Установление режима работы ШСНУ с учетом влияния деформации штанг и труб для скважины №796 Серафимовского месторождения - Геология, гидрология и геодезия курсовая работа

Установление режима работы ШСНУ с учетом влияния деформации штанг и труб для скважины №796 Серафимовского месторождения - Геология, гидрология и геодезия курсовая работа




































Главная

Геология, гидрология и геодезия
Установление режима работы ШСНУ с учетом влияния деформации штанг и труб для скважины №796 Серафимовского месторождения

Характеристика нефтегазоносных пластов месторождения, свойства нефти, пластовой воды и состав газа. Условия работы оборудования скважины, анализ эффективности эксплуатации. Выбор штанговой насосной установки и режима ее работы с учетом деформации.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
МИНИСТРЕСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
УСТАНОВЛЕНИЕ РЕЖИМА РАБОТЫ ШСНУ С УЧЕТОМ
ВЛИЯНИЯ ДЕФОРМАЦИИ ШТАНГ И ТРУБ ДЛЯ СКВАЖИНЫ №796 СЕРАФИМОВСКОГО МЕСТОРОЖДЕНИЯ
ПО КУРСУ “ЭКСПЛУАТАЦИЯ НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ”
1. Геолого-промысловая характеристика Серафимовского месторождения
1.3 Характеристика нефтегазоносных пластов
1.4 Характеристика пластовых флюидов
1.5 Состояние разработки месторождения
2. Условия работы ШСНУ в НГДУ “Октябрьскнефть”
2.2 Анализ эффективности эксплуатации ШСНУ в условиях ООО НГДУ “Октябрьскнефть”
3. Теория подбора оборудования и режима работы ШСНУ
3.1 Расчет потерь хода плунжера и длины хода полированного штока
3.2 Нагрузки, действующие на штанги и трубы
4. Динамометрирование и результаты исследований
5. Выбор штанговой насосной установки и режима ее работы с учетом деформации штанг и труб
6.2 Техника безопасности при эксплуатации ШСНУ
6.3 Обеспечение электробезопасности
Эксплуатация нефтяных скважин ШСНУ наиболее распространенный способ добычи нефти, охватывающий более 70 % действующего фонда скважин в ООО НГДУ “Октябрьскнефть”. Поэтому надежность эксплуатации этих установок в различных геолого-физических условиях скважины во многом будет определять показатели процессов добычи нефти.
Основными направлениями работ по повышению эффективности процессов добычи нефти с применением ШСНУ в ООО НГДУ “ОН” в последние годы являются:
1. совершенствование методов подбора оборудования к условиям конкретной скважины и режима его работы, а также поддержание оптимальных условий эксплуатации в течение всего межремонтного периода;
2. разработка новых и совершенствование существующих технических средств для эксплуатации ШСНУ;
3. разработка и применение специальных конструкций насосов для добычи высоковязких нефтей и водонефтяных эмульсий;
4. разработка и внедрение мероприятий по экономии электроэнергии при добыче нефти с помощью ШСНУ.
При проектировании эксплуатации скважины ШГН выбирают типоразмеры станка-качалки и электродвигателя, тип и диаметр скважинного насоса, конструкцию колонны подъемных труб и рассчитывают следующие параметры: глубину спуска насоса, режим откачки, т.е. длину хода и число качаний, конструкцию штанговой колонны.
Как показывает практика, межремонтный период работы скважин с установками ШСН сильно зависит от правильности выбора конструкций установок и режима их работы. Существующие многочисленные методики подбора оборудования и режима работы позволяют с разной степенью успешности решать вопросы повышения эффективности эксплуатации скважин. Значительные осложнения при работе скважин (в том числе деформация колонны штанг и НКТ) предъявляют особые требования к проектированию работы насосного оборудования /1/.
Современными штанговыми насосными установками можно добывать нефть из одного или двух пластов скважин глубиной до 3500 м. с дебитом жидкости от нескольких кубометров до нескольких сотен кубометров в сутки.
В данной работе установлен режим работы ШСНУ с учетом влияния деформации штанг и труб скважины №796 Серафимовского месторождения.
Необходимость данных расчетов связана с установлением оптимального режима работы ШСНУ для достижения максимального коэффициента подачи штангового глубинного насоса.
