Устройство памяти. Воспроизводство и передача информации в организме - Биология и естествознание реферат

Устройство памяти. Воспроизводство и передача информации в организме - Биология и естествознание реферат




































Главная

Биология и естествознание
Устройство памяти. Воспроизводство и передача информации в организме

Рассмотрение природы, классификации и физической основы памяти. Строение нервной системы. Описание процесса образования и прохождения нервного импульса по нейронам и синапсам. Выделение основных отличий человеческого мозга от электронного компьютера.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Федеральное государственное образовательное учреждение высшего профессионального образования "Омский государственный аграрный университет"
по дисциплине: "Концепции современного естествознания"
на тему: "Устройство памяти. Воспроизводство и передача информации в организме"
1. Устройство памяти. Воспроизводство и передача информации в организме
2. Физические процессы передачи информационного сигнала в живом организме
1. УСТРОЙСТВО ПАМЯТИ. ВОСПРОИЗВОДСТВО И ПЕРЕДАЧА ИНФОРМАЦИИ В ОРГАНИЗМЕ
Если какую-то из наших способностей можно счесть самой поразительной, я назвала бы память. В ее могуществе, провалах, постоянстве есть что-то откровенно непостижимое, чем в любом из наших даров. Память иногда такая цепкая, услужливая, послушная, а иной раз такая путаная и слабая, а еще в другую пору такая деспотичная, нам не подвластная! Мы, конечно, во всех отношениях чудо, но право же, наша способность вспоминать и забывать кажется мне вовсе непонятной.
Природа памяти является одной из самых загадочных и важнейших проблем современной биологии и с ней тесно связаны проблемы деятельности мозга, строения нервной системы, хранения и передачи информации в живом организме, а также проблемы обучения.
Память - самая долговечная из наших способностей, она определяет нашу индивидуальность и заставляет действовать тем или иным способом в большей мере, чем любая другая особенность нашей личности. Для каждого из нас память уникальна. Она позволяет осознавать человеку себя и других людей личностями. Поэтому, потеряв помять, человек утрачивает свое "я" и перестает существовать именно как человек. По существу, наша жизнь есть путь от пережитого прошлого к неизвестному будущему через настоящее. Наше существование в настоящем связано с прошлым, это продолжение прошлого и формируется им благодаря наличию памяти. Как отмечал С. Роуз, " именно память спасает прошлое от забвения, не дает ему стать таким же непостижимым, как будущее ". Поэтому память определяется "стрелой времени", придает направленность ходу времени и в этом смысле связана и с физикой, синергетикой, историей, геологией, биологией, даже с развитием человеческого языка и в целом с эволюцией жизни.
2. ФИЗИЧЕСКИЕ ПРОЦЕССЫ ПЕРЕДАЧИ ИНФОРМАЦИОННОГО СИГНАЛА В ЖИВОМ ОРГАНИЗМЕ
Рассмотрим немного подробнее нервную систему человека в связи с проблемой памяти. Главная функция нервной системы состоит в переработке и передаче информации от рецепторов органов чувств через центральную нервную систему к органам-исполнителям - эффекторам. Она состоит из нейронов, синапсов и нервов. Синапсы - это соединения между нейронами, а нервы - это пучки отростков многих нейронов, своего рода многожильные кабели, которые осуществляют координацию функций организма и опосредуют его реакцию на различные воздействия. Каждый нейрон имеет тело и отростки - аксоны и дендриты.
