Unlock Data Analysis: 150 Tips, Practical Code

Unlock Data Analysis: 150 Tips, Practical Code

CodeProgrammer

A Comprehensive Guide to 150 Essential Data Analysis Tips

Part 1: Mindset, Setup, and Data Loading

Define Your Question First
Explanation: Before writing any code, clearly state the business or research question you are trying to answer. This guides your entire analysis.

# Example Question: "Which product category has the highest average sales?"
# This defines the goal: group by category, then calculate average sales.

Use a Virtual Environment
Explanation: Isolates project dependencies, preventing conflicts between projects.

# In your terminal
python -m venv my_analysis_env
source my_analysis_env/bin/activate
pip install pandas matplotlib seaborn

Use Version Control (Git)
Explanation: Tracks changes to your code and notebooks, allowing you to revert to previous versions and collaborate effectively.

# In your terminal
git init
git add my_notebook.ipynb
git commit -m "Initial data exploration"

Document Assumptions
Explanation: Write down any assumptions you make about the data (e.g., "assuming sales are in USD," "treating missing values as zero").

# In a notebook markdown cell:
# ## Assumptions
# 1. Currency is in USD.
# 2. Missing `return_date` implies the item was not returned.

Start a Data Dictionary
Explanation: Create a simple file or table that explains what each column in your dataset means.

# Markdown in a notebook:
# `user_id`: Unique identifier for the customer.
# `order_amt`: Total amount of the order.
# `is_first`: Boolean flag for the customer's first order.

Load CSV Data with pd.read_csv()
Explanation: The primary function for reading comma-separated value files into a pandas DataFrame.

import pandas as pd
df = pd.read_csv('data.csv')

Specify the Separator
Explanation: Use the sep parameter if your file is delimited by something other than a comma (e.g., a tab or semicolon).

# For a tab-separated file (TSV)
df = pd.read_csv('data.tsv', sep='\t')

Load Excel Files with pd.read_excel()
Explanation: Used for reading data from .xls or .xlsx files. You can specify the sheet name.

# Needs the `openpyxl` library: pip install openpyxl
df = pd.read_excel('data.xlsx', sheet_name='SalesData')

Load Data from a SQL Database
Explanation: Directly query a database and load the results into a DataFrame for analysis.

from sqlalchemy import create_engine
engine = create_engine('sqlite:///my_database.db')
query = "SELECT * FROM sales;"
df = pd.read_sql(query, engine)

Specify Data Types on Load
Explanation: Use the dtype parameter to specify column types during loading. This saves memory and prevents incorrect type inference.

# Force 'user_id' to be a string (object) instead of a number
df = pd.read_csv('data.csv', dtype={'user_id': str})

Parse Dates on Load
Explanation: Use parse_dates to automatically convert one or more columns to datetime objects, which is crucial for time series analysis.

df = pd.read_csv('data.csv', parse_dates=['order_date'])

Handle Large Files with chunksize
Explanation: Process large files in chunks instead of loading the entire file into memory at once.

total_sales = 0
for chunk in pd.read_csv('large_sales_data.csv', chunksize=10000):
total_sales += chunk['sales_amount'].sum()

Part 2: Initial Data Inspection & Exploration

View the First Few Rows with .head()
Explanation: Quickly see the first n rows of your DataFrame to get a feel for the data and column names.

# Shows the first 5 rows by default
print(df.head())

View the Last Few Rows with .tail()
Explanation: Useful for checking if data was read correctly or for spotting trends at the end of a time-ordered dataset.

# Shows the last 3 rows
print(df.tail(3))

Check the DataFrame's Shape with .shape
Explanation: Returns a tuple representing the dimensions of the DataFrame (number of rows, number of columns).

# Example output: (10000, 15) -> 10,000 rows, 15 columns
print(df.shape)

Get a High-Level Summary with .info()
Explanation: Provides a concise summary including columns, non-null counts, data types, and memory usage.

# Essential first step to check for missing values and wrong dtypes
df.info()

Get Descriptive Statistics with .describe()
Explanation: Generates summary statistics (count, mean, std, min, max, quartiles) for all numerical columns.

# Provides a quick overview of the distribution of numerical data
print(df.describe())

Include Categorical Columns in .describe()
Explanation: Use include='object' to get summary statistics for non-numerical columns (count, unique, top, freq).

print(df.describe(include='object'))

Check Data Types with .dtypes
Explanation: Returns a Series with the data type of each column.