1 . Геолого-промысловая характеристика Серафимовского месторождения
Серафимовское месторождение расположено на территории Туймазинского района республики Башкортостан и приурочено к восточным склонам Белебеевской возвышенности.
Крупнейшими населенными пунктами являются города Октябрьский и Туймазы, поселки Серафимовский, Субханкулово, станция Кандры.
Основными путями сообщения являются железная дорога Уфа-Ульяновск с веткой Уруссы - Октябрьский и автодороги, соединяющие города Октябрьский, Бугульма, Туймазы, Уфа, поселки Уруссу и Серафимовский, имеются внутрипромысловые дороги с гравийным и асфальтовым покрытием.
Наиболее крупными реками являются река Ик, Усень с ее притоками Самсык, Бишинды, Кармалы, Имеется карстовое озеро Кандры-Куль.
Речные долины делят территорию на отдельные гряды и блоки высотой до 460 м и крутизной скатов от нескольких до 10 - 15 градусов.
Климат района континентальный с холодной продолжительной зимой и жарким летом, с минимальной температурой минус 45 о С в январе и максимальной плюс 36 о С в июле. Годовая сумма атмосферных осадков колеблется от 273 до 348 мм. Мощность снегового покрова не превышает 0,6 м, глубина промерзания грунта 1 - 1,3 м. Преобладающими ветрами являются южные и юго-западные.
Район Серафимовского месторождения расположен в лесостепной части Башкирии. Древесная растительность занимает около 25% площади.
Основными полезными ископаемыми является нефть. Из других полезных ископаемых можно отметить строительные материалы: глина, гравий, известняк, которые употребляются для приготовления кирпича, глинистого раствора и др. /2/.
1 - Мустафинское; 2 - Нурское; 3 - Амировское; 4 - Михайловское; 5 - Копей-Кубовское; 6 - Туймазинское; 8 - Субханкуловское; 9 - Серафимовское; 10 - Саннинское; 11 - Каргалинское; 12 - Ташлы-Кульское; 13 - Петропавловское; 14 - Солонцовское; 15 - Кальшалинское; 16 - Троицкое; 17 - Стахановское; 18 - Абдулловское; 19 - Суллинское; 20 - Ермекеевское; 21 - илькинское; 22 - Усень-Ивановское
Серафимовское месторождение расположено в западной части Башкирии на территории Туймазинского района.
В его строении принимают участие рифейские, девонские, каменноугольные, пермские и четвертичные отложения, Леонидовская, Серафимовская, Константиновская и Болтаевская структура.
Основным продуктивным горизонтом является песчаный пласт Д 1 пашийского горизонта, средняя глубина залегания пласта - 1690 м /2/.
Основные свойства коллекторов приведены в таблице 1.
Отметки ВНК колеблются в пределах 1740 - 1770 м. Первоначальный режим работы залежи - упруго-водонапорный, текущий - жеско-водонапорный. Начальное пластовое давление 17 МПа, текущее 15 - 17 МПа. Пластовая температура 38 о С.
1.3 Характеристика нефтегазоносных пластов
Промышленно-нефтеносными в нижнем карбоне являются песчаники угленосной толщи и приурочены к двум продуктивным пластам - верхнему и нижнему. Однако эксплуатация продуктивной угленосной толщи ведется единичными скважинами, т. к. нефть вязкая и с большим содержанием серы.
В пористых известняках турнейского яруса - повсеместно отмечены нефтепроявления в виде примазок нефти и запаха Н 2 S.
В девонской системе нефтеносность установлена в отложениях фаменского, франского, живейского и эйфельского ярусов. Нефть, полученная из фаменских отложений, смолистая и сернистая.
Во франском ярусе нефтепроявления в виде битуминости известняков. Промышленная нефтеносность этого яруса установлена в его нижнем отделе.
В отложениях живейского яруса нефтеносной является терригенная толщина муллинского горизонта.
На Серафимовском месторождении выделяют три гидрогеологических комплексов - верхний, средний и нижний. В верхний комплекс входят поверхностные и грунтовые воды, воды татарского, казанского и уфимского ярусов. В средний водоносный комплекс включаются водоносные горизонты пористо-кавернозных и трещиноватых карбонатных отложений карбона /2/.