Аксон - это длинный отросток, который проводит сигналы от тела нервной клетки, а дендрит - по направлению к нейрону, т.е. аксоны передают выходные сигналы, а дендриты - входные. У каждого нейрона имеется один аксон. Функциональной единицей нервной системы является моносинаптическая рефлекторная дуга - нервная цепь, образованная двумя нейронами. Стимул в виде электрического импульса передается по такой дуге и дает однозначный рефлективный ("автоматический") ответ. Однако одна рефлекторная дуга может взаимодействовать с другой, что приводит к большому разнообразию ответов. Схема такой дуги проста: рецептор - нейрон - эффектор (например, мышца). Вся система работает как дверной звонок: нажимаем на кнопку, и раздается звонок. Однако более реальна другая аналогия - сначала сигнал попадет на пульт (мозг), и там решается вопрос, кому тот сигнал предназначен.
Как же осуществляется образование и прохождение нервного импульса по нейронам и синапсам? Этот процесс обусловлен наличием электрических зарядов на наружных клеточных мембранах, что является всеобщей особенностью живых клеток. Нервный импульс представляет собой волну деполяризации, которая распространяется по аксону от тела клетки к нервному окончанию. В каждой клетке невозбужденной мембраны аксона до того, как до нее дойдет волна деполяризации, имеется потенциал (~ 70 мВ). Такой заряд, создающий мембранный потенциал покоя, обусловлен присутствием во внутри- и внеклеточной жидкости различных заряженных ионов, в частности , , их неравномерным распределением по разным сторонам мембраны и избирательной проницаемостью мембраны. Когда из наружной среды попадают ионы натрия, происходит быстрый (около 1 мкс) скачок мембранного потенциала от -70 до +(20-40) мВ.
Такой скачок называется потенциалом действия. Изменение потенциала от -70 мВ до нуля приводит к полной деполяризации, и затем возникает обратная по знаку поляризация мембраны. Положительные ионы переходят в клетку, и потенциал мембраны становится около +40 мВ в максимуме. Таким образом, поступление в клетку ионов натрия приводит к деполяризации мембраны и возникновению потенциала действия, который и распространяется по аксону в виде волны от тела клетки до ее выходного синапса. Потенциал действия, в свою очередь, служит сигналом для высвобождения в синаптическую щель нейромедиатора, вызывающего реакцию другого нейрона. Когда поступление ионов натрия прекращается, они выводятся наружу и устанавливается первоначальная разность потенциалов. Способность генерировать потенциал действия - уникальное свойство таких возбудимых клеток, как нейроны. Причем это может быть электрическая, химическая и механическая стимуляция, в результате чего свойства мембраны в месте раздражения быстро изменяются.
Нервная система позвоночных состоит из центральной (ЦНС) и периферической (ПНС). В ЦНС происходит переработка сигналов, и она состоит из головного и спинного мозга. ПНС, как следует из ее названия, осуществляет передачу сигналов на периферии, от органов чувств к железам, мышцам и т.д. У животных в основном ПНС.
Нервная система у высших животных развилась постепенно из диффузионной нервной системы, где в определенных участках нейроны стали концентрироваться и в конце концов образовали центральную нервную систему - головной и спинной мозг. Первоначальная структура ЦНС - нервный тяж, идущий вдоль тела. Передняя часть его расширяется, образуя головной мозг (этот процесс называется цефализацией, от греческого "кефалос" - голова), а задняя часть становится спинным мозгом. Важнейшая часть головного мозга - два больших полушария, правое и левое. Среди важнейших функций мозга - его способность к переработке сенсорных данных, способность к формированию общих абстрактных понятий, т.е. категоризация и память.
Физической основой памяти и способностью к обучению служат изменения эффективности нейронов и синаптических связей между ними при повторной стимуляции. Однако система памяти человеческого мозга отличается от двоичной системы памяти компьютера: элементы информации извлекаются не с помощью обращения к постоянному адресу их хранения - адрес можно изменять в зависимости от ассоциации идей, которые являются своего рода голограммами информации. В компьютере каждая хранящаяся в его памяти единица информации имеет свой определенный адрес - код, который нужно знать для ее извлечения.
