Tubes Models

Tubes Models




🛑 👉🏻👉🏻👉🏻 INFORMATION AVAILABLE CLICK HERE👈🏻👈🏻👈🏻






















































page

of 2




Contact Support

Open Support Ticket

Chat with Support 24/7
Search Knowledge Base



Legal

Terms of Service
3D Model License
Privacy Policy



Enterprise

Brand Management
Enterprise Accounts



About Us

Company Info
Our Blog
Our Team
Careers
Contacts
Site Map



Language:










Deutsch













English











Español











Français











Italiano











Polski











Português











Русский











中文











한국어











日本語







Sell Your 3D Models
© TurboSquid 2021








Sign up for free
to join this conversation on GitHub .
Already have an account?
Sign in to comment



© 2021 GitHub, Inc.
Terms
Privacy
Security
Status
Docs








Contact GitHub
Pricing
API
Training
Blog
About



Instantly share code, notes, and snippets.

*--------------------------------------------------------------------------
* Model generated by Motega software:
* Modeling Of Tubes Employing Genetic Algorithms
* Models contain 1G resistors from all nodes to earth in order to avoid
* floating nodes. Triode and tetrode/pentode models contain a diode for
* Non-commercial use is permitted, but at your own risk... This model
* is provided "as is", without warranty of any kind. In no event shall
* Jeroen Boschma be liable for any claim, damages or other liability,
* whether in an action of contract, tort or otherwise, arising from,
* out of or in connection with the tube model or the use or other
* Copyright Jeroen Boschma
* Motega V 1.0, 12-Sep-2010 23:58:18
*--------------------------------------------------------------------------
*--------------------------------------------------------------------------
*--------------------------------------------------------------------------
+ PARAMS: ua=1 ug2=1 xa=1 xg2=1 qa=1 qg2=1 kg1=1 kg2=1 kvba=1 kvbg2=1 ce=1
* Resistors in order to avoid floating nodes
* Intermediate expressions which simplify the current calculation
E1 1 0 VALUE={xa + ce*PWR(V(A,K),2)}
E2 2 0 VALUE={V(Gr2,K)*LOG(1 + EXP(qa*(1/ua + V(Gr1,K)/V(Gr2,K))))/qa}
E3 3 0 VALUE={V(Gr2,K)*LOG(1 + EXP(qg2*(1/ug2 + V(Gr1,K)/V(Gr2,K))))/qg2}
G1 A K VALUE={(PWR(V(2),V(1)) + PWRS(V(2),V(1)))*ATAN(V(A,K)/kvba)/kg1}
G2 Gr2 K VALUE={(PWR(V(3),V(1)) + PWRS(V(3),V(1)))*ATAN(V(A,K)/kvbg2)/kg2}
.MODEL DX D(IS=1N RS=1 CJO=10PF TT=1N)
*--------------------------------------------------------------------------
*--------------------------------------------------------------------------
* Resistors in order to avoid floating nodes
XV1 A Gr2 Gr1 K TubePentode
+ PARAMS: ua=76.129 ug2=8.581K xa=759.154M xg2=952.570M qa=233.302 qg2=151.489
