Turkikis

Turkikis




🛑 TÜM BİLGİLER! BURAYA TIKLAYIN 👈🏻👈🏻👈🏻

































Turkikis
aus Wikipedia, der freien Enzyklopädie
Wiktionary: türkis – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Dieser Artikel wurde am 12. März 2007 in dieser Version in die Liste der exzellenten Artikel aufgenommen.

Der Text ist unter der Lizenz „Creative Commons Attribution/Share Alike“ verfügbar; Informationen zu den Urhebern und zum Lizenzstatus eingebundener Mediendateien (etwa Bilder oder Videos) können im Regelfall durch Anklicken dieser abgerufen werden. Möglicherweise unterliegen die Inhalte jeweils zusätzlichen Bedingungen. Durch die Nutzung dieser Website erklären Sie sich mit den Nutzungsbedingungen und der Datenschutzrichtlinie einverstanden.
Wikipedia® ist eine eingetragene Marke der Wikimedia Foundation Inc.
Das Mineral Türkis ist ein eher selten vorkommendes, wasserhaltiges Kupfer - Aluminium - Phosphat aus der Mineralklasse der „ Phosphate , Arsenate und Vanadate “ mit der chemischen Zusammensetzung CuAl 6 (PO 4 ) 4 (OH) 8 ·4H 2 O. Anstelle von Aluminium kann Eisen als Fe 3+ in die Kristallstruktur eingebaut werden ( Diadochie ), daher wird die chemische Formel auch oft als Cu(Al,Fe) 6 (PO 4 ) 4 (OH) 8 ·4H 2 O angegeben.

Türkis kristallisiert im triklinen Kristallsystem und ist Namensgeber einer Gruppe von Mineralen mit gleicher Struktur aber unterschiedlicher Zusammensetzung, der Türkisgruppe mit den weiteren Mitgliedern Faustit , Chalkosiderit , Aheylit und Planerit .

In der Natur bildet Türkis meist traubenförmige oder erdig-massige Mineral-Aggregate . Mit dem bloßen Auge sichtbare Kristalle sind sehr selten und dann nur wenige Millimeter groß mit prismatischem bis nadeligem Habitus . Seiner charakteristischen blaugrünen Farbe verdankt die Farbe Türkis ihren Namen.

Türkis wird ausschließlich zu Schmucksteinen verarbeitet.

Als frühe Bezeichnung kann relativ sicher das altgriechische καλάϊνος kalláïnos „blau und grün schillernd“ angenommen werden (aus Plinius , Naturalis historia ). Davon abgeleitet ist das lateinische callaina . Gotthelf Fischer von Waldheim verwendete um 1806 die Bezeichnung Kallait für Türkis; diese ist heutzutage jedoch kaum noch im Gebrauch.

Etwa Anfang des 13. Jahrhunderts kam die französische Bezeichnung turkoys auf, die sich ab dem frühen 15. Jahrhundert in die Bezeichnung pierre turquoise wandelte und übersetzt „türkischer Stein“ bedeutet. Diese Wortschöpfung beruht jedoch auf einem Missverständnis, denn Türkis wurde damals lediglich aus dem Gebiet des heutigen Iran in die Türkei importiert und dort gehandelt. [1] Heimkehrende Kreuzfahrer machten ihn schließlich auch in Europa bekannt.

Weitere Synonyme für Türkis sind Bisbee Blue – nach seinem Fundort Bisbee – sowie Chalchit bzw. Chalchuit . [2]

Die irreführende Bezeichnung Eilat-Stein steht dagegen für den Chrysokoll . [3]

Sowohl die Mineralsystematik nach Strunz als auch die im englischen Sprachraum gebräuchliche Systematik nach Dana ordnen den Türkis in die Mineralklasse der „Phosphate, Arsenate und Vanadate“ ein.

In der veralteten, aber teilweise noch gebräuchlichen 8. Auflage der Strunz’schen Systematik gehörte der Türkis zur Abteilung der „ wasserhaltigen Phosphate mit fremden Anionen “, wo er als Namensgeber die „Türkisgruppe“ mit der System-Nr. VII/D.15 und den weiteren Mitgliedern Aheylit , Chalkosiderit , Faustit und Planerit bildete.