1.4 Характеристика пластовых флюидов
Свойства и состав пластовых и разгазированных нефтей приведены в таблицах 2 - 5 /2/.
Пластовая вода залежей Серафимовской группы месторождений насыщена растворимыми минеральных солей. Воды различных пластов по химическому составу и степени минерализации колеблются от 756 до 827 мг.экв/л.
Из микроэлементов в водах обнаружены: J 2 , NH 4 , К, Fe.
Удельный вес воды колеблется от 1,1745 до 1,1943 г/см 3 , в среднем удельный вес воды пласта Д 1 равен 1,1847 г/см 3 , пласта Д II - 1,1889 г/см 3 /2/.
Вязкость девонской воды в пластовых условиях равна 1,6 сПз, а плотность 1,18 г/см 3 . По классификации Сулина эти воды относятся к хлоркальциевому типу.
Добываемый газ является попутным. Все газы относятся к категории жирных, содержат достаточное количество тяжелых углеводородов, газы девонских нефтей не содержат сероводорода и углекислоты.
Выход газа на Серафимовском месторождении сравнительно высок и составляет 8,9 - 9,8 % . Количество азота в девонских пластах сравнительно небольшое 12,9 - 9,9 %. Количество метана изменяется от 33,9 до 34,9 % /2/.
1.5 Состояние разработки месторождения
Серафимовское месторождение разрабатывается с 1949 г. Разработка основного пласта Д 1 в первое время осуществлялась по проекту составленному в 1951 году совместно с ВНИИ и УфНИИ. Принятая для разбуривания сетка скважин 30 га/скв. В 1953 году был составлен уточненный проект разработки Серафимовского месторождения. По этому документу предусматривалось сплошное разбуривание залежи по сетке 20 га/скв.
Характеристика фонда скважин представлена в таблице 7.
Характеристика фонда нагнетательных и добывающих скважин
Серафимовское месторождение включает залежи пласта Д 1 , Д II , Д III , Д IV , на долю которых приходится 79,9% балансовых запасов нефти месторождения. Максимальная годовая добыча нефти была достигнута в 1957 году /2/.
В течение длительного периода эксплуатации залежи преобладал фонтанный способ добычи нефти (до 1963 г), затем по мере обводнения продукции добывающих скважин, растет удельный вес добычи нефти механизированным способом.
С 1971 года залежь горизонта Д 1 Серафимовского месторождения вступает в позднюю стадию разработки. Начинается остановка законтурных нагнетательных скважин, продолжается отключение обводненных добывающих скважин. Годовая добыча за период с 1971 по 1989 г.г. падает в 10 раз, а добыча жидкости всего в 1,3 раза.
В настоящее время, в процессе разработки залежей нефти, проводится регулирование объемов закачиваемой в пласт воды по отдельным участкам, осуществляется перенос (приближение) фронта нагнетания к зоне отбора жидкости, что способствует росту и стабилизации пластового давления в центральных частях залежей и более эффективному использованию пластовой энергии.
В целом по управлению достигнуты неплохие результаты. В частности, годовой темп отбора нефти составил 4,09 % от остаточных извлекаемых запасов, что практически равно средней величине НГДУ «Октябрьскнефть». Обводненность добываемой продукции является невысокой по сравнению с показателями обводненности других месторождений НГДУ «Октябрьскнефть». По вышеуказанным причинам действующий фонд добывающих скважин характеризуется низкими средними дебитами нефти и жидкости (1,8 т/сут). Нагнетательный фонд скважин характеризуется низкой проницаемостью, средняя величина которой на 2002 год по Серафимовскому месторождению 81 м 3 /сут составила всего при средней по НГДУ «Октябрьскнефть» 92,6 м 3 /сут.
Анализ основных показателей разработки Серафимовского месторождения позволил обосновать наиболее рациональное местоположение горизонтальных скважин, боковых стволов для бурения, выбор скважин для внедрения технологий по увеличению нефтеотдачи месторождения /2/.
2 . Условия работы ШСНУ в НГДУ “Октябрьскнефть”
В ООО НГДУ “Октябрьскнефть” применяются следующие виды насосов которые представлены в таблице 8. /3/
Параметры штанговых скважинных насосов представлены в таблице 9.