+ kg1=68.216 kg2=142.261 kvba=19.057 kvbg2=2.179M ce=22.808U
*--------------------------------------------------------------------------
*--------------------------------------------------------------------------
* Resistors in order to avoid floating nodes
XV1 A Gr2 Gr1 K TubePentode
+ PARAMS: ua=164.060 ug2=2.189K xa=442.879M xg2=687.751M qa=620.235 qg2=93.692
+ kg1=89.910 kg2=161.636 kvba=11.369 kvbg2=655.832 ce=358.645N
+ params: mu=18.8 ex=1.5 kg1=540 kp=165 kvb=174 rgi=1000 vct=0.01
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
.model dx d(is=1n rs=1 cjo=1pf tt=1n)
* liste des paramètres et ce que j'en ai déduit
* G = modifie la pente avant le coude pour les courbes d'anodes
* MU = modifie la pente après le coude pour les courbes d'anodes
* MU12 = modifie la hauteur du courant d'anode
* E1 = modifie l'écartement des courbes de courant d'anode
* K1 = modifie l'angle du coude du courant d'anode
* k3 = modifie l'écartement des courbes avant le coude pour les courbes d'anodes
* k4 = modifie la hauteur du courant d'écran
* K5 = modifie la valeur maxi du courant d'écran pour les faibles valeurs de Va
* K6 = modifie l'angle du coude du courant d'écran
* K = modifie l'écartement des courbes de courant d'écran
X1 1 2 3 4 PENTH1 G=.100m MU=10000 MU12=30.9 E1=4.6 k1=90.2 k2=2.1 k3=0.8 k4=85.6 k5=26.8 k6=10.6 K=4.50m
**************************************
**Modèle mathématique issu de EXCEM **
**************************************
B1 10 0 V=IF(V(A,C)>0,(V(G2,C)/{MU12})*(V(A,C)-({k3}*V(G1,C)))/((V(G2,C)/{k1})+V(A,C)),0)
B2 A C I={G}*((V(G1,C)+V(10,0))+(V(A,C)/({MU}*(1-(V(G1,C)/{k2})))))**{E1}
B6 12 0 V=IF(V(G2,C)>0,(V(G1,C)+(V(G2,C)/{k4})),0)
B7 G2 C I={K}*(V(12,0)**1.5)*((V(A,C)+{k5})/(V(A,C)+{k6}))**3
B4 6 0 V=IF(V(G1,C)>0,{ALPHA}*V(G1,C)**1.5,{BETA}/-(V(G1,C)-.1))
.MODEL DX D(IS=1N RS=1 CJO=1PF TT=1N)
Esp 2 0 VALUE={V(P,K)+13.49*V(S,K)+130.4*V(G,K)}
E1 3 2 VALUE={5.521E-7*(PWR(V(2),1.5)+PWRS(V(2),1.5))/2}
E2 3 4 VALUE={5.521E-7*PWR(13.49*V(S,K),1.5)*V(P,K)/25}
E3 5 4 VALUE={(1-V(4,2)/ABS(V(4,2)+0.001))/2}
Gp P S VALUE={0.92*(V(3,4)*(1-V(5,4))+V(3,2)*V(5,4))}
.MODEL DX D(IS=1N RS=1 CJO=1PF TT=1N)
Esp 2 0 VALUE={V(P,K)+13.49*V(S,K)+130.4*V(G,K)}
E1 3 2 VALUE={5.521E-7*(PWR(V(2),1.5)+PWRS(V(2),1.5))/2}
E2 3 4 VALUE={5.521E-7*PWR(13.49*V(S,K),1.5)*V(P,K)/25}
E3 5 4 VALUE={(1-V(4,2)/ABS(V(4,2)+0.001))/2}
Gp P S VALUE={0.92*(V(3,4)*(1-V(5,4))+V(3,2)*V(5,4))}
Eme me 0 VALUE={PWR(LIMIT{V(A,K),0,2000},1.5)/1750}
Emu mu 0 VALUE={PWRS(V(G,K),1-(LIMIT{-V(G,K),30,9999}-30)/2000)}
Egs gs 0 VALUE={LIMIT{V(A,K)/2.5+V(S,K)*15.15+V(mu)*134,0,1E6}}
Egs2 gs2 0 VALUE={PWRS(V(gs),1.5)*0.8E-6}
Ecath cc 0 VALUE={LIMIT{V(gs2)*V(at),0,V(me)}}
Escrn sc 0 VALUE={0.76*V(gs2)*(1.1-V(at))}
Gs S K VALUE={V(sc)*LIMIT{V(S,K),0,10}/10}