Die seit 2001 gültige 9. Auflage der Mineralsystematik nach Strunz hat Abteilung und Gruppenname behalten, allerdings ist die Abteilung jetzt präziser nach der Größe der beteiligten Kationen und dem Stoffmengenverhältnis zwischen Fremdanion und Sulfat- bzw. Arsenat- oder Vanadat-Komplex unterteilt. Entsprechend seiner Zusammensetzung gehört der Türkis damit zur Unterabteilung „Mit ausschließlich mittelgroßen Kationen; (OH usw.) : RO 4 = 2 : 1“ und bildet noch immer zusammen mit Aheylit, Chalkosiderit, Faustit und Planerit die „Türkisgruppe“ mit der System-Nr. 8.DD.15 .

In der schwerpunktmäßig nach dem Kristallsystem sortierten Systematik der Minerale nach Dana findet sich der Türkis in der Abteilung der „ wasserhaltigen Phosphate etc., mit Hydroxyl oder Halogen mit (A) 3 (XO 4 ) 2 Z q • x(H 2 O) “ und dort als triklin kristallisierendes Mineral in der „Türkisgruppe“ mit der System-Nr. 42.09.03 .

Gemessen an den Jahrtausenden, in denen Türkis weltweit bekannt und als Schmuckstein geschätzt wurde, ist seine Kristallstruktur ungewöhnlich spät aufgeklärt worden. Solche Strukturanalysen beruhen auf der Auswertungen von Röntgenbeugungsexperimenten an Einkristallen ausreichender Größe und Qualität. Türkis jedoch war von jeher nur in Form erdiger, kryptokristalliner Massen bekannt. Türkiseinkristalle wurden erstmals 1912 aus einem Vorkommen in Virginia (USA) beschrieben und erst 1965 konnte die Türkisstruktur mit Einkristallen dieser Lokalität vollständig aufgeklärt werden. [4]

Türkis kristallisiert im triklinen Kristallsystem in der Raumgruppe P 1 (Raumgruppen-Nr. 2) Vorlage:Raumgruppe/2 . Das einzige Symmetrieelement ist ein Inversionszentrum, das die Atome durch Punktspiegelung vervielfältigt. Da Kupfer in seiner Lage mit dem Inversionszentrum zusammenfällt, tritt es als einziges Teilchen in der chemischen Formel nur einmal auf. In der Kristallographie wird das Zusammenfallen von Teilchen mit einem Symmetrieelement als spezielle Lage bezeichnet. Alle anderen Atome befinden sich in symmetriefreier, so genannter allgemeiner Lage . Die Gitterparameter der Elementarzelle sind in der Tabelle angegeben.

Die Kationen werden in der Kristallstruktur vier- und sechsfach von Sauerstoff koordiniert. Die zwei kristallographisch unterschiedlichen Phosphor -Kationen (P 5+ ) im Kristallgitter werden als einzige Teilchen von nur vier Sauerstoffatomen in Form eines Tetraeders koordiniert. Diese [PO 4 ] 3− -Tetraeder sind nicht untereinander verbunden, sondern liegen isoliert in der Struktur vor. Jedes Phosphorion ist über zwei Sauerstoffatome mit zwei Al-Ionen auf der Position Al-3 verbunden, mit einem Al-Ion auf Al-1 und einem weiteren auf Al-2.

Aluminium (Al 3+ ) sowie die geringen Gehalte an Fe 3+ -Ionen befinden sich auf drei verschiedenen Positionen, die jeweils oktaedrisch von sechs Sauerstoffatomen umgeben sind. Al auf den Positionen Al-1 und Al-2 wird von zwei Sauerstoffatomen, drei OH-Gruppen und einem H 2 O-Molekül koordiniert. Al auf der Position Al-3 wird von vier Sauerstoffatomen und zwei OH-Gruppen umgeben.