Параметры штанговых скважинных насосов
Техническая характеристика станков-качалок
Номинальная нагрузка (на устьевом штоке), кН
Номинальная длина хода устьевого штока, м
Номинальный крутящий момент (на выходном валу редуктора),
В последние годы стали использоваться штанговые насосы с безвтулочным цилиндром. Их преимуществом является упрощение конструкции и сборки насоса. У таких цилиндров предусматривается большая толщина стенки, чем у кожуха насосов с втулочным цилиндром, что обеспечивает повышенную прочность их резьбы по сравнению с резьбой кожухов. Конструкция насосов с безвтулочным цилиндром аналогично конструкции насосов с втулочным цилиндром /3/.
2.2 Анализ эффективности эксплуатации ШСНУ в условиях ООО НГДУ “Октябрьскнефть”
Наличие большого количества скважин, эксплуатируемых УСШН различных типоразмеров, широкий диапазон условий эксплуатации, различные характеристики пластов и добываемых из них жидкостей позволили получить широкий спектр данных используемых при подборе оборудования в ООО НГДУ “Октябрьскнефть”.
Анализ предусматривает группировку скважин по ряду общих признаков, которые приведены в таблице 11.
Распределение насосов по глубине подвески насоса, м
Добыча жидкости различными видами насосов по ЦДНГ-1
Наибольшее число штанговых насосов (62 %) имеет производительность по нефти до 1 т/сут. Около 95 % скважин эксплуатируется с содержанием воды до 90 %, 5 % - более 90 %. Основными глубинами подвесок насоса являются 1000-1300 м, (95 % скважин), наиболее распространенными являются насосы вставного типа - 82,7 %. Наземное оборудование скважин представлено в основном станками-качалками нормального ряда типа СКН5 - 31 %, СКД8 -15 % и 7СК8 - 29 %. Колонны штанг комплектуются двумя диаметрами штанг - 22 и
19 мм в соотношении 40 % и 60 %. Средняя величина погружения насосов под динамический уровень составляет более 300 м. что обеспечивает давление на приеме 2,5…3,0 МПа. Число ходов большинства станков-качалок поддерживается в пределах 5…6, длина хода полированного штока составляет 1,2 …2,5 м. /1/ . Основное применение в ЦДНГ-1 НГДУ “ОН” получили насосы вставного типа (НСВ) - 268 шт. На них ложится основная часть добычи нефти - 95252,2 т. из 151703,1 т. в год. Но если сравнить отдельно насосы, то из таблицы видно, что насосы типа НСН2Б-44 добывают в три раза меньше жидкости, чем НСВ1Б-32, но их в 7,5 раз меньше чем вставных. Это объясняется тем, что они применяются в мало обводненных скважинах, чем вставные и производительность невставных насосов выше чем вставных /3/.
3 . Теория п одбор а оборудования и режима работы ШСНУ
3.1 Расчет потерь хода плунжера и длины хода полированного штока
Почти во всех скважинах фактическая производительность глубинно-насосных установок ниже расчетной, что обусловлено:
-упругим удлинением и сокращением штанг и труб;
-недостаточным заполнением жидкостью цилиндра насоса;
-утечкой жидкости через клапаны насоса и неплотности в НКТ /4/.
При работе насоса колонны штанг и труб периодически подвергаются упругим деформациям от веса жидкости, действующей на плунжер. Кроме того, на колонну штанг действуют динамические нагрузки и силы трения, вследствие чего длина хода плунжера может существенно отличаться от длины хода полированного штока.
Силы, действующие на узлы ШСНУ, принято делить на статические и динамические по критерию динамического подобия (критерий Коши)
где a =4900-скорость звука в штанговой колонне, м/с; щ=2рn-частота вращения вала кривошипа, с -1 .
При м д ?0,4 режим работы установки считается статическим, а при м д >0,4 режим работы - динамическим.
Для статических режимов силы инерции не оказывают практического влияния на длину хода плунжера, и длину хода полированного штока вычисляют по следующей формуле:
где - сумма упругих деформаций штанг л ш и труб л т , вызванных действием нагрузки от веса жидкости в НКТ. Они вычисляются по следующим формулам:
где е i - доля длины штанг с площадью поперечного сечения f ш i в общей длине штанговой колонны L н ; f ' т - площадь поперечного сечения по телу подъемных труб, м 2 ; Е - модуль упругости материала штанг (для стали Е =2•10 5 МПа).
Если колонна насосно-компрессорных труб заякорена у насоса, то л т =0.