Биологическая память тоже использует адреса, но варьирует их в зависимости от ассоциаций мыслей, меняющихся у разных людей в разное время. Следовательно, изменения в мозгу при получении и переработке информации в процессе обучения или запоминания, "следы памяти", или, как их назвал канадский психолог Д. Хебб, энграммы, носят не локализованный, а распределенный характер. Они - не в отдельных "ячейках памяти", а представлены в виде некоторых состояний системы мозга. Поэтому при повреждениях или разрушениях отдельных участков мозга хранящаяся в памяти информация обычно не утрачивается совсем, хотя и извлечение ее становится менее эффективным.
Таким образом, человеческая память не представима моделью компьютера. Она закодирована в 10 млрд. нервных клеток, образующих наш мозг, и триллионах связей между ними - синапсов. Число нейронов в мозгу любого человека втрое больше, чем число живущих на Земле людей, а если учесть число синапсов (около ), то их больше в 100 тыс. раз, по сравнению с численностью населения во всем мире. Предположив образование одного синапса в секунду, можно посчитать, что потребуется от 3 до 30 млн. лет, чтобы закончить подсчет. Как сказал С. Роуз, " этого вполне достаточно, чтобы хранить воспоминания о всей прошедшей жизни... ".
Структурные изменения в нервной системе (рост отростков в нейронах, возникновение новых связей и лавинный характер передачи информации через нейроны) дают возможность обучения и хранения "следов памяти". Изменения в поведении, возникающие в результате опыта, развиваются на основе обучения и запоминания и могут быть закреплены на структурном уровне. Отметим также, что и на этом уровне реализуется принцип оптимальности информации в условиях дефицита энергии путем самоорганизации.
Возвращаясь к процессам образования следов в памяти, можно предположить, что они являются живыми процессами, которые изменяются и наполняются новым содержанием каждый раз, когда мы их оживляем. Эффективность этого процесса возникновения энграмм определяется "усилением" работы синапсов. Схематически это выглядит так: если два нейрона, соединенные синапсом, подвержены одновременной стимуляции, то синапс становится "сильнее" и легче передает сигнал от одного нейрона к другому. Если синапс станет более сильным, стимуляция только одного нейрона вызовет разряд и в другом, между ними установится ассоциативная связь. Такое упрощенное представление, тем не менее, позволяет понять, почему активация каким-то стимулом одного нейрона может вызвать в памяти нечто иное, представленное активностью другого нейрона.
Сейчас установлено, что существуют две формы памяти - лабильная кратковременная память и постоянная долговременная память. Кратковременная - это такая память, в которой следы появляются сразу же, она зависит от электрической активности нейронов мозга, и если активность прерывается, то следы исчезают. Через некоторое время следы могут перейти в долговременную память, отдел, так сказать, длительного хранения. Здесь уже информация не утрачивается после прекращения электрической активности нейронов. Она теперь закреплена в нервных связях и может храниться долго, иногда всю жизнь. " Воспоминания - это информация, закодированная в нейронах " (К. Баулс).
Существует еще деление на эйдетическую (образную), зрелую, словесную, зрительную память о недавнем и давно прошедшем, процессы узнавания и воспоминания. Но оставим это психологам и нейробиологам.
Можно провести разделение памяти еще на две формы, позволяющие различить память человека и животных. Из повседневной жизни нам хорошо известно, что наши домашние животные, собаки и кошки, ведут себя так, как будто имеют память. Собаки узнают своих хозяев и отличают от незнакомых людей. Кошки, научившись открывать дверь, "запоминают" это на всю жизнь и постоянно пользуются своим уменьем. Это - память, связанная с приобретением навыков, условных рефлексов, запоминающихся реакций на окружающую среду и требующих ответного действия, так сказать, память действия, моторная память. Она называется процедурной памятью и проявляется у человека в виде навыков движения (бег, плавание, лыжи, велосипед и т.д.).