Kupfer befindet sich in einem Inversionszentrum auf den Ecken der Elementarzelle und wird verzerrt oktaedrisch von vier OH-Gruppen und zwei H 2 O-Molekülen umgebenen. Dieses stark verzerrte [CuO 6 ]- Oktaeder ist über gemeinsame Kanten mit vier [AlO 6 ]-Oktaedern verbunden, von denen wiederum jeweils zwei über eine gemeinsame Kante miteinander verbunden sind. Diese Gruppe aus fünf verknüpften Oktaedern innerhalb der Kristallstruktur kann als Cluster bezeichnet werden und zur einfacheren Beschreibung der Struktur als eine Baueinheit betrachtet werden.

Die Cluster kantenverknüpfter [CuO 6 ]- und [AlO 6 ]-Oktaeder sind untereinander über ein weiteres AlO 6 -Oktaeder sowie die PO 4 -Tetraeder verbunden. Die Verbindung dieses dritten [AlO 6 ]-Oktaeders mit den [PO 4 ]-Tetraedern und den Cu-Al-Oktaeder-Clustern erfolgt über gemeinsame Ecken, also gemeinsame Sauerstoff-Atome.

Auf den Strukturabbildungen sind zur Vereinfachung nicht die Atome und ihre Bindungen dargestellt, sondern die Koordinationspolyeder (Tetraeder und Oktaeder). Die Kationen Cu 2+ , Al 3+ , P 5+ befinden sich annähernd im Zentrum der Polyeder und die an sie gebundenen Sauerstoff-Atome in den Polyederecken. Ebenfalls nicht dargestellt sind die Wasserstoffe der OH-Gruppen und H 2 O-Moleküle. Deren Sauerstoffatome tragen zur oktaedrischen Koordination des Kupfers und Aluminiums bei. Die blauen Linien in der zweiten Abbildung markieren die Kanten der Elementarzelle.

Koordination der Kationen in der Türkisstruktur hellblau: Sauerstoff grau: Aluminium rot: Wasserstoff türkis: Kupfer violett: Phosphor orange Linien: Kation-Sauerstoffbindungen schwarze Linien: Kanten der Koordinationspolyeder blaue Linien: Kanten der Elementarzelle

Baueinheiten der Türkisstruktur oben: Cluster kantenverknüpfter [CuO 6 ]- [AlO 6 ]-Oktaeder unten: Bänder eckenverknüpfter [PO 4 ]-Tetraeder und [AlO 6 ]-Oktaeder

Gesamtstruktur von Türkis mit Blick entlang der a- (oben) und b-Achse (unten)

Reine Türkise erreichen eine maximale Mohshärte von knapp unter 6 und sind damit in etwa so hart wie Fenster glas . Entsprechend den jeweiligen Bildungsbedingungen weist der Türkis eine mehr oder weniger große Porosität auf. Je poröser aber der Stein ist, desto geringer ist seine relative Dichte, die zwischen 2,6 und 2,9 g/cm³ schwankt, und desto geringer ist auch seine Härte. Die Größe des Steins hat ebenfalls Einfluss auf diese Eigenschaften. Die Strichfarbe ist ein blasses Bläulichweiß und seine Bruchstelle perlmuttartig (konchoid) mit wachsartigem Glanz. Trotz seiner geringen Härte im Vergleich zu anderen Edelsteinen lässt er sich leicht polieren.

Türkise sind eher selten von reiner, blaugrüner Farbe. Viel häufiger werden sie mit kleinen Flecken übersät oder mit braunen, grauen oder schwarzen, spinnenwebenartigen Adern durchsetzt gefunden, der sogenannten Matrix (entsprechend Türkis-Matrix oder Matrix-Türkis). [2] Diese besteht entweder aus anderen Mineralen wie beispielsweise Pyrit oder aus Nebengestein wie Limonit und anderen.