Тогда суммарное упругое удлинение труб и штанг /4/:
где d - диаметр плунжера, м; с ж -плотность откачиваемой жидкости, кг/м;
g-ускорение свободного падения, м/с 2 .
При динамическом режиме работы длину хода полированного штока можно определить по следующим формулам.
где т - коэффициент, учитывающий влияние силы инерции массы столба жидкости на упругие деформации штанг. Коэффициент т , рассчитанный А. Н. Адониным, имеет следующие значения:
Условный диаметр насоса, мм ……………………….………43 55 68 93
Коэффициент т ……………………… …………………….1 1,5 2,0 3,0
Формула (3.5) справедлива при м д ?0,5 для двухступенчатой колонны штанг, учитывает вынужденные колебания последней и имеет вид:
где Здесь l ш1 , l ш2 - длина ступеней колонны штанг с площадями поперечного сечения f ш1 и f ш2 соответственно.
Для частного случая колонны штанг постоянного сечения (т.е. одноступенчатой) формула (3.6) переходит в формулу Л. С. Лейбензона:
Формулы (3.6), (3.7) могут применяться для 0,2?м?1,1.
При расчете упругих деформаций ступенчатой колонны штанг необходимо изменить значение скорости звука а , входящее в зависимость (3.1). Для одноразмерной колонны штанг а =4900 м/с, а для трехступенчатой а =5300 м/с.
Все приведенные формулы не учитывают влияния гидродинамического трения на ход плунжера. Этого недостатка лишена формула А. С. Вирновского:
где h - константа трения, равная 0,2ч1,0 с -1 .
Среднее уменьшение подачи насоса из-за упругого удлинения труб и штанг в долях от его условно теоретической производительности Q ут :
и в долях от фактического дебита Q ф :
где q л -среднее уменьшение подачи насоса из-за упругого удлинения труб и штанг, м 3 /сут; л-суммарное упругое удлинение труб и штанг, м; S -длина хода полированного штока, м; б-коэффициент подачи насоса /4/.
3.2 Нагрузки , действующие на шт анги и труб ы
При работе глубиннонасосной установки на штанги и на трубы действуют различные виды нагрузок - статические от веса штанг и жидкости, силы инерции движущихся масс и др.
Рассмотрим природу возникновения и влияние их на длину хода плунжера. После закрытия нагнетательного клапана статическая нагрузка от столба жидкости над плунжером перед началом его хода вверх передается на штанги, вызывая их растяжение на л шт . При этом трубы разгружаются и сокращаются на л т . Плунжер остается неподвижным относительно труб, и полезный ход его начинается лишь после растяжения штанг и сокращения труб. Всасывающий клапан закрывается, вес жидкости со штанг передается на трубы, нагнетательный клапан открывается, и плунжер движется вниз. При этом статическая (постоянно действующая) нагрузка на головку балансира будет равна весу штанг в жидкости. Так как головка балансира с подвешенной к ней колонной штанг движется неравномерно (скорость изменяется от нуля в верхней и нижней точках до некоторого максимального значения в середине хода вниз и вверх), возникают ускорения и соответствующие инерционные и другие динамические нагрузки. Кроме того, в начале хода плунжера вверх, когда скорость его движения равна нулю, головка балансира уже движется с некоторой скоростью, которую она набрала в процессе растяжения штанг и сокращения труб. Вследствие этого следует удар плунжера о жидкость, в результате на штанги и головку балансира действуют динамические нагрузки. Очевидно, что максимальная нагрузка на штанги будет при движении плунжера вверх, а минимальная - при ходе вниз /5/.
К постоянным или статическим нагрузкам принято относить вес колонны насосных штанг в жидкости Р ' шт , гидростатическую нагрузку Р ж , обусловленную разницей давлений жидкости над и под плунжером при ходе его вверх, а также нагрузки от трения штанг о стенки подъемных труб Р тр пл /6/.
инерционная нагрузка Р ин , обусловленная переменной по величине и направлению скоростью движения системы “штанги-плунжер”;
вибрационная нагрузка Р виб , обусловленная колебательными процессами, возникающими в колонне штанг под действием ударного приложения и снятия гидростатической нагрузки на плунжер;
нагрузка от трения штанг в жидкости Р тр г ;
сила гидростатического сопротивления Р кл н , вызванная перепадом давления в нагнетательном клапане при движении жидкости.