# Useful for quickly verifying if columns were inferred correctly
print(df.dtypes)

List Column Names with .columns
Explanation: Returns the column labels of the DataFrame.

print(df.columns)

Count Unique Values with .nunique()
Explanation: Get the number of unique values in each column.

# Helps identify categorical columns vs. unique identifiers
print(df.nunique())

Get Frequency Counts with .value_counts()
Explanation: For a specific column (Series), return a count of unique values, sorted in descending order.

# See the distribution of product categories
print(df['category'].value_counts())

Normalize Frequency Counts
Explanation: Use normalize=True with .value_counts() to see the relative frequencies (percentages) of the unique values.

# See the percentage of sales from each category
print(df['category'].value_counts(normalize=True))

Part 3: Data Cleaning

#### Handling Missing Values

Count Missing Values
Explanation: Use .isnull().sum() to get the total number of missing values (NaNs) in each column.

# A crucial step in data cleaning
print(df.isnull().sum())

Calculate Percentage of Missing Values
Explanation: Understand the proportion of missing data to decide on a handling strategy.

missing_percentage = df.isnull().sum() / len(df) * 100
print(missing_percentage)

Visualize Missing Data
Explanation: A heatmap can provide an intuitive overview of where missing data exists in your DataFrame.

import seaborn as sns
sns.heatmap(df.isnull(), cbar=False, yticklabels=False, cmap='viridis')

Drop Rows with Any Missing Values
Explanation: dropna() removes rows that contain at least one missing value. Use with caution as it can lead to data loss.

df_cleaned = df.dropna()

Drop Columns with Any Missing Values
Explanation: Use axis=1 to drop columns that have missing values.

df_cleaned = df.dropna(axis=1)

Drop Rows with Missing Values in Specific Columns
Explanation: Use the subset parameter to only consider certain columns when looking for NaNs.

# Only drop rows if 'email' or 'user_id' is missing
df.dropna(subset=['email', 'user_id'], inplace=True)

Fill Missing Values with a Static Value
Explanation: fillna() replaces NaN values with a specified value, like 0 or "Unknown".

# Fill missing prices with 0
df['price'].fillna(0, inplace=True)

Fill Missing Values with Mean/Median/Mode
Explanation: A common strategy to impute missing numerical or categorical data.

# Fill missing age with the median age
median_age = df['age'].median()
df['age'].fillna(median_age, inplace=True)

Forward Fill (ffill)
Explanation: Propagates the last valid observation forward to fill NaNs. Useful in time series data.

# Fill missing stock prices with the price from the previous day
df['stock_price'].fillna(method='ffill', inplace=True)

Backward Fill (bfill)
Explanation: Propagates the next valid observation backward.

# Fill missing data with the next available data point
df['temperature'].fillna(method='bfill', inplace=True)

Interpolate Missing Values
Explanation: Fills NaNs with a value estimated from the surrounding data points. Good for time series with trends.

df['sensor_reading'].interpolate(method='linear', inplace=True)

Create an Indicator for Missing Values
Explanation: Instead of filling, create a new boolean column that indicates whether the original value was missing. This preserves information.

df['age_is_missing'] = df['age'].isnull()

#### Correcting Data Types

Change Column Type with .astype()
Explanation: Explicitly convert a column to a different data type.

# Convert 'user_id' from int to string (object)
df['user_id'] = df['user_id'].astype(str)

Convert to Numeric with pd.to_numeric()
Explanation: A robust way to convert a column to a numeric type, with options to handle errors.

# If a value can't be converted, it becomes NaN
df['price'] = pd.to_numeric(df['price'], errors='coerce')

Convert to Datetime with pd.to_datetime()
Explanation: Converts a column to datetime objects, enabling powerful time-based operations.

df['signup_date'] = pd.to_datetime(df['signup_date'])

Extract Year/Month/Day from Datetime
Explanation: After converting to datetime, use the .dt accessor to extract components.

df['signup_year'] = df['signup_date'].dt.year
df['signup_month'] = df['signup_date'].dt.month

Extract Day of Week from Datetime
Explanation: Useful for analyzing weekly patterns.