Der Brechungsindex , bei Natriumlicht (589,3 nm Wellenlänge ) gemessen, beträgt ungefähr 1,61 bis 1,62, wobei dieser Wert auf einer Einzelmessung durch ein Refraktometer beruht. Die polykristalline Struktur des Türkis macht es schwer, einen für das ganze Mineral einheitlichen Wert zu bestimmen. Bei einzelnen Kristallen wurden auch schon Werte von 1,61 bis 1,65 ( Doppelbrechung 0,040 zweiachsig positiv) gemessen. Ein Absorptionsspektrum kann man mittels eines manuellen Spektroskops erhalten. Gute Ergebnisse erlangt man bei stark reflektiertem Licht. Unter langwelligem UV-Licht fluoresziert Türkis grün, gelb oder hellblau. Es ist inaktiv unter kurzwelligem UV-Licht oder Röntgenstrahlen.

Salzsäure greift Türkis nur in erhitztem Zustand an. Organische Säuren wie Ameisen-, Zitronen- oder Essigsäure wirken dagegen auf alle Minerale der Türkisgruppe ein. Kalilauge zersetzt den Türkis ebenfalls. Vor der Lötlampe schmilzt das Mineral zwar nicht, zerfällt aber unter knisternden Geräuschen zwischen 200 und 600 °C zu einem schwarzen Pulver.

Sowohl Henwoodit (erstmals beschrieben 1876 von Collins) [5] als auch Rashleighit ( Rashleigit , Eisentürkis , erstmals beschrieben 1948 von Russel) [5] [6] werden als Varietät mit geringem Eisengehalt dem Türkis zugeordnet. Andere Quellen werten die Bezeichnung Henwoodit als Synonym für Türkis. [7]

Zwischen dem vorwiegend blauen Türkis und dem vorwiegend grünen Chalkosiderit existiert eine lückenlose Mischkristallreihe , wobei die aluminiumreichen Verbindungen entsprechend dem Türkis und die eisenbetonten Zusammensetzungen dem Chalkosiderit zugeordnet werden.
Das Farbspektrum ist daher so vielfältig wie die Eigenschaften des Minerals – es reicht von weiß über hellblau bis tiefblau und kann sowohl grün-blau als auch gelb-blau sein. Die blaue Färbung schreibt man dem idiochromatischen Kupfer zu, während Grün das Ergebnis der Beimengung des Eisens ist, welches das Aluminium ersetzt hat. [2] Auch weitere, geringe Beimengungen von beispielsweise Calcium können eine Variation der Farbe hervorrufen.

Durch Dehydratation (Austrocknung), wie sie bereits kurz nach dem Abbau des Minerals außerhalb des Bergwerks stattfindet, verliert der Türkis an Farbkraft und wird heller.

Agapit ( Agaphit ) und Johnit sind dagegen Bezeichnungen für Türkise mit glasartiger Oberfläche. [3]

Türkis ist ein typisches Sekundärmineral . Es bildet sich relativ oberflächennah bis etwa 30 bis 40 Meter unter der Oberfläche bei der Verwitterung kupferhaltiger aluminiumreicher Gesteine . In den Trockenzonen der Erde scheinen dabei besonders günstige Bildungsbedingungen zu herrschen. Das Kupfer kann entweder aus Kupfersulfiden wie Chalkopyrit (Kupferkies) oder aus Carbonaten wie Azurit und Malachit stammen. Das Aluminium stammt meist aus Feldspäten . Phosphat wird über phosphathaltige Lösungen angeliefert oder stammt direkt aus im Gestein vorhandenen Phosphatmineralen wie Apatit . Selten finden sich daher auch Türkis- Pseudomorphosen nach Feldspat, dem Kupfermineral Chrysokoll und Apatit.

Im Allgemeinen lagert sich Türkis in den Hohlräumen und Spalten verwitternder magmatischer Gesteine ab, oft zusammen mit Limonit und anderen Eisenoxiden, gelegentlich auch mit Alunit . Wird das Muttergestein während der Entstehung des Türkis von Kieselsäure durchdrungen, sorgt dies im Mineral für eine natürliche Stabilisierung .