Учитывая перечисленные нагрузки, можно записать общие формулы для определения усилия в точке подвеса штанг при ходе штанг вверх Р в и вниз Р н :
Р в =Р ' шт +Р ж +Р ин в +Р виб в +Р тр м +Р тр г +Р тр пл ,
Р н =Р ' шт -(Р ин н +Р виб н +Р тр м +Р трг +Р кл н ).
Вес колонны штанг в воздухе Р шт и вес ее в жидкости Р' шт , заполняющей подъемные трубы, а также гидростатическая нагрузка на плунжер вычисляются по формулам:
где q шт i - вес 1 м штанг данного диаметра в воздухе, Н; К арх =(с шт -с см т )/с шт - коэффициент плавучести штанг; с шт - плотность материала штанг, кг/м 3 ; с см меж , с см т - средняя плотность жидкости (смеси), находящейся соответственно в пространстве между обсадной колонной и колонной насосно-компрессорных труб, кг/м; с меж - давление газа в этом пространстве на устье скважины, Па.
Расчет максимальных нагрузок на штанги:
При статическом режиме работы ШСНУ, т.е. при значениях параметра динамического подобия м д ?(0,3ч0,4), достаточно для практики точность обеспечивают приведенные ниже зависимости.
где n = N • 60 - число ходов плунжера в минуту.
где Р ' ж - вес жидкости над плунжером.
Погрешность расчета по перечисленным приближенным формулам находится в пределах 10-20% от Р max .
Известны и другие зависимости для расчета максимальной нагрузки в точке подвеса штанг, которые по существу не отличаются от приведенных приближенных формул /6/.
Расчет минимальных нагрузок на штанги:
Формула Н. Дрэготеску и Н. Драгомиреску:
Н. Дрэготеску указывает, что надежность приближенных формул для определения минимальной нагрузки обычно заметно ниже, чем аналогичных формул для Р max /6/.
4 . Динамометрирование и результаты исследований
Нормальная эксплуатация штанговой скважинной насосной установки требует постоянного контроля за работой основных узлов для своевременного принятия необходимых мер для ее обеспечения. Информацию о работе подземного оборудования при этом способе добычи нефти получают при помощи динамо-метрирования. Динамометрирование ШСНУ - важнейший источник информации о работе штангового насоса, колонны штанг, состоянии забоя скважины и др. -- осуществляется при помощи специальных технических средств; наиболее распространено телединамометрирование, обеспечивающее оперативное получение динамограммы на диспетчерском пульте без нарушения режима работы скважин /7/. Динамограмма представляет собой график зависимости нагрузки в точке подвеса штанг от длины хода полированного штока верхней штанги. Теоретическая динамограмма нормальной работы установки основана на учете сил тяжести, упругости, трения и закона Архимеда. Недостаточный учет других влияющих факторов, таких как инерционная сила и свойства откачиваемой жидкости, ограничивает возможность существенного динамометрирования.
Динамограмма представляет собой параллелограмм в координатах нагрузка (р) - длина хода полированного штока (S) (рисунок 2). Линия Г 1 А 1 соответствует разнице нагрузки от веса штанг и силы трения р v и параллельна нулевой линии (оси S) динамограммы вследствие постоянства веса штанги и силы трения. Линия АГ соответствует статическому весу штанг в жидкости Р шт , т. е. без трения. Следовательно, трение колонны штанг о жидкость уменьшает длину хода плунжера, и нагнетательный клапан закрывается не в точке А , а в точке А 1 (отрезок f v ). При изменении направления движения плунжера процесс записывается отрезком прямой АА 2 . Начиная с точки А 2 , штанги воспринимают нагрузку от веса столба жидкости Р ж (отрезок А 2 Б 2 ) . В точке Б 1 нагрузка равна сумме весов штанг жидкости и сил трения Р^. В этой точке приемный клапан насоса открывается и жидкость поступает в цилиндр насоса. Дальнейшее движение плунжера описывается линией Б 1 В 1 . С началом движения вниз изменяются направление и величина сил трения. Изменение нагрузки соответствует В 2 Г 1 , при этом происходит разгрузка колонны штанг и нагружение труб. Точка Г - открытие нагнетательного клапана насоса и начало движения плунжера вниз (отрезок Г 1 А 1 ) /7/ .