Gg G K VALUE={PWR(LIMIT{V(G,K)+1,0,1E6},1.5)*(1.25-V(at))*650E-6}
Eat at 0 VALUE={limit(0.636*ATAN(limit(V(A,K),0,200)/5.39935952007373),0,1e6)} ;arctangent shaping
Eme me 0 VALUE={0.000459037814532166*PWR(V(A,K),1.19017332861348)} ; diodeline
Egs gs1 0 VALUE={LIMIT(V(A,K)/12216.2805361082+V(S,K)/21.6080182096161+V(G,K)/0.878756035095985 ,0,1E6)} ;the basic voltage
Egs2 gs2 0 VALUE={PWRS(V(gs1),1.48413876122404)*0.0030939788209251} ;raise to the power and mult by perveance
Ga A K VALUE={limit(V(gs2)*V(at),0,V(me))} ; anode current limited per diode line
Gs S K VALUE={1.06934398863015*V(gs2)*(1.1-V(at))}; screen current, reverse arctangent shaping
Gg G K VALUE={PWR(LIMIT(V(G,K)+-0.2500372391271 ,0,1E6),1.5)*(1.25-V(at))*-0.00098104133922726} ; grid current
*--------------------------------------------------------------------------
*--------------------------------------------------------------------------
.SUBCKT 6F12PT 1 2 3 ; P G C (Triode) 07 Nov 2004
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
*--------------------------------------------------------------------------
*--------------------------------------------------------------------------
Bp P K I=(0.02003791851m)*uramp(V(P,K)*ln(1.0+(-0.07740549711)+exp((4.618036737)+(4.618036737)*((20.288965)+(-110.4389272m)*V(G,K))*V(G,K)/sqrt((28.13407639)**2+(V(P,K)-(7.118597372))**2)))/(4.618036737))**(1.380047579)
*--------------------------------------------------------------------------
*--------------------------------------------------------------------------
Bp P K I=((0.001149607902m)+(0.0001063352726m)*V(G,K))*uramp((91.16514401)*V(G,K)+V(P,K)+(52.29904339))**1.5 * V(P,K)/(V(P,K)+(2.177964467))
*--------------------------------------------------------------------------
*--------------------------------------------------------------------------
Bp P K I=(0.01701593477m)*uramp(V(P,K)*ln(1.0+(-0.1251806139)+exp((1.234948774)+(1.234948774)*((34.50197863)+(-26.60747394m)*V(G,K))*V(G,K)/sqrt((22.53603268)**2+(V(P,K)-(-4.400778147))**2)))/(1.234948774))**(1.369425091)
*--------------------------------------------------------------------------
*--------------------------------------------------------------------------
Bp P K I=(0.0253900853m)*uramp(V(P,K)*ln(1.0+(-0.002225559277)+exp((2.167148412)+(2.167148412)*((98.41058113)+(-236.6932297m)*V(G,K))*V(G,K)/sqrt((21.28395113)**2+(V(P,K)-(-33.16307233))**2)))/(2.167148412))**(1.238709418)
*--------------------------------------------------------------------------
*--------------------------------------------------------------------------
*+ PARAMS: CCG=2.7P CGP=1.5P CCP=1.65P RGI=2000
*+ MU=25.96 EX=1.79 KG1=557.56 KP=137.33 KVB=391.918
*E1 7 0 VALUE={V(1,3)/KP*LOG(1+EXP(KP*(1/MU+V(2,3)/SQRT(KVB+V(1,3)*V(1,3)))))}
