Учебное пособие: Вычисление определенного интеграла

Учебное пособие: Вычисление определенного интеграла




👉🏻👉🏻👉🏻 ВСЯ ИНФОРМАЦИЯ ДОСТУПНА ЗДЕСЬ ЖМИТЕ 👈🏻👈🏻👈🏻




























































Задача численного интегрирования функций заключается в вычислении приближенного значения определенного интеграла:
на основе ряда значений подынтегральной функции .{ f(x) |x=x k
= f(x k
) = y k
}.
Формулы численного вычисления однократного интеграла называются квадратурными формулами, двойного и более кратного – кубатурными.
Обычный прием построения квадратурных формул состоит в замене подынтегральной функции f(x) на отрезке [a,b] интерполирующей или аппроксимирующей функцией g(x) сравнительно простого вида, например, полиномом, с последующим аналитическим интегрированием. Это приводит к представлению
В пренебрежении остаточным членом R[f] получаем приближенную формулу
Обозначим через y i
= f(x i
) значение подинтегральной функции в различных точках на [a,b]. Квадратурные формулы являются формулами замкнутого типа, если x 0
=a , x n
=b.
В качестве приближенной функции g(x) рассмотрим интерполяционный полином на в форме полинома Лагранжа:
, при этом , где - остаточный член интерполяционной формулы Лагранжа.
В формуле (2) величины { } называются узлами, { } – весами, - погрешностью квадратурной формулы. Если веса { } квадратурной формулы вычислены по формуле (3), то соответствующую квадратурную формулу называют квадратурной формулой интерполяционного типа.
1. Веса { } квадратурной формулы (2) при заданном расположении узлов не зависят от вида подынтегральной функции.
2. В квадратурных формулах интерполяционного типа остаточный член R n
[f] может быть представлен в виде значения конкретного дифференциального оператора на функции f(x). Для
3. Для полиномов до порядка n включительно квадратурная формула (2) точна, т.е. . Наивысшая степень полинома, для которого квадратурная формула точна, называется степенью квадратурной формулы.
Рассмотрим частные случаи формул (2) и (3): метод прямоугольников, трапеций, парабол (метод Симпсона). Названия этих методов обусловлены геометрической интерпретацией соответствующих формул.
Определенный интеграл функции от функции f(x): численно равен площади криволинейной трапеции, ограниченной кривыми у=0, x=a, x=b, y=f(x) (рисунок. 1).
Метод, представленный формулой (4), называется методом левых прямоугольников, а метод, представленный формулой(5) – методом правых прямоугольников:
Для нахождения определенного интеграла методом средних прямоугольников площадь, ограниченная прямыми a и b, разбивается на n прямоугольников с одинаковыми основаниями h, высотами прямоугольников будут точки пересечения функции f(x) с серединами прямоугольников (h/2). Интеграл будет численно равен сумме площадей n прямоугольников (рисунок 3).
n – количество разбиений отрезка [a,b].
Для нахождения определенного интеграла методом трапеций площадь криволинейной трапеции также разбивается на n прямоугольных трапеций с высотами h и основаниями у 1
, у 2
, у 3
,..у n
, где n - номер прямоугольной трапеции. Интеграл будет численно равен сумме площадей прямоугольных трапеций (рисунок 4).
Погрешность формулы трапеций оценивается числом
Погрешность формулы трапеций с ростом уменьшается быстрее, чем погрешность формулы прямоугольников. Следовательно, формула трапеций позволяет получить большую точность, чем метод прямоугольников.
Если для каждой пары отрезков построить многочлен второй степени, затем проинтегрировать его на отрезке и воспользоваться свойством аддитивности интеграла, то получим формулу Симпсона.
Рассмотрим подынтегральную функцию на отрезке . Заменим эту подынтегральную функцию интерполяционным многочленом Лагранжа второй степени, совпадающим с y= в точках :
Выполнив интегрирование, получим формулу Симпсона:
Полученное для интеграла значение совпадает с площадью криволинейной трапеции, ограниченной осью , прямыми , и параболой, проходящей через точки На отрезке формула Симпсона будет иметь вид:
В формуле параболы значение функции f(x) в нечетных точках разбиения х 1
, х 3
, ..., х 2
n
-1
имеет коэффициент 4, в четных точках х 2
, х 4
, ..., х 2
n
-2
- коэффициент 2 и в двух граничных точках х 0
=а, х n
=b - коэффициент 1.
Геометрический смысл формулы Симпсона: площадь криволинейной трапеции под графиком функции f(x) на отрезке [a, b] приближенно заменяется суммой площадей фигур, лежащих под параболами.
Если функция f(x) имеет на [a, b] непрерывную производную четвертого порядка, то абсолютная величина погрешности формулы Симпсона не больше чем
где М - наибольшее значение на отрезке [a, b]. Так как n 4
растет быстрее, чем n 2
, то погрешность формулы Симпсона с ростом n уменьшается значительно быстрее, чем погрешность формулы трапеций.
Возьмем n равным 10, h=0.1, рассчитаем значения подынтегральной функции в точках разбиения , а также полуцелых точках .
По формуле средних прямоугольников получим I прям
=0.785606 (погрешность равна 0.027%), по формуле трапеций I трап
=0.784981 (погрешность около 0,054. При использовании метода правых и левых прямоугольников погрешность составляет более 3%.
Для сравнения точности приближенных формул вычислим еще раз интеграл
но теперь по формуле Симпсона при n=4. Разобьем отрезок [0, 1] на четыре равные части точками х 0
=0, х 1
=1/4, х 2
=1/2, х 3
=3/4, х 4
=1 и вычислим приближенно значения функции f(x)=1/(1+x) в этих точках: у 0
=1,0000, у 1
=0,8000, у 2
=0,6667, у 3
=0,5714, у 4
=0,5000.
Оценим погрешность полученного результата. Для подынтегральной функции f(x)=1/(1+x) имеем: f (4)
(x)=24/(1+x) 5
, откуда следует, что на отрезке [0, 1] . Следовательно, можно взять М=24, и погрешность результата не превосходит величины 24/(2880× 4 4
)=0.0004. Сравнивая приближенное значение с точным, заключаем, что абсолютная ошибка результата, полученного по формуле Симпсона, меньше 0,00011. Это находится в соответствии с данной выше оценкой погрешности и, кроме того, свидетельствует, что формула Симпсона значительно точнее формулы трапеций. Поэтому формулу Симпсона для приближенного вычисления определенных интегралов используют чаще, чем формулу трапеций.
Сравним методы по точности, для этого произведем вычисления интеграла функций y=x, y=x+2, y=x 2
, при n=10 и n=60, a=0, b=10. Точное значение интегралов составляет соответственно: 50, 70, 333.(3)
Из таблицы 1 видно, что наиболее точным является интеграл, найденный по формуле Симпсона, при вычислении линейных функций y=x, y=x+2 также достигается точность методами средних прямоугольников и методом трапеций, метод правых прямоугольников является менее точным. Из таблицы 1 видно, что при увеличении количества разбиений n (увеличения числа интеграций) повышается точность приближенного вычисления интегралов
1) Написать программы вычисления определенного интеграла методами: средних, правых прямоугольников, трапеции и методом Симпсона. Выполнить интегрирование следующих функций:
3. Выполнить вариант индивидуального задания (таблица 2)
Таблица 2 Индивидуальные варианты задания
2) Провести сравнительный анализ методов.
Вычисление определенного интеграла: Методические указания к лабораторной работе по дисциплине «Вычислительная математика» / сост. И.А.Селиванова. Екатеринбург: ГОУ ВПО УГТУ-УПИ, 2006. 14 с.
Указания предназначены для студентов всех форм обучения специальности 230101 – «Вычислительные машины, комплексы, системы и сети» и бакалавров направления 230100 – «Информатика и вычислительная техника». Составитель Селиванова Ирина Анатольевна