Таким образом, обработка динамограммы дает возможность определить количественные и качественные показатели работы ШСНУ: нагрузки и напряжения в полированном штоке, длину хода плунжера и полированного штока, коэффициент наполнения насоса, герметичность приемной и нагнетательной частей насоса, влияние газа, правильность посадки плунжера, наличие утечек в НКТ, отвороты и обрывы штанг или штанговых муфт, заклинивание плунжера.
По динамограмме работы ШСН в среде, содержащей свободный газ, также определяют давление у приема насоса, дебит жидкости и дебит газа.
Как правило, динамометрирование должны проводить в первый же день после спуска насоса в скважину и при изменениях режима откачки и подачи насоса, а также в процессе его работы для своевременного выявления различных неполадок.
Для установления в каждом конкретном случае характера осложнений целесообразно воспользоваться типовыми динамограммами.
Измеряемую нагрузку G определяют умножением показания динамографа С (мм) по оси ординат на масштаб усилий Р (60 Н/мм):
Перемещение полированного штока и плунжера рассчитывают умножением расстояния между заданными точками по оси абсцисс на масштаб хода.
Расстояние между перпендикулярами, опущенными из крайний точек динамограммы (точки А и В) на ось, соответствует ходу полированного штока S . Ход плунжера S пл соответствует расстоянию между перпендикулярами, опущенными на ось из точек Б и В.
Потеря хода полированного штока равна ? S = S -- S пл , а коэффициент подачи насоса - з?S пл /S .
На рисунке 3 приведены типовые формы динамограмм /7/. Расшифровка динамограмм требует учета различных факторов.
Рассмотрим, например, динамограммы 23, 27, 28. Они соответственно, характеризуют, помимо высокой посадки и запаздывания закрытия нагнетательного клапана, негерметичность торцов втулок.
Так, например, динамограмма 23 показывает выход плунжера насоса НСН из цилиндра. Такая же форма динамограммы получена при разъедании у насоса НСН2 и НСВ1 одного стыка втулок в верхней части цилиндра и второго -- в нижней части. Плунжер, находясь в нижней части, перекрывает разъеденную часть, и утечка не происходит, при ходе вверх он открывает путь для утечки жидкости. Динамограмма 27 указывает на разъедание стыка втулок посередине цилиндра.
Рисунок 3 - Типовые динамограммы ШСНУ:
1- 3 - нормальная работа насоса: Н<1000 м, H >1000 м, H >1500 м соответственно; 4 - 6 - утечки в нагнетательной части: средняя, большая утечки; выход из строя нагнетательной части соответственно; 7 - 9 - утечки в приемной части: средняя, большая утечки, выход из строя приемной части соответственно; 10 - 12 - утечки в приемной и нагнетательной частях; 13 - 15 - влияние газа на работу насоса: влияние пластового газа; изменение контура; влияние газа н утечки в нагнетательной части соответственно; 16 - 18 - прихват плунжера насоса: НСН2, НСВ1 c выходом из замковой опоры, заедание песком соответственно, 19 - 20 - утечки в НКТ; 21 - 22 - фонтанирование; 23 -- высокая посадка плунжера в НСН2; 24 - то же, в НСВ1 без слива из замковой опоры; 25 - низкая посадка плунжера в НСН2; 26 - то же, в НСН1; 27, 28 - негерметичность насоса; 29 - обрыв или отворот штанг в нижней части; 30 - то же, в верхней части; 31- 34 - низкий динамический уровень (33 - пробка, 34 - заедание песком).
На динамограмме 28 показан случай, когда разъедены стыковые соединения, расположенные в таких местах, что плунжер в нижнем и в верхнем положениях перекрывает их, а утечка происходит на середине хода плунжера. На динамограмме при этом в середине хода получается провал (показан стрелками).
Следует отметить, что в настоящее время все шире используют телеконтроль за работой штанговых скважинных насосов. Анализ многочисленных телединамограмм показал, что при четкой налаженной работе датчиков по ним можно определить такие явления, как влияние газа, применение уровня, обрыв или отворот штанг, заклинивание плунжера, низкую и высокую посадку насоса, выход из строя клапанов и др. В связи с отсутствием нулевой линии невозможно определить величину пропуска жидкости в приемной и нагнетательной частях насоса, высоту динамического уровня, степень влияния газа, течь в трубах, коэффициент наполнения насоса и потерю хода ?S, а также производить расчет нагрузок, необходимых для подсчета напряжения в штангах /7/. Поэтому при исследовательских работах необходимо обязательно пользоваться гидравлическим динамографом.