*G1 1 3 VALUE={((PWR(V(7),EX)+PWRS(V(7),EX))/(2*KG1))}
*.MODEL DX D(IS=1N RS=1 CJO=10PF TT=1N)
+ params: mu=7.7 ex=1.512 kg1=8700 kp=57 kvb=1116 rgi=1000 vct=.372
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
.model dx d(is=1n rs=1 cjo=1pf tt=1n)
+PARAMS: LIP= 1.5 LIF= .003 RAF= 1.92357959289845E-03 RAS= .98 CDO= 0
+ MU0= 4.2 MUR= 0.0006 EMC= 0.0000868
+ CGA=1.65E-11 CGK=7.50E-12 CAK=5.50E-12
+ KK1=1744 KP=41.4 KVB=17.1 vg0=1.5
+ CGA=16.5p CGK=7.5p CAK=5.5p RGI=1000
.func V_6() {KP*( (1/MU)+((V(G,K)-vg0)/sqrt(V(A,K)**2+KVB**2)) )}
E8 8 0 VALUE={(V(A,K))/KP*LN(1+EXP(V_6()))}
Eam am 0 VALUE= {2*Pow(V(8),ERP)/KK1}
+ params: mu=40.9 ex=1.71 kg1=825 kp=126 kvb=708 rgi=2000 vct=.01
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
.model dx d(is=1n rs=1 cjo=1pf tt=1n)
.subckt 3A5 1 2 3 ; uses vacuum diode grid current model
+ params: mu=16.13 ex=1.526 kg1=3270 kp=126 kvb=2 rgi=3000
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
.model dx d(is=60u rs=1 cjo=1pf N=180)
+PARAMS: LIP= 1.5 LIF= 10 RAF= 0.00536 RAS= 1 CDO= 0
+ MU0= 8.321 MUR= 0.0012 EMC= 0.000533
+ CGA=1.00E-11 CGK=2.50E-11 CAK=1.00E-12
.SUBCKT 6AN8T 1 2 3 ; P G C; NEW MODEL ; TRIODE SECTION
+ PARAMS: MU=21.5 EX=1.3 KG1=1180 KP=84 KVB=300 RGI=2000
+ CCG=2.3P CGP=2.2P CCP=1.0P ; ADD .7PF TO ADJACENT PINS; .5 TO OTHERS.
+{V(1,3)/KP*LOG(1+EXP(KP*(1/MU+V(2,3)/SQRT(KVB+V(1,3)*V(1,3)))))}
G1 1 3 VALUE={(PWR(V(7),EX)+PWRS(V(7),EX))/KG1}
RCP 1 3 1G ; TO AVOID FLOATING NODES IN MU-FOLLOWER
C1 2 3 {CCG} ; CATHODE-GRID; WAS 1.6P
C2 2 1 {CGP} ; GRID-PLATE; WAS 1.5P
C3 1 3 {CCP} ; CATHODE-PLATE; WAS 0.5P
.MODEL DX D(IS=1N RS=1 CJO=10PF TT=1N)
+PARAMS: LIP= 1 LIF= 0.01 RAF= 0.0058 RAS= 0.7 CDO= 0
+ MU0= 2.05 MUR= 0.0017 EMC= 0.0005
+ CGA=1.10E-11 CGK=8.00E-12 CAK=3.00E-12
+ params: mu=68.2 ex=1.386 kg1=487 kp=234 kvb=1680 rgi=2000 vct=.346
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
.model dx d(is=1n rs=1 cjo=1pf tt=1n)
+PARAMS: LIP= 1.5 LIF= 10 RAF= 0.030667 RAS= 5 CDO=-0.5
+ MU0= 50 MUR= 0.035 EMC= 0.00000256
+ CGA=4.00E-12 CGK=2.70E-12 CAK=4.00E-12
.func V_6() {KP*( (1/MU)+(V(G,K)/sqrt(V(A,K)**2+KVB**2)) )}
E8 8 0 VALUE={(V(A,K))/KP*LN(1+EXP(V_6()))}
Eam am 0 VALUE= {2*Pow(V(8),ERP)/KK1}
+ CGA=16.5p CGK=7.5p CAK=5.5p RGI=1000 ;(2A3 values)
.func V_6() {KP*( (1/MU)+((V(G,K)-vg0)/sqrt(V(A,K)**2+KVB**2)) )}
E8 8 0 VALUE={(V(A,K))/KP*LN(1+EXP(V_6()))}
Eam am 0 VALUE= {2*Pow(V(8),ERP)/KK1}
.subckt 6C45-PE 1 2 3 ; plate grid cathode
+ params: mu=47.4501 ex=2.374193 kg1=268.615545 kp=485.735371 kvb=501.503636 rgi=300
e1 7 0 value= {v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
+ params: mu=21.17 ex=1.442 kg1=1920 kp=150 kvb=10 rgi=1000 vct=.48
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