# Monday=0, Sunday=6
df['signup_dayofweek'] = df['signup_date'].dt.dayofweek

#### Handling Duplicates

Check for Duplicate Rows
Explanation: .duplicated().sum() returns the number of duplicate rows in the DataFrame.

num_duplicates = df.duplicated().sum()
print(f"Found {num_duplicates} duplicate rows.")

View Duplicate Rows
Explanation: Filter the DataFrame to see the actual rows that are duplicates.

# `keep=False` shows all occurrences of duplicate rows
print(df[df.duplicated(keep=False)])

Drop Duplicate Rows
Explanation: .drop_duplicates() removes duplicate rows, keeping the first occurrence by default.

df.drop_duplicates(inplace=True)

Drop Duplicates Based on a Subset of Columns
Explanation: Use the subset parameter to define uniqueness based on specific columns.

# Keep only the first order for each user
df.drop_duplicates(subset=['user_id'], keep='first', inplace=True)

#### String Manipulation

Convert Strings to Lowercase
Explanation: Use the .str accessor to apply string methods. Lowercasing is essential for consistent categorical data.

# 'USA' and 'usa' become the same category
df['country'] = df['country'].str.lower()

Remove Leading/Trailing Whitespace
Explanation: .str.strip() cleans up whitespace, which can cause issues with joins and grouping.

df['email'] = df['email'].str.strip()

Replace Characters in a String
Explanation: .str.replace() is used to replace a substring or character with another.

# Remove dollar signs and commas from a price column
df['price_str'] = df['price_str'].str.replace('$', '').str.replace(',', '')

Check for Substring with .str.contains()
Explanation: Returns a boolean Series indicating if a substring is present. Useful for filtering.

# Find all products with 'premium' in their name
premium_products = df[df['product_name'].str.contains('premium', case=False)]

Split a String into Columns
Explanation: .str.split() splits a string by a delimiter, and expand=True creates new columns.

# Split 'full_name' into 'first_name' and 'last_name'
df[['first_name', 'last_name']] = df['full_name'].str.split(' ', expand=True)

Extract Substrings with Regex
Explanation: .str.extract() uses a regular expression with a capturing group to pull out specific patterns.

# Extract the number from strings like 'Product #123'
df['product_id'] = df['product_code'].str.extract(r'#(\d+)')

Part 4: Data Wrangling & Feature Engineering

#### Filtering and Selection

Select a Single Column
Explanation: Use bracket notation to select a column, which returns a pandas Series.

user_emails = df['email']

Select Multiple Columns
Explanation: Pass a list of column names inside the bracket notation to select multiple columns.

user_info = df[['user_id', 'name', 'signup_date']]

Select Rows with Boolean Indexing
Explanation: Create a boolean condition to filter rows.

# Select all users from the USA
usa_users = df[df['country'] == 'usa']

Combine Multiple Conditions
Explanation: Use & for AND and | for OR. Wrap each condition in parentheses.

# Active users from the USA
active_usa_users = df[(df['country'] == 'usa') & (df['is_active'] == True)]

Select with .loc (Label-based)
Explanation: Access a group of rows and columns by labels or a boolean condition. df.loc[rows, columns]

# Select the 'name' and 'email' for users with id > 100
user_subset = df.loc[df['user_id'] > 100, ['name', 'email']]

Select with .iloc (Integer-based)
Explanation: Access rows and columns by their integer position (index).

# Select the first 10 rows and the first 3 columns
subset = df.iloc[0:10, 0:3]

Filter with .isin()
Explanation: Select rows where a column's value is in a given list. More efficient than multiple OR conditions.

# Select users from a list of high-priority countries
priority_countries = ['usa', 'canada', 'uk']
priority_users = df[df['country'].isin(priority_countries)]

Filter with .between()
Explanation: Select rows where a column's value is within a specified range (inclusive).

# Select orders with an amount between $100 and $500
mid_value_orders = df[df['order_amount'].between(100, 500)]

Filter with ~ (NOT)
Explanation: The tilde ~ operator negates a boolean condition.

# Select all users NOT from the USA
non_usa_users = df[~(df['country'] == 'usa')]

Filter Using .query()
Explanation: Allows you to filter a DataFrame using a query string, which can be more readable.

# Same as the boolean indexing example above
active_usa_users = df.query("country == 'usa' and is_active == True")

#### Grouping and Aggregation

Group Data with .groupby()
Explanation: Groups a DataFrame using one or more columns to prepare for aggregation.