Однако человеку присуща и декларативная абстрактная память, память на название, которой нет у животных. Это различие связано с различиями устройств мозга животных и человека. Мозг животных не способен к образованию абстрактных понятий и воссозданию в своей голове идеально отсутствующей ситуации. Имеются, тем не менее, некоторые экспериментальные наблюдения, свидетельствующие о зачатках памяти у животных, похожей на память человека. Так, волк, бегущий по одну сторону забора и желающий схватить зайца, убегающего от него по другую сторону забора, не пытается пролезть в щели забора, а "соображает", что можно поймать зайца, когда забор закончится, и бежит именно к концу забора. Иначе устроен мозг человека, способный к обобщению внешних данных, образованию абстрактных понятий и воссозданию идеальных ситуаций, а не просто прямому восприятию окружающей ситуации. Заметим также, что чем ближе находятся организмы по уровню своего развития, тем полней может быть передача состояний от одного к другому. Именно по этой причине затруднена передача состояний посредством языка между человеком и животными.
С физической же точки зрения возможность передачи состояний через код по нервной системе - это важный фактор, объединяющий компоненты высокоорганизованных систем, и на высших уровнях организации, играет ту же роль, что химическая связь на атомном уровне. Раскрытие механизмов памяти еще далеко не закончено. Можно, например, выделить еще три формы биологической памяти: генетическую, открытие и расшифровку которой осуществила молекулярная биология; обычную, которая является функцией мозга; иммунологическую.
Что касается "обычной" памяти, то она проявляется в топографической схеме связей между нейронами и в динамике нейронной системы. "Освоение" мозгом полученной информации должно сопровождаться изменением электрической активности нейронов, соединенных изменившимися синапсами. Понимание памяти возможно на пути исследования мозга как целой самоорганизующейся системы, в которой постепенно происходят организация порядка из хаоса и обратные переходы от порядка к хаосу. Для этого понимания необходимо объединить в холистическом подходе разные методы познания человеческого организма: морфологию, описывающую изменения в пространстве; биохимию, описывающую состав на молекулярном уровне; физиологию, динамично описывающую изменения во времени.
Сравнение человеческого мозга с электронным компьютером несостоятельно еще по двум обстоятельствам. Во-первых, мозг по сравнению с детерминированной памятью компьютера не является закрытой системой. Мозг человека, как и его организм в целом, представляет собой открытую систему, сформированную собственной историей и находящуюся в непрерывном взаимодействии с природной и общественной окружающей средой, которая изменяет ее, но и сама система при этом подвергается изменению. Мозг обладает способностью изменять свою структуру, физические, химические и физиологические процессы, свою реакцию в результате приобретения опыта и случайных обстоятельств в процессе развития. Недетерминированность на уровне нейронов и синапсов человеческого мозга по сравнению с компьютером показывает, что понимание работы мозга и разума лежит не в анализе работы отдельных его элементов, реакции которых непредсказуемы по своей природе, а в восприятии их на уровне целого. Сознание, разум, память возникают как свойства мозга в целом, а не как свойства отдельных его компонентов.
Во-вторых, мы уже знаем, что в процессе жизни каждая клетка многократно заменяется, одни гибнут, рождаются новые, рвутся старые связи между ними и устанавливаются новые, причем это происходит миллионы раз. И при этом всеобъемлющем самоорганизующемся процессе, который и составляет существо биологической жизни, память сохраняется. Разве можно представить компьютерную память при постоянной смене человеком деталей компьютера? Человеческая же память, связанная со структурами его мозга и происходящими в нем процессами, сохраняется так же, как сохраняются формы тела, несмотря на непрерывный круговорот его молекулярных компонентов.
В заключение приведем еще один пример отличия компьютерной памяти от человеческой. Компьютер помнит информацию в виде дискретной цифровой последовательности. Человек же запоминает информацию по смыслу. Причем смысл подразумевает динамическое взаимодействие между мозгом человека и информацией. Это процесс, не сводимый к количеству информации. Получается, что мозг человека работает не с информацией в компьютерном понимании этого слова, а со смыслом или значением. А значение - это исторически формируемое понятие, оно находит выражение в процессе взаимодействия человека с природной и социальной средой. Компьютер же просто (и быстро) перебирает всевозможные логические варианты, но не понимает и не оценивает их по смыслу.