.model dx d(is=1n rs=1 cjo=1pf tt=1n)
.subckt 6CW4 1 2 3 ; placca griglia catodo NUVISTOR R.C.A.
+ params: mu=68.75 ex=1.35 kg1=160 kp=250 kvb=300 rgi=200
+ a=2.133e-7 b=-9.40e-5 c=.0139666 d=.64
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
+{a*v(1,3)*v(1,3)*v(1,3)+b*v(1,3)*v(1,3)+c*v(1,3)+d}
g1 1 3 value= {(pwr(v(7),v(8))+pwrs(v(7),v(8)))/kg1}
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
+PARAMS: LIP= 1.5 LIF= 10 RAF= 0.09 RAS= 0.2 CDO= 0
+ CGA=1.40E-12 CGK=3.30E-12 CAK=1.80E-12
Bp P K I=(0.3800825583m)*uramp(V(P,K)*ln(1.0+(-0.02540430176)+exp((7.018331616)+(7.018331616)*((15.85848193)+(-66.34009258m)*V(G,K))*V(G,K)/sqrt((27.2125877)**2+(V(P,K)-(5.267363515))**2)))/(7.018331616))**(1.211856956)
Bp P K I=((0.002251977888m)+(-5.369015936e-005m)*V(G,K))*uramp((370.7812379)*V(G,K)+V(P,K)+(423.2938397))**1.5 * V(P,K)/(V(P,K)+(57.14378617))
+ params: mu=94.8 ex=1.274 kg1=103 kp=153 kvb=792 rgi=2000 vct=.122
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
.model dx d(is=1n rs=1 cjo=1pf tt=1n)
+ params: mu=38.9 ex=1.484 kg1=780 kp=162 kvb=1176 rgi=2000 vct=.384
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
.model dx d(is=1n rs=1 cjo=1pf tt=1n)
+PARAMS: LIP= 1.5 LIF= 10 RAF= 0.01 RAS= 1 CDO= 0
+ MU0= 37.5 MUR= 0.01 EMC= 0.000005
+ CGA=1.60E-12 CGK=3.20E-12 CAK=1.50E-12
+ params: mu=18.8 ex=1.666 kg1=810 kp=85.5 kvb=600 rgi=2000 vct=.02
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
.model dx d(is=1n rs=1 cjo=1pf tt=1n)
Gp P K VALUE={1.54E-6*(PWR(V(2),1.5)+PWRS(V(2),1.5))/2}
+PARAMS: LIP= 1 LIF= 0.0037 RAF= 0.02 RAS= 2 CDO= 0
+ MU0= 19.2642 MUR= 0.006167 EMC= 0.0000189
+ CGA=3.90E-12 CGK=2.40E-12 CAK=7.00E-13
.func V_6() {KP*( (1/MU)+((V(G,K)-vg0)/sqrt(V(A,K)**2+KVB**2)) )}
E8 8 0 VALUE={(V(A,K))/KP*LN(1+EXP(V_6()))}
Eam am 0 VALUE= {2*Pow(V(8),ERP)/KK1}
Bp P K I=(0.04842259598m)*uramp(V(P,K)*ln(1.0+(-0.1171696503)+exp((6.561427624)+(6.561427624)*((18.54552963)+(-100.6055605m)*V(G,K))*V(G,K)/sqrt((40.8808477)**2+(V(P,K)-(25.43292096))**2)))/(6.561427624))**(1.491616235)
+PARAMS: LIP= 1 LIF= 0.0037 RAF= 0.09869 RAS= 1 CDO=-0.5
+ MU0= 45.093 MUR= 0.012937 EMC= 0.00000863
+ CGA=1.60E-12 CGK=2.30E-12 CAK=4.00E-13
+PARAMS: LIP= 1 LIF= 0.0037 RAF= 0.000001 RAS= 2.065382774 CDO= 0
+ MU0= 17.08958652 MUR= 0.010938375 EMC= 0.0000183
+ CGA=1.60E-12 CGK=1.80E-12 CAK=4.50E-13
+ params: mu=45 ex=1.4 kg1=465 kp=132 kvb=181 rgi=2000 vct=.356
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
.model dx d(is=1n rs=1 cjo=1pf tt=1n)
+PARAMS: LIP= 1.5 LIF= 0.000016 RAF= 0.076498 RAS= 1 CDO=-0.53056
+ MU0= 87.302 MUR=-0.013621 EMC= 0.00000111
+ CGA=3.90E-12 CGK=2.40E-12 CAK=7.00E-13
+ params: mu=45 ex=1.47 kg1=2355 kp=300 kvb=136.5 rgi=950 vct=.704
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
.model dx d(is=1n rs=1 cjo=1pf tt=1n)
Bp P K I=(0.7475666979m)*uramp(V(P,K)*ln(1.0+(-0.03869784353)+exp((5.06748961)+(5.06748961)*((7.783573199)+(-7.718521472m)*V(G,K))*V(G,K)/sqrt((16.65965534)**2+(V(P,K)-(1.974437216))**2)))/(5.06748961))**(1.293967904)
Gp P K VALUE={22.34E-6*(PWR(V(2),1.5)+PWRS(V(2),1.5))/2}
+ KK1=6350 KP=26.5 KVB=9 vg0=0.5 va0=6.0
+ CGA=7.4p CGK=3.7p CAK=2.1p RGI=1000
.func V_6() {KP*( (1/MU)+((V(G,K)-vg0)/sqrt(V(A,K)**2+KVB**2)) )}
E8 8 0 VALUE={(V(A,K)-va0)/KP*LN(1+EXP(V_6()))}
Eam am 0 VALUE= {2*Pow(V(8),ERP)/KK1}
Bp P K I=((0.008071931767m)+(3.503608694e-005m)*V(G,K))*uramp((11.35872332)*V(G,K)+V(P,K)+(-21.07038254))**1.5 * V(P,K)/(V(P,K)+(-4.024455933))
+PARAMS: LIP= 1 LIF= 10 RAF= 0.015 RAS= 1.8 CDO= 0
+ MU0= 12.8 MUR= 0.001 EMC= 0.000008
+ CGA=2.80E-12 CGK=3.50E-12 CAK=2.50E-12
.subckt 211_VT4C 1 3 4 ; TRIODO DI POTENZA D.H.T. ( G.E.)
g1 2 4 value = {(exp(1.5*(log((v(2,4)/12)+v(3,4)))))/3010}
Gp P K VALUE={9.39E-6*(PWR(V(2),1.5)+PWRS(V(2),1.5))/2}
Gg G K VALUE={358E-6*(PWR(V(G,K),1.5)+PWRS(V(G,K),1.5))/2}
+PARAMS: LIP= 1 LIF= 10 RAF= 0.00311 RAS= 1.013608 CDO= 0
+ MU0= 3.7992 MUR= 0.000362 EMC= 0.000116
+ CGA=1.50E-11 CGK=9.00E-12 CAK=4.30E-12
+ CGA=15.p CGK=9.p CAK=4.3p RGI=1000
.func V_6() {KP*( (1/MU)+((V(G,K)-vg0)/sqrt(V(A,K)**2+KVB**2)) )}
E8 8 0 VALUE={(V(A,K))/KP*LN(1+EXP(V_6()))}
Eam am 0 VALUE= {2*Pow(V(8),ERP)/KK1}
Bp P K I=(0.02254655914m)*uramp(V(P,K)*ln(1.0+(-0.4880850946)+exp((0.9206824464)+(0.9206824464)*((62.11491976)+(-2109.77701m)*V(G,K))*V(G,K)/sqrt((52.5190469)**2+(V(P,K)-(21.20975915))**2)))/(0.9206824464))**(1.712612552)
+PARAMS: LIP= 1 LIF= 0.0018 RAF= 0.0012 RAS= 0.5 CDO= 0
+ MU0= 3.79928 MUR= 0.0002 EMC= 0.0000425
+ CGA=4.00E-12 CGK=4.00E-12 CAK=1.00E-12
+PARAMS: LIP= 1.4 LIF= 0.0008 RAF= 0.001 RAS= 1 CDO= 0
+ MU0= 10 MUR= 0.0001 EMC= 0.0000272
+ CGA=5.00E-12 CGK=6.40E-12 CAK=1.00E-12
.subckt 801a 1 2 3 ; relatively accurate A1 and A2 model
+ params: mu=8.06 ex=1.596 kg1=11520 kp=162 kvb=10 rgi=180
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(5,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g ; note in e1: grid voltage is behind r1. modl mu drop at hi +grid
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
g2 5 3 value= {(pwr(v(2,3),ex)+pwrs(v(2,3),ex))/(rgi*(v(1,3)+120))} ; g1 curr
+ params: mu=160 ex=1.317 kg1=1350 kp=100 kvb=
https://www.turbosquid.com/Search/3D-Models/free/tubes
https://gist.github.com/chanmix51/6947361
Most Young Porn Actresses
Real Lesbian Hidden Cam
Free Hd Tube New Kino Videos
Top 3D Model Categories - turbosquid.com
LTSpice models for vacuum tubes · GitHub
3D Tubes Free Models | TurboSquid
www.turbosquid.com
Best value Models Tubes – Great deals on Models …
Tubes Models


Report Page