# Group sales data by product category
grouped_by_category = df.groupby('category')

Perform a Single Aggregation
Explanation: After grouping, apply an aggregation function like .sum(), .mean(), .count().

# Calculate total sales for each category
category_sales = df.groupby('category')['sales'].sum()

Perform Multiple Aggregations with .agg()
Explanation: Apply several aggregation functions to one or more columns at once.

# Get total sales and average quantity per category
category_summary = df.groupby('category').agg(
total_sales=('sales', 'sum'),
avg_quantity=('quantity', 'mean')
)

Reset the GroupBy Index
Explanation: By default, the grouping columns become the index. as_index=False keeps them as regular columns.

category_sales = df.groupby('category', as_index=False)['sales'].sum()

Create a Pivot Table
Explanation: .pivot_table() is a powerful way to reshape and summarize data, similar to Excel.

# Summarize average sales by category (rows) and year (columns)
pivot = pd.pivot_table(df, values='sales', index='category', columns='year', aggfunc='mean')

Create a Frequency Table with .crosstab()
Explanation: Computes a cross-tabulation of two (or more) factors.

# See the count of orders across different categories and shipping methods
xtab = pd.crosstab(df['category'], df['shipping_method'])

#### Merging and Joining

Merge Two DataFrames with pd.merge()
Explanation: Combines two DataFrames based on common columns, similar to a SQL JOIN.

users_df = pd.DataFrame({'user_id': [1, 2], 'name': ['Alice', 'Bob']})
orders_df = pd.DataFrame({'order_id': [101, 102], 'user_id': [1, 2]})

merged_df = pd.merge(users_df, orders_df, on='user_id')

Specify Join Type (how)
Explanation: Control the join logic: inner (default), left, right, or outer.

# Get all users, even if they have no orders (left join)
all_users_orders = pd.merge(users_df, orders_df, on='user_id', how='left')

Merge on Different Column Names
Explanation: Use left_on and right_on if the key columns have different names in the two DataFrames.

# users_df has 'id', orders_df has 'user_id'
merged_df = pd.merge(users_df, orders_df, left_on='id', right_on='user_id')

Concatenate DataFrames Vertically
Explanation: pd.concat() stacks DataFrames on top of each other. They must have the same columns.

df_jan = pd.read_csv('sales_jan.csv')
df_feb = pd.read_csv('sales_feb.csv')

total_sales_df = pd.concat([df_jan, df_feb])

#### Feature Engineering

Create a New Column from Existing Ones
Explanation: Perform arithmetic or string operations on existing columns to create a new feature.

# Calculate the total price
df['total_price'] = df['quantity'] * df['unit_price']

Apply a Custom Function with .apply()
Explanation: Apply a function along an axis of the DataFrame. Can be used row-wise or column-wise.

def categorize_price(price):
if price > 100: return 'High'
elif price > 50: return 'Medium'
else: return 'Low'

df['price_category'] = df['unit_price'].apply(categorize_price)

Use .map() for Value Replacement
Explanation: Substitute each value in a Series with another value, based on a dictionary.

df['priority_code'] = df['priority_name'].map({'High': 3, 'Medium': 2, 'Low': 1})

Create Bins with pd.cut()
Explanation: Segment and sort data values into bins. Useful for converting continuous variables to categorical ones.

age_bins = [0, 18, 35, 60, 100]
age_labels = ['Child', 'Young Adult', 'Adult', 'Senior']
df['age_group'] = pd.cut(df['age'], bins=age_bins, labels=age_labels)

Create Dummy Variables (One-Hot Encoding)
Explanation: pd.get_dummies() converts categorical variables into a format of 0s and 1s for use in machine learning models.

category_dummies = pd.get_dummies(df['category'], prefix='cat')
df = pd.concat([df, category_dummies], axis=1)

Part 5: Visualization & Statistical Analysis

Create a Histogram
Explanation: Visualizes the distribution of a single numerical variable.

import matplotlib.pyplot as plt
df['age'].hist(bins=20)
plt.show()

Create a Bar Plot
Explanation: Compares a numerical value across different categories.

category_counts = df['category'].value_counts()
category_counts.plot(kind='bar')
plt.show()

Create a Scatter Plot
Explanation: Visualizes the relationship between two numerical variables.

df.plot(kind='scatter', x='age', y='income')
plt.show()