Türkis ist fast immer kryptokristallin , massiv und nimmt keine regelmäßige Form an. Kristalle sind selbst auf mikroskopischer Ebene sehr selten, dann aber kurzprismatisch. Auch stalaktitartige Formen wurden gefunden. Selten ersetzt Türkis sogar fossile Knochen und Zähne, die im Wesentlichen aus Apatit bestehen. Bei Odontolith (Fossilknochen oder Elfenbein ) geht man bisher davon aus, dass es durch Türkis oder ähnliche Phosphatminerale, wie das Eisenphosphat Vivianit ersetzt wird. Türkiszwillinge wurden bisher nicht gefunden.

Türkis gehört zu den ersten Mineralen, die bergmännisch abgebaut wurden, aber von den alten Bergwerken sind heute nur noch wenige in Betrieb. Sie werden saisonabhängig und in kleinem Umfang, oft ohne oder nur mit geringer technischer Hilfe betrieben, da Türkis relativ selten ist. In großen Kupferbergwerken, besonders in den USA, wird Türkis jedoch oft als Nebenprodukt entdeckt.

Die bedeutendsten Fundstätten aus geschichtlicher wie aus mengenmäßiger Sicht dürften wohl diejenigen der südwestlichen USA, Mexiko, Sinai, Iran, China und des südöstlichen Australien sein. Einige wenige Fundstellen sind aber auch in Europa und Afrika bekannt.

Bereits vor mehr als 2000 Jahren war Persien einer der wichtigsten Lieferanten für edlen Türkis. Iran ist schon seit Jahrhunderten eines der Hauptabbau- und Handelsgebiete und von hier aus kam wahrscheinlich auch der erste Türkis nach Europa . Dort finden sich auch bis heute immer noch die schönsten Exemplare.

Die Lagerstätten konzentrieren sich auf das Gebiet um den 2012 m hohen Berg Ali-Mersai bei der Stadt Neyschabur in der Region Chorasan . Türkis wird dort in verwittertem Trachyt gefunden, sowohl zwischen Limonit - und Sandsteinschichten , als auch im Geröll am Fuß des Berges. Die Bergwerke von Ali-Mersai und die der Sinaihalbinsel sind die ältesten bekannten Lagerstätten.

Iranischer Türkis ist oft als Ersatz für Feldspat im Gebrauch. Obwohl er meistens mit weißlichen Flecken versehen ist, zieht man ihn wegen seiner Farbe und Härte oft dem Türkis aus anderen Orten vor.

Die alten Ägypter bauten Türkis bereits seit vordynastischer Zeit (etwa 5500 v. Chr.) ab. Dokumentiert ist in diesem Zusammenhang unter anderem der Abbau im Maghara Wadi auf der Sinai-Halbinsel etwa 3200 v. Chr. Von den einheimischen Monitu wird das Gebiet deshalb als „Land des Türkis“ bezeichnet.

Es gibt sechs Bergwerke in der Region, die sich allesamt im Südwesten der Halbinsel befinden und dort eine Fläche von 650 km² einnehmen. Aus historischer Sicht sind Serabit el-Chadim und Wadi Maghareh die beiden wichtigsten Bergwerke, da sie als eine der ältesten bekannten angesehen werden. Wadi Maghareh liegt ungefähr 4 km von einem antiken Tempel entfernt, welcher der Göttin Hathor gewidmet war.

Mittlerweile gelten die Lagerstätten auf der Sinaihalbinsel als erschöpft und haben keine wirtschaftliche Bedeutung mehr. Sie sind jedoch nach wie vor von historischem Wert. [2] Lediglich Beduinen suchen ab und an die alten Lagerstätten auf und bauen dort Türkis mittels selbst hergestellten Schießpulvers ab. Die Kleinbergwerke sind während der Wintermonate durch Sturzfluten gefährdet. Sie gelten als einsturzgefährdet.