5 . Выбор штанговой насосной установки и режима ее работы с учетом деформации штанг и труб
Глубина скважины L 0 , м……………………… ……………..…….…1600
Диаметр эксплуатационной колонны D с , м…………… ……………0,150
Планируемый дебит жидкости Q ж пл , м 3 /сут…………………........….26,2
Объемная обводненность жидкости В , доля единицы… …………...…..0
Плотность дегазированной нефти с н дег , кг/м 3 ………………….……..850
Плотность пластовой воды с в , кг/м 3 ………………… ………….……1100
Плотность газа (при стандартных условиях) с г о , кг/м 3 ……………....1,4
Газовый фактор G 0 , м 3 /м 3 ……………………………………….......…59,4
Вязкость нефти н н , м 2 /с……………………………………………….3•10 -6
Вязкость воды н в , м 2 /с…………………………………………..………10 -6
Давление насыщения нефти газом Р нас , МПа……………………….…..9
Пластовое давление Р пл , МПа…………………………….………….…11
Устьевое давление Р у , МПа……………………………………………1,53
Средняя температура в стволе скважины, К………………………….303
Коэффициент продуктивности К пр , м 3 /(с•Па)……………….…..1,02•10 -10
Объемный коэффициент нефти при давлении насыщения b нас …….1,16
3. Строим кривую распределения давления по стволу скважины при Р заб =8,03 МПа (рисунок 4).
Рисунок 4 - Кривые распределения давления по стволу скважины (1) и колонне НКТ (2).
4. Глубину спуска насоса выбираем, исходя из оптимального давления на приеме, примерно равного 2,6 МПа. По графику (рисунок 4) находим, находим что при L н =900 м Р пр = 2,56 МПа. Эту глубину и выбираем в качестве глубины спуска.
5. По диаграмме А. Н. Адонина выбираем диаметр насоса, который для L н =900 м и Q ж пл =26,2 м 3 /сут равен 38 мм. По таблице IV.25 /6/ выбираем насос НСВ1-38, пригодный для неосложненных условий эксплуатации (с обычными клапанами), II группы посадки с зазором д=100 мкм (10 -4 ) в плунжерной паре.
Площадь поперечного сечения штанги, см2
6. Колонна НКТ для насоса НСВ1-38 в соответствии с таблицей IV.25 /6/ выбирается с условным диаметром 73 мм и толщиной стенки
Установление режима работы ШСНУ с учетом влияния деформации штанг и труб для скважины №796 Серафимовского месторождения курсовая работа. Геология, гидрология и геодезия.
Курсовая работа: Импульсный стабилизатор напряжения
Реферат по теме Уход за ребенком с заболеваниями желудочно-кишечного тракта
Контрольная Работа Тема Духовная Культура
Реферат по теме Естественные строительные и облицовочные камни
Реферат по теме Роздавальна лінія закладу швидкого харчування
Гражданская Ответственность Реферат
Дипломная работа по теме Патриотическое воспитание молодежи 14-18 лет с использованием средств физической культуры
Реферат: Медицинская служба русской армии в Отечественную войну 1812 г. Скачать бесплатно и без регистрации
Контрольные Работы 1 Класс Занкова
Дипломная работа по теме Феномен религии как социальной подсистемы общества
Курсовая На Тему Церемониал Проведения Спортивного Мероприятия
Рамка Для Курсовой
Презентация На Тему Василий Андреевич Жуковский
Эссе 0 Грейпфрут
Реферат: Психология спорта и спортивные психологи
Как Написать Итоговое Сочинение 2022 По Русскому
Реферат: Комплекс международного маркетинга
Контрольная Работа По Физике 8
Курсовая работа по теме Разработка детали типа 'вал'
Реферат по теме Модели экономической жизнедеятельности человека
Проектирование тоннеля, сооружаемого горным способом - Геология, гидрология и геодезия курсовая работа
Теории аудита и бухгалтерского учета расчетов с персоналом по прочим операциям - Бухгалтерский учет и аудит курсовая работа
Головной мозг человека - Биология и естествознание реферат


Report Page