The Cannabis Breeder's Bible:  ГЛАВА 2 - ОСНОВЫ СЕЛЕКЦИИ [II]

The Cannabis Breeder's Bible:  ГЛАВА 2 - ОСНОВЫ СЕЛЕКЦИИ [II]

The Cannabis Breeder's Bible - Greg Green

ГЛАВА 2: ОСНОВЫ СЕЛЕКЦИИ Ч.2

Закон Харди-Вайнберга, часть 2

Может возникнуть вопрос: «Как мне отбирать растение по нескольким признакам, например вкусу, запаху, выживаемости и цвету?» Чтобы ответить на этот вопрос, вам понадобится узнать больше о законе генетического равновесия Харди-Вайнберга. 

Если вы скрещиваете два растения гетерозиготных (Bb) по одному признаку, то каким будет потомство? Решётка Пеннета может помочь нам определить фенотип, генотип и частоту проявления генов потомства. 


*Обратите особое внимание на это потомство и сравните его с родителями.

В этой группе в потомстве мы получим следующий результат:

1 BB – 25% потомства будет гомозиготным по доминантной аллели (BB)

2 Bb – 50% будет гетерозиготным, как родители (Bb)

1 bb – 25% будет гомозиготным по рецессивной аллели (bb)

В отличие от родителей (Bb и Bb), 25% потомства проявит рецессивный фенотип bb. Таким образом, оба родителя с золотистыми шишками, но гетерозиготные (Bb) по этому признаку, будут давать часть потомства с серебристыми шишками, несмотря на тот факт, что оба имеют фенотип с золотистыми шишками. 

Понимание того, как рецессивные и доминантные признаки передаются в фенотипе и генотипе, поможет вам предсказать результаты тестового скрещивания и закрепить в будущих поколениях те признаки, ради которых и ведётся селекция. 

Когда вы выводите сорт, откуда вы знаете что признаки, которые вы хотите закрепить сохранятся в процессе селекции? Вот тут на помощь и приходит тестовое скрещивание. Если вы делаете семена из сорта, который приобрели в банке семян, как вы можете быть уверены, что в потомстве проявятся понравившиеся вам характеристики? Если признак, который вы хотите закрепить, гомозиготный доминантный у обоих родителей, то вы никаким образом не сможете получить рецессивный по этому признаку генотип у потомства, как и показано в следующей решётке Пеннета

Появление рецессивного признака тут невозможно. И если оба родителя содержат рецессивный признак, они не смогут произвести доминантный признак. 

Для тщательного отбора признака вам необходимо знать, гомозиготный доминантный, гетерозиготный или гомозиготный рецессивный этот признак, чтобы вы могли предугадывать результаты до их появления. 

Мендель и эксперименты с горошком

Грегор Мендель (1822-1884) был австрийским монахом, который открыл основные правила наследственности, анализируя результаты селекции своих растений. Он заметил, что два типа растения гороха давали очень похожие результаты, когда скрещивались внутри своего генофонда, а не друг с другом. Признаки, которые он отметил, были: 

Он отметил, что потомство полностью несёт одинаковые признаки родителей, если они скрещиваются внутри своей популяции или генофонда. Так как внутри каждого сорта вариаций не было, Мендель предположил, что оба сорта гомозиготны по всем признакам. Из-за того, что оба горошка принадлежат одному виду, он предположил, что либо гладкие, либо морщинистые горошины это рецессивный признак. Используя обозначения для генотипа SS для гладких и ss для морщинистых горошин, он знал, что они не могли быть Ss, потому что ни один генотип не проявлял признаков фенотипа другого сорта, когда скрещивался внутри своей популяции. 

Давайте проиллюстрируем это, используя две простых решётки Пеннета, где SS это гладкий горошек #1, а ss это морщинистый горошек #2.

Гибрид первого скрещивания (поколение F1)

Мендель сделал первое гибридное скрещивание между двумя сортами и в результате все семена получились гладкими, как видно из