1. Горбачев В.В. Концепции современного естествознания. В 2 ч.: Учебное пособие. - М.: Издательство МГУП, 2000
Структура нервной системы, ее основные составные части и порядок их взаимодействия, назначение и функции в организме. Виды нервной системы и процессы, на которые они влияют. Биохимические основы нейрологической памяти и обучения, заболевания мозга. лекция [76,2 K], добавлен 21.07.2009
Строение и функции кровеносной системы. Морфофизиологические особенности крови у подростков, влияние учебной и физической нагрузки на ее систему. Виды и формы памяти, психофизиологические механизмы: запоминание, хранение и воспроизведение информации. контрольная работа [1,5 M], добавлен 14.06.2011
Анализ этапов развития нервной системы в онтогенезе. Клеточные элементы нервной ткани. Описание схемы строения рефлекторной дуги. Изучение особенностей образования серого и белого веществ нервной системы. Характеристика проводящих путей спинного мозга. контрольная работа [41,4 K], добавлен 10.11.2013
Основа нервной ткани. Строение и типы нейронов. Строение нервной системы, ее функциональное деление. Основные виды рефлексов, рефлекторная дуга. Строение спинного мозга, его функции. Строение головного мозга. Затылочные, височные, лобные и теменные доли. презентация [1,2 M], добавлен 30.11.2013
Формы памяти, ее элементарные и специфические виды. Временная организация памяти. Процедурная и декларативная память. Консолидация следов памяти, системы ее регуляции. Локализация функций памяти, ее биохимические исследования и основные нарушения. реферат [117,0 K], добавлен 04.04.2015
Строение синапса - места контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Проведение нервного импульса. Кратковременная и долговременная синаптическая пластичность, потенциация и депрессия (ослабление) синапса. презентация [1,6 M], добавлен 14.03.2016
Исследование нейрохимических и молекулярных механизмов нейрологической памяти. Пространственно-временная организация памяти, ее типы, информационная емкость, механизмы формирования, роль нейромедиаторов. Проблема переноса памяти, исследования МакКоннела. курсовая работа [78,8 K], добавлен 27.08.2009
Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д. PPT, PPTX и PDF-файлы представлены только в архивах. Рекомендуем скачать работу .

© 2000 — 2021



Устройство памяти. Воспроизводство и передача информации в организме реферат. Биология и естествознание.
Доверенность Курсовая Работа По Гражданскому Праву
Реферат: Disoriented And Discombobulated College Drunks Essay Research
Контрольная работа по теме Роль государства в уменьшении последствий природных катастроф
Культура Бароко Реферат
Итоговая Контрольная Работа Русский Язык 6 Класс
Огэ Сочинение Сениной
Курсовая работа: Техническая эксплуатация и ремонт гидрогенераторов
Рыцарский Турнир Сочинение По Истории 6
Реферат: Связь открытия Федора Васильева с передовыми идеями западноевропейского пейзажа
Реферат На Тему Нэп России
Мой Город Караганда Эссе
Доклад по теме Искусство расслабляться
Реферат по теме Краткая история появления параллелизма в архитектуре ЭВМ
Курсовая работа: Расчетно-кассовое обслуживание, пути совершенствования
Курсовая работа по теме Исследование характера
Реферат: Основы философии марксизма
Реферат: Управление рисками активных операций банка
Алгебра 11 Класс Контрольные Работы Гинзбург
Диссертация Москва 2022
Реферат Big Data
Эвакуация - Безопасность жизнедеятельности и охрана труда реферат
Выведение из состояния покоя семян семейства Rosaceae - Биология и естествознание реферат
Природные пожары - Безопасность жизнедеятельности и охрана труда презентация


Report Page