Create a Box Plot
Explanation: Shows the distribution of data based on a five-number summary. Excellent for comparing distributions across categories and spotting outliers.

import seaborn as sns
sns.boxplot(x='category', y='sales', data=df)
plt.show()

Create a Heatmap for Correlation
Explanation: Visualizes the correlation matrix, showing how strongly numerical variables are related to each other.

correlation_matrix = df.corr()
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.show()

Add Titles and Labels to Plots
Explanation: Always label your plots to make them understandable.

df['age'].hist()
plt.title('Distribution of User Ages')
plt.xlabel('Age')
plt.ylabel('Frequency')
plt.show()

Save a Plot to a File
Explanation: Use plt.savefig() to save your visualization.

df['age'].hist()
plt.savefig('age_distribution.png', dpi=300)

Calculate Correlation with .corr()
Explanation: Computes the pairwise correlation of columns, excluding NA/null values.

# Returns a correlation matrix
print(df.corr())

Part 6: Best Practices & Advanced Tips (to 150)

Rename Columns Cleanly
Explanation: Use a dictionary with .rename() for clarity.

df.rename(columns={'old_name': 'new_name', 'another': 'new_another'}, inplace=True)

Chain Your Operations
Explanation: Chain pandas methods together for concise, readable code. Wrap in parentheses for multi-line formatting.

(df.dropna()
.assign(new_col=df['col1'] * 2)
.query("new_col > 10")
)

Use .assign() to Create New Columns
Explanation: A clean way to add one or more new columns, especially within a chain.

df = df.assign(
col_c = df['col_a'] + df['col_b'],
col_d = df['col_a'] - df['col_b']
)

Sort Values with .sort_values()
Explanation: Sort a DataFrame by one or more columns.

df.sort_values(by=['country', 'age'], ascending=[True, False], inplace=True)

Reset the Index with .reset_index()
Explanation: After filtering or sorting, the index can become non-sequential. Reset it to a clean 0-based index.

df_filtered.reset_index(drop=True, inplace=True)

Drop Unnecessary Columns
Explanation: Use .drop() with axis=1 to remove columns you no longer need, saving memory.

df.drop(['temp_col_1', 'temp_col_2'], axis=1, inplace=True)

Copy DataFrames Explicitly
Explanation: To avoid SettingWithCopyWarning, use .copy() when you intend to modify a slice of a DataFrame.

df_subset = df[df['country'] == 'usa'].copy()
df_subset['new_col'] = 1 # This is safe

Change Display Options
Explanation: Configure pandas to show more rows, columns, or increase column width for better inspection in a notebook.

pd.set_option('display.max_rows', 100)
pd.set_option('display.max_columns', 50)

Use nlargest() and nsmallest()
Explanation: An efficient way to get the top or bottom n rows based on a column's values.

# Get the 10 highest-spending users
top_10_spenders = df.nlargest(10, 'total_spending')

Calculate Cumulative Sum
Explanation: .cumsum() is useful for tracking running totals, especially in time series data.

df['running_total_sales'] = df['daily_sales'].cumsum()

Calculate Rolling Averages
Explanation: .rolling() provides rolling window calculations.

# 7-day moving average of sales
df['sales_7_day_avg'] = df['daily_sales'].rolling(window=7).mean()

Shift Data for Comparisons
Explanation: .shift() moves data up or down, allowing you to compare a value with its previous or next value.

# Calculate day-over-day change in sales
df['sales_previous_day'] = df['daily_sales'].shift(1)

Find the Rank of Data
Explanation: .rank() computes numerical data ranks (1 through n) along an axis.

df['sales_rank'] = df['sales_amount'].rank(method='dense', ascending=False)

Use style for Better Visualization in Notebooks
Explanation: The .style accessor allows for conditional formatting of your DataFrame display.

# Highlight max values in each column
df.style.highlight_max(axis=0)

Save Processed Data
Explanation: After cleaning and wrangling, save the processed DataFrame to a new file to avoid re-running your cleaning script.

df_cleaned.to_csv('cleaned_data.csv', index=False)

Use Parquet for Efficient Storage
Explanation: Parquet is a columnar storage format that is often much faster and more space-efficient than CSV.