Türkis wird auf der Sinaihalbinsel im Sandstein gefunden, der ursprünglich mit Basalt überzogen war. Er ist normalerweise grüner als iranischer Türkis, aber auch härter und weniger brüchig. Dieses Mineral, das oft als ägyptischer Türkis bezeichnet wird, ist das lichtdurchlässigste von allen. Unter dem Mikroskop kann man in der Oberflächenstruktur viele kleine dunkelblaue Scheiben sehen; ein Phänomen, das man nur beim Sinaitürkis beobachten kann. In der Nähe von Eilat , Israel , kann man auch noch das Eilat-Gestein finden. Es ist eine Mischung aus Türkis, Malachit und Chrysokoll und wird oft als Israels Nationalgestein bezeichnet. Regionale Künstler, die Eilat weiter verarbeiten, verwenden es oft, um es an Touristen weiter zu verkaufen.

Der Südwesten der USA ist eine wichtige Quelle für den Türkis. Hauptlagerstätten sind oder waren dabei Arizona , Kalifornien ( San Bernardino , Imperial und Inyo ), Colorado (Countys Conejos , El Paso , Lake und Saguache ), New Mexico (Countys Eddy , Grant County , Otero und Santa Fe ) sowie Nevada . Die Lagerstätten Kaliforniens und New Mexicos wurden dabei schon vor Kolumbus von den Ureinwohnern Amerikas mit Steinwerkzeugen bearbeitet. Cerrillos (New Mexico) sei dabei als die älteste Mine erwähnt. Sie war vor 1920 sogar die größte Mine der USA und ist heute so gut wie erschöpft. Die Apache Canyon ist heute die einzige Mine, die noch genug Türkis abbaut, um am Markt konkurrieren zu können.

Türkis wird in den USA in Gängen oder Einlagerung vorgefunden, bisweilen auch in kleinen Nuggets . Nicht selten ist er auch ein Nebenprodukt des Kupferbergbaus. Er ist meistens von schlechter Qualität und nur selten ist wirklich gutes Material, das dem iranischen Türkis in Farbe und Härte standhalten kann, dabei. Der hohe Eisengehalt bewirkt eine eher grüne oder gelbe Farbe und hohe Brüchigkeit (Kalktürkis) schließt eine Weiterverarbeitung des unbehandelten Türkis in der Schmuckindustrie aus. Die wertvollsten Funde der USA werden in Arizona gemacht, wobei der wunderschöne Bisbee Blue ein gutes Beispiel für den natürlichen Reichtum des Bundesstaates ist. Nevada ist der zweitgrößte Türkisproduzent der USA. Im Laufe der Zeit wurden hier etwa 75 bis 100 Bergwerke erschlossen. Nevada-Türkis ist für seine „Spinnweben-Matrix“ bekannt, verursacht durch eine attraktive braune oder schwarze Limonitstreifung.

1912 wurde der erste Einzelkristall-Türkis in Lynch Station ( Virginia ) gefunden. Die Kristalle, die sich über dem Mutterstein bilden, sind so klein, dass ein Umfang von einem Millimeter Durchmesser schon als groß gilt. Bis 1980 wurde weithin angenommen, dass es diese Kristalle nur in Virginia gibt, aber heutzutage sind mindestens 27 weitere Fundorte bekannt. Dieser Türkis ist bei Sammlern sehr begehrt.

Um den Profit zu erhöhen und der Nachfrage entgegenzukommen, wird Türkis in den USA meistens nachbehandelt oder bis zu einem bestimmten Grad verbessert. Die Behandlungsmethoden reichen dabei von unschädlichem Wachsen bis hin zu kontroverseren Methoden wie Färben oder Imprägnieren.

Seit über 3000 Jahren gilt China als eine der kleineren Türkisquellen. In den Provinzen Hubei (Zhushan) und Yunnan (Yunxian) wird in brüchigem, verkieseltem Kalkstein qualitativ hochwertiges Material, meistens in Form kompakter Nadeln, gefunden. Marco Polo berichtete darüber hinaus von Funden im heutigen Sichuan . Türkis wird in China meistens exportiert. Manchmal findet man aber auch Türkis-Schnitzereien, die den Jade-Schnitzereien sehr ähnlich sehen.

In Tibet , wo man den grünen Türkis schon lange schätzt, gibt es angeblich auch hoc
Güzel Amcıklı Liseli Pornoları
Gerçek Tecotobüste Taciz
Bbww Video Izle

Report Page