Название: Вычисление определенного интеграла
Раздел: Рефераты по математике
Тип: учебное пособие
Добавлен 13:32:05 26 июня 2009 Похожие работы
Просмотров: 1498
Комментариев: 14
Оценило: 3 человек
Средний балл: 4
Оценка: неизвестно   Скачать

Срочная помощь учащимся в написании различных работ. Бесплатные корректировки! Круглосуточная поддержка! Узнай стоимость твоей работы на сайте 64362.ru
Привет студентам) если возникают трудности с любой работой (от реферата и контрольных до диплома), можете обратиться на FAST-REFERAT.RU , я там обычно заказываю, все качественно и в срок) в любом случае попробуйте, за спрос денег не берут)
Да, но только в случае крайней необходимости.

Учебное пособие: Вычисление определенного интеграла
Реферат Политико Правовые Взгляды Жана Бодена
Контрольная работа по теме Виды тепловых машин
Доклад: Крупный лесной бизнес по-русски
Курсовая работа по теме Экологические проблемы промышленного производства
Сочинение По Картине 9 Вал
Реферат по теме Киевская Русь – роль православия
Реферат по теме Природа экономического кризиса в России (конец 80-90 гг.)
Курсовая работа: Проект разработки программы-калькулятора CalcKurs на языке программирования Pascal
Эссе Фактические Брачные Отношения
Опасность Пожаров На Железнодорожном Транспорте Реферат
Курсовая работа по теме Современные направления искусства
Курсовая Работа На Тему Правовой Статус Биржи
Контрольная работа: Коммерческие банки и их функции. Скачать бесплатно и без регистрации
Контрольная работа: Модель поведения аудитора и аудиторской организации
Разделение Власти Реферат
Доклад по теме Субъекты кредитных отношений
Курсовая работа по теме Решение задачи коммивояжера с помощью алгоритма Дейкстры
Реферат На Тему Про
Спорт В Моей Жизни Сочинение Рассуждение
Реферат по теме Экономическая теория Карла Маркса
Реферат: Древнехристианское искусство катакомб
Реферат: Паронимия и синонимия
Контрольная работа: Самосознание и самооценка в дошкольном возрасте

Report Page