# Needs `pyarrow`: pip install pyarrow
df_cleaned.to_parquet('cleaned_data.parquet')

Functionize Your Cleaning Steps
Explanation: Wrap repetitive cleaning and preprocessing steps into functions for reusability and clarity.

def clean_data(df):
df['email'] = df['email'].str.strip().str.lower()
# ... more steps
return df

df_clean = clean_data(df)

... (Continuing with more granular tips)

Use np.where for Conditional Column Creation. A fast, vectorized alternative to .apply for simple if-else logic.
Check for Inconsistent Categorical Values. (e.g., 'USA', 'U.S.A.', 'United States').
Standardize Column Names. (e.g., convert to snake_case, remove special characters).
Use pd.to_timedelta for Time Differences.
Handle Unix Timestamps. Convert them to readable datetimes.
Detect Outliers Using the IQR Method. (Q3 - Q1) * 1.5.
Detect Outliers Using the Z-Score Method. (Value - Mean) / Std Dev.
Clip Outliers. Cap values at a certain percentile instead of removing them.
Use a Log Transformation for Skewed Data. Helps normalize the distribution for some models.
Analyze Unique Combinations of Columns. df.groupby(['col1', 'col2']).size().
Melt DataFrames. pd.melt() transforms a DataFrame from wide to long format.
Set and Use a Meaningful Index. e.g., df.set_index('date') for time series.
Handle Mixed-Type Columns. Investigate columns with dtype='object' that should be numeric.
Use sample() for Large Datasets. Analyze a random sample to speed up initial exploration.
Check for High Cardinality in Categorical Features. Columns with too many unique values may need special handling.
Create Interaction Features. e.g., df['price_per_item'] = df['total_price'] / df['quantity'].
Calculate Percentage Change. .pct_change() for time series.
Use explode() for List-Like Entries. Transform each element of a list-like to a row.
Use Pair Plots for Quick Relationship Overview. sns.pairplot(df).
Use Violin Plots. A combination of a box plot and a kernel density estimate.
Customize Plot Aesthetics with Seaborn. sns.set_style('whitegrid').
Use Faceting to Create Subplots. sns.catplot(..., col='category').
Annotate Plots for Clarity. Use plt.text() to add important notes to your visualizations.
Use Assertions to Check Data Quality. assert df['id'].is_unique.
Profile Your DataFrame with pandas-profiling for an automated EDA report.
Optimize Memory Usage. Use smaller dtypes like int32 instead of int64, or category type for strings with few unique values.
Use glob to Load Multiple Files. Find files by a pattern and load them in a loop.
Be Wary of Data Leakage. Don't use information from the future to create features for the past.
Understand Correlation vs. Causation. A high correlation does not imply one variable causes the other.
Handle Timezones. Use .dt.tz_localize() and .dt.tz_convert().
De-duplicate Based on a Time Window. For event data, you may need to define what counts as a duplicate event.
Use Lambda Functions in .apply() for simple, one-off operations.
Understand the inplace=True Argument. It modifies the DataFrame directly and returns None. Use with care.
Use pipe() for Clean Function Application. df.pipe(clean_data).pipe(feature_engineer).
Choose the Right Plot for Your Data. (Bar for categorical, histogram for numerical distribution, scatter for relationships).
Analyze Text Data with Word Counts.
Perform a Chi-Squared Test for Categorical Variable Independence.
Perform a T-test to Compare Means of Two Groups.
Explain Your Findings Clearly. The analysis is only useful if you can communicate it to stakeholders.
Structure Your Notebooks with Markdown. Use headings, lists, and bold text to make it readable.
Hide Code in Final Reports. Focus on the narrative and the visualizations.
Always State the Source of Your Data.
Be Skeptical of Your Own Results. Double-check your logic and look for alternative explanations.
Use np.select for Complex Conditional Logic. A vectorized way to handle multiple if-elif-else conditions.
Aggregate by Time. df.resample('M').sum() for monthly totals (requires a datetime index).
Use .attrs to Store Metadata. Attach a dictionary of metadata to your DataFrame.
Handle Character Encodings on Load. pd.read_csv('data.csv', encoding='latin1').
Seek Peer Review. Ask a colleague to review your analysis for errors or missed insights.
Keep a Log of Your Steps. This makes your analysis reproducible.
Tell a Story with Your Data. Your final output should be a clear narrative that answers the initial question.

#DataAnalysis #Python #Pandas #DataScience #DataCleaning #EDA #TipsAndTricks

Report Page