Tube Transport

Tube Transport




🔞 ALL INFORMATION CLICK HERE 👈🏻👈🏻👈🏻

































Tube Transport

Home News 4 Benefits of Pneumatic Tube Transport- 2022 Guide


by Victoria Boatright
February 2, 2021

by Victoria Boatright
February 2, 2021





7 Benefits of Using a CDN for Your Website






5 Benefits of Portable Ultrasound and its Benefit on the...






Benefits of Using Satellite Imagery in Modern Agriculture: Free Sources...



Many Benefits Of Learning Piano Online Vs. Traditional Method – 2022 Guide


Considerations When Planning Exterior Home Remodeling In 2022

@2021 - All Right Reserved. Designed and Developed by DemotiX website team
Ever observed the power of compressed air? If not, we can do you a favor. For instance, place something inside a tube that has dual openings. Now, blow some air from one end of the tube. The object will move with great speed and will go out from the other end of the tube. This is the phenomenon behind the Pneumatic tube transport.
This transport system has wide applications. But it has been widely used in hospitals, as it can send sensitive products quickly from one place. Furthermore, the products remain safe during their transport. You can learn more about the system and its installation. Or you can click here to go to wasecurity.com to get the best transport facility.
The pneumatic tube system works by placing the products in a tube, which goes to a safe place. As someone puts the product in the tube, there will be an air pressure to move the products . This pressure air will take the product to the receiving station. Thus, a quick and easy way to transport products from one end of the store to another.
For instance, you are working in a large departmental store that has multiple stories. The owner of the store needs to secure his money and prevent any sort of theft. Therefore, a piping system will connect all the cash points of the store to the receiver. The receiver or receiving point can be a locker with a numeric lock that only the owner knows. Thus, after every 2 or 4 hours, the cashiers will send all the money to that safe locker. They will only have to place the money in the pipe that gets its opening from a locked door. You can make a small cabinet with a lock that will secure the pipe opening. The cashier will open the door after the set intervals and will place the money in. As this transport system is safe and prevents any damage to the products, it has wide use in pharmacies and hospitals.
This transport system is the most secure, fast, and yet simple and reliable method of transporting objects around a building. Instead of making a person travel from the first floor to the top one, simply place the item in the tube. The air suction will move it to the top floor without any effort. Therefore, because of the ease of use that this system offers, it has several advantages.
Moving fragile products is the trickiest thing to do. Therefore, it is hard to take responsibility for such items, especially for mere workers. For example, taking blood samples and sending them to the top floor through a person is highly likely to cause problems. There is a chance that the blood samples might get mixed up. Or the transporter might get hit by a passerby and the blood sample fall down.
Therefore, sending such sensitive products to the right place is very important. Patients’ attendants are so much worried that they are likely to cause such accidents. Therefore, a suitable method to transfer such sensitive objects is through the pneumatic tube transport system.
The quickest method to transfer objects from one place to another is this pneumatic tube system. The speed of air is much faster. In addition to this, there won’t be any hindrance in the way. For example, medicine needs to be sent to the hospital’s top floor for a serious patient. What are the options that are available to the hospital? Sending the nurse or a doctor? That’s it?
What if the lift does not work? It will take a long time to travel 5 to 10 floors by stairs. Furthermore, the medicine won’t reach the patient on time. Hospital is a really sensitive place. Therefore, they need to have everything ready beforehand. No one knows what happens next.
That is why, to send medicines, test tubes, samples or any other thing that needs urgent delivery, pneumatic tube transport is the best solution. Instead of making a person move different floors, you can put the medicine in the tube. The air will push it to go to the designated place.
You cannot make the staff transfer things all day. If it is a place like a departmental store or hospital, no one is always free. Either you will have to hire some extra staff for this purpose or wait for someone. When someone seems free, you can ask him to transfer the object. But certain things need priority, and they cannot wait.
Therefore, the pneumatic tube transfer system significantly reduces the need for manual labor. You won’t have to wait for someone or ask someone to transfer something. You won’t even have to leave your place. Usually, the opening points of the tubes are placed around the desk. So if you are a cashier in a departmental store or receptionist in a hospital, you won’t be leaving your desk.
When it comes to money, who can you trust? Can someone even trust him/ herself? Everyone is greedy in this world. If not for money, some things are important to certain people. They are highly likely to steal them.
For example, someone wants to manipulate your test results and you won’t even know that. As you send your blood sample to the hospital, someone can actually change the sample on the way. On the other hand, when the staff uses pneumatic tube transport, there won’t be any such risk.
Moreover, if you are handling a departmental store, how can you check on every cashier? Someone might steal money while transferring it to the storage locker. Therefore, to prevent such risks, you can ask the cashiers to send the funds after regular intervals.
This site is owned and operated by Nebojsa Vujinovic.
Demotix.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.
Amazon, the Amazon logo, AmazonSupply and the AmazonSupply logo are trademarks of Amazon.com, Inc. or its affiliates.
@2021 - All Right Reserved. Designed and Developed by DemotiX website team


You are here:
Home page >
Transportation >
Pneumatic transport tubes

This site uses cookies. Unless you opt out, our partners may use them to collect, share, and use data to personalize advertising. You can opt in or out of cookies at any time. More info
by Chris Woodford . Last updated: April 16, 2021.
I f you enjoying reading the
Sherlock Holmes detective stories, you'll know there's every
chance you'll meet a deadly assassin looming on the next page, ready
to strike at a moment's notice with his poison-tipped blowpipe. These
age-old weapons are classic examples of pneumatic technology: they
use the power of compressed air—blowing hard on one end of a pipe
fires a missile at high speed from the other end. In the late-19th century, around the same time the Sherlock Holmes tales were first published, blowpipe technology
became very popular for sending messages and small objects down much
longer pipes linking remote parts of large buildings. In our modern
age of fiber-optics and the Internet , you might think this rather
quaint "pneumatic transportation" is a thing of the past—but
you'd be wrong. Thousands of hospitals, factories, banks,
department stores, and other places still rely on pneumatic tube
transport to move medicines, cash packets, and other small items with
speed, security, and efficiency. One drive-through McDonald's even
uses a system like this to deliver burgers to its customers! So how exactly do
pneumatic tubes work? Let's take a closer look!
Photo: Need to send cash quickly and securely to another part of your building? You could use a pneumatic transport canister like this. It's made from a tough plastic called polycarbonate, which protects whatever you pack inside. Once the tube is loaded, you screw a cap on the end and place it in the transport tube to be sucked or blown to its destination roughly 5–6 times faster
than a messenger could carry it.
Photo: Pneumatic tubes have been used at the US Library of Congress since the late 19th century to send requests between readers and the stores where archive materials are held. The system might seem archaic, but it's tried, tested, and efficient—and still used in parts of the Library to this day. Note the two metal doors opening up for incoming tubes (left) and outgoing tubes (right, and currently being loaded by the operator). You can also see two spare tubes standing at the bottom. Read more about the system in A Series of Tubes from the Library blog, December 16, 2011. Photo courtesy of US Library of Congress.
Pneumatic tube systems (also called PTT, airlift, air transport, Lamson tubes, air tubes, and pneumatic
transit systems) are amazingly simple—and best illustrated by example...
Suppose you run a large department store full of checkouts (cash desks) that are taking money from
customers all day long. To reduce the risk of theft, it's a good idea to
collect that money every so often and remove it to a place that's
more secure before you deposit it in the bank. You could have a
cashier walk around all the checkouts in turn, but that takes time
and it makes the cashier vulnerable to robbery. Also, some checkouts
will take money more often than others, so it's generally better if
the checkout operator dispatches money at regular intervals as it
suits them.
A common solution many stores employ is to have a pneumatic tube
system linking each checkout with the cashier's department, a strong
room often located on a different floor of the building. Every time
the checkout operator collects more than a certain amount of cash,
they dispatch it securely to the cashier's department using the
pneumatic tube.
Photo: Lamson tubes like this were used in the CIA's giant, 50km (30 mile)
pneumatic tube network between 1962 and 1989.
Photo courtesy of CIA published on Flickr .
For simplicity, let's assume we're linking one checkout with the cashier's
department. The checkout has a large metal box called the sending
station with a door that opens onto a tube. Some systems have doors
that lock with keys or open with numeric keypads and PIN numbers;
others are unsecured. The tube (a pipe made of something like PVC plastic or
a strong lightweight metal such as aluminum ) runs all the way to the
cashier's department, often only a short distance but sometimes up to 600m
(~2000ft) or so. At the cashier's department, the tube connects to a
more sophisticated box called the receiving station , which may also
have a lockable door. This is sometimes also called the powered
station, because it provides the air power that moves packages back
and forth. It's essentially the same as the sending station, but it
has a compressed air pump attached that can either suck air from the
tube or blow air into it according to which way down the tube
packages need to be sent. Often, the sending and receiving stations
have chimes, ringers, or flashing lights to signal when a package has
just been received.
Most of the time the receiving station will be collecting cash packages from the
checkouts so it will be set to receiving mode (also called vacuum
mode). This means the compressor will be working like a vacuum cleaner so
it sucks air along the tube from the sending station. If someone
wants to send cash from the sending station, they simply load it into
a sturdy cylindrical, plastic canister (only slightly smaller than
the tube and very snugly fitting), place it in the tube in the sending station, and close the
door. When properly loaded, it blocks and seals the tube. Now as the compressor sucks on
the tube, it creates a partial vacuum in front of the canister that
sucks it all the way along until it reaches the receiving station,
where it can be unloaded. Canisters can be sent in the opposite
direction simply by setting the compressor to blow air along the tube
in the opposite direction (behind a canister, pushing it along);
department stores often send small change back to checkouts that way.

Artwork: How a pneumatic transport system works: a tube links the sending and receiving stations. The air compressor pump at the receiving station can suck or blow air. When it sucks, it pulls canisters along the tube toward it; when it blows, it pushes the canisters in the opposite direction.

Just as a vacuum cleaner is limited by the suction power of its
electric motor , so pneumatic
transport tubes are limited in what they can carry, how quickly,
and how far. Typically, canisters are about 5–15cm (2–6 inches) in
diameter and 20–30cm (~8–12 inches) long, made of a toughened plastic
such as polycarbonate, and have rubbery bumpers at the ends to
provide a good air seal and prevent noise as they travel down the
tubes. They unscrew at one end to carry small items weighing up to
about 2kg (~5lbs) or so at speeds of up to 10m (33ft) per second.
That equates to about 36km/h or 22mph—or roughly 5–6 times faster than
a person can walk.
Most pneumatic tube systems are very simple networks linking one receiving station with a
number of sending stations, or vice-versa. However, much more
elaborate, computer -controlled systems are also commonplace, in which
many sending stations link to many receiving stations and packages
can route and transfer in all manner of complex ways; these are the
sorts of systems that hospitals use. A large pneumatic system
might have up to 500 sending and receiving stations, dozens of
transfer units where packages can be routed between senders and
receivers in complex ways, and dozens of compressor/blower units to
provide the pneumatic power.
Pneumatic tube systems are a fast, simple, secure, and reliable way of transporting
small objects relatively large distances across a building or (using
underground or overground pipes) between buildings on the same site.
They can move things up, down, or sideways and, because they're
pneumatic, provide a soft, air-cushioned ride for fragile items (many
systems use air-cushioned brakes or bumpers that bring arriving
canisters slowly to a rest at the receiving station). Since they
remove the need for a person to carry things, systems like this save
time and money and tend to pay for themselves quite quickly. They
also offer secure connections between different parts of a building,
reducing opportunities for theft and accidental damage in transit.

If they have a disadvantage, it's that the tubes that link stations ideally need to
be planned into a building's infrastructure when it's first designed
(perfectly possible for something like a new hospital or department
store); it's harder (though far from impossible) to install a complex system
with many sending and receiving terminals into an existing, older building.
Photo: Tubes, ancient and modern! This 1942 photo shows the large-scale transport tube system used to connect the main yard office of the Illinois Central Railroad with other offices nearby. Photo by Jack Delano, U.S. Farm Security Administration/Office of War Information, courtesy of Library of Congress, Prints & Photographs Division , FSA/OWI Collection, [LC-USW3-010495-D].
Systems like this are widely used in hospitals and department stores, so those are the
places to keep your eyes peeled if you're hoping to spot pneumatic
tubes in action. You're most likely to notice them near checkout desks,
especially when someone sends a bundle of money off to the cashier's department.
Look out for a box (with or without a key lock or numeric keypad)
with a tube coming out of the top and disappearing into the ceiling
up above. You're unlikely to use a system like this directly unless
you work in a bank, store, or hospital, although some pharmacies and
banks do use pneumatic tubes to deliver items securely to
self-service, electronic kiosks.
Think of tube transport and you generally think of cylinders shooting down round pipes, but
it's possible to send other-shaped containers (such as flat, flexible document wallets) down
flattened pneumatic "tubes" as well. Lamson patented a system like this for sending flexible envelopes back in 1930 and numerous other, similar
systems have been developed since then for transporting things like checks and banknotes. Typically,
the containers (made from fiber-board or plastic) can be securely sealed, but have extra hinged flaps on their outsides (a bit like pockets or wings) that catch in the air stream, allowing them to be blown effectively through the tube. One of the big advantages of systems like this is that bulky transport tube containers aren't needed, and (in places like shops where the transport of items is mostly in one direction), you don't have to keep returning a limited supply of empty containers to the stations where they came from. They can generally also be used in more confined spaces. The main drawback is the risk of valuable items getting stuck or damaged.
Looking to the future, Tesla electric car pioneer Elon Musk has proposed using a scaled-up version
of tube technology to transport people between cities at speeds of about 1100 km/h (700 mph).
Known as Hyperloop , the idea has certainly captured people's imagination, and regularly features in the tech press. Whether it will ever come to fruition remains to be seen; some recent predictions suggest it might not be around till 2040, at the earliest. If it sounds crazy, it's
worth remembering that numerous 19th-century engineers (including English engineer Isambard Kingdom Brunel) tried to build
atmospheric railways , in which
the passenger cars are pushed or pulled by differences in air pressure. None succeeded— steam engines proved cheaper, more flexible, and more reliable—but the idea was reborn in the late 20th century, and a handful of successful, small-scale atmospheric railroads do now operate around the world.
And if you think Elon Musk is a genius for coming up with the idea, don't forget that we've been here before. Two centuries ago, way back in 1829, artist William Heath drew this very similar idea as part of an elaborate joke called "The March of Intellect." It's a vacuum transport tube speeding people on little carriages from London, England to Bengal, India!

Artwork: William Heath's early version of Hyperloop.
Artwork courtesy of Wikimedia Commons
published under a Creative Commons (CC BY 4.0) licence.

There are lots of technical patents covering all kinds of variants on pneumatic tube transport; here's just a small selection.
Please do NOT copy our articles onto blogs and other websites
Articles from this website are registered at the US Copyright Office. Copying or otherwise using registered works without permission, removing this or other copyright notice
Hentai Pregnant Furry
College Rules Xxx Full
Erotica 60

Report Page