с частой коммутацией, например, на сталеплавильных печах, где в течение суток может быть до 50-60 операций «ВО», контроль технического состояния рекомендуется проводить ежегодно.
В объем профилактического контроля входят: проверка общего состояния выключателя, выполняемая внешним осмотром, проверка работоспособности выключателя, измерение переходного сопротивления главной цепи и испытание электрической прочности изоляции переменным одноминутным напряжением промышленной частоты.
Вакуумные выключатели, находящиеся постоянно во включенном или отключенном положении, должны 1 -2 раза в год проходить проверку их работоспособности путем опробования в соответствии с Правилами технической эксплуатации или местными инструкциями по обслуживанию высоковольтной аппаратуры распределительных устройств.
При контроле токоведущих цепей выключателя путем измерения переходного сопротивления постоянному току следует использовать результаты предыдущих измерений сопротивления, в том числе полученные при вводе выключателя в эксплуатацию.
При отсутствии нарушений контактных соединений увеличение значения переходного сопротивления возможно за счет увеличения переходного сопротивления между контактами ВДК за счет воздействия электрической дуги возникающей при отключении токов нагрузки и токов короткого замыкания. Как показывают результаты испытаний, переходное сопротивление главной цепи вакуумных выключателей серии BB/TEL увеличивается не более чем на 10 мкОм после многократных отключений тока короткого замыкания.
Во время измерения сопротивления в условиях эксплуатации следует обращать внимание на относительную разницу значений сопротивления в полюсах выключателя. Разница более чем на 25 - 30% свидетельствует о нарушении контактного соединения в полюсе с увеличенным значением переходного сопротивления. Если переходное сопротивление вакуумного выключателя будет превышать нормированное значение более чем в 2 раза, выключатель не должен вводиться в работу. Его дальнейшая эксплуатация возможна только с разрешения предприятия- изготовителя. Значительное увеличение сопротивления может иметь место при потере вакуума в одной из ВДК и коммутации выключателем токов нагрузки. Такие случаи наиболее вероятны на присоединениях с частыми коммутациями, например, в цепях плавильных печей. Для подтверждения случая потери вакуума необходимо провести испытание продольной изоляции ВВ переменным напряжением.
В случае нарушения работоспособности выключателя вакуумного по вине завода-изготовителя до истечения гарантийного срока, работа по восстановлению или его замене производится предприятием безвозмездно.
В случае выработки коммутационного ресурса или истечения срока службы выключатель подлежит замене. Выключатель, выработавший механический ресурс, подлежит освидетельствованию согласно. Если коммутационный ресурс не выработан и переходное сопротивление находится в допустимых пределах, необходимо обратиться в службу сервиса для замены привода выключателя.
В процессе эксплуатации выключателя необходимо проводить осмотр, техническое обслуживание. Порядок и периодичность технического обслуживания устанавливается в соответствии с технической и эксплуатационной документацией на электроустановки, в которых применяются выключатели.
Объем работ и сроки их проведения приведены в таблице 2.
произвести внешний осмотр выключателя;
убедиться в отсутствии трещин на изоляционных деталях и в отсутствии механических повреждений;
После 5000 операций «ВО» или в соответствии с п.3.3.2.
- очисть от пыли и грязи изоляционные детали мягкой ветошью, смоченной в обезжиривающем нехлорированном растворителе;
- произвести внешний осмотр контактных соединений выключателя выкатного исполнения в составе кассеты, при необходимости подтянуть крепеж токоведущих частей и контактных соединений;
- произвести осмотр блок-контактов исполнительных цепей потребителей;
- возобновить смазку Isoflex Topas L152 на трущихся деталях;
- измерить электрическое сопротивление главных цепей;
- измерить сопротивление изоляции главных цепей.
2. При необходимости замены комплектующих:
«Шнейдер Электрик» или эксплутационная организация (см.п.2.2.1.2.)
а) Выключатель в стационарном исполнении:
замена передней панели низковольтного разъема;
- замена дополнительных блок-контактов;
- замена контакта сигнализирующего о готовности к включению;
- замена двигателя для заводки пружин привода МСН;
- замена реле минимального напряжения;
- замена счетчика коммутационных операций;
- замена блокировки встроенными ключами;
- замена блокировки кнопок управления навесными замками;
-
Вакуумный выключатель ВТБЭ-10/630-УХЛ3 курсовая работа. Физика и энергетика.
Курсовая работа по теме Принципы обучения младших школьников английскому языку
Дипломная работа: Миссия и цели организации
Курсовая работа: Роль мотива всемогущества рока и обреченность борьбы с ним в трагедии Эсхила "Прометей прикованный"
Реферат: Правонарушение, его признаки и виды
Лесков Собрание Сочинений В 11 Томах
Реферат по теме Концепции цивилизации
Контрольная работа по теме Расчет выпрямителя напряжения
Пожарная Безопасность В Работе Аппаратчика Реферат
Реферат: Социальные структуры и сословные организации Древних Афин. Скачать бесплатно и без регистрации
Реферат: Красноармейского района Волгограда особенности взаимоотношений современных дошкольников с родителями
Сколько Книг Надо Прочитать Для Итогового Сочинения
Курсовая работа по теме Глобальні проблеми сучасності
Экономическое Развитие Темы Рефератов
Контрольная работа: Основные направления развития угольной промышленности
Курсовая работа по теме Рельеф Марса
Сочинение На Тему Преданность 9.3
Сочинение Про Мою Комнату 6 Класс
Темы Итогового Сочинения Егэ 2022
Сочинение По Рассказу Алексина
Работы Реферат Заключение
Леонардо да Винчи. Жизнь и творчество - Культура и искусство презентация
Основы управления муниципальным имуществом - Государство и право реферат
Гуннское нашествие - История и исторические личности реферат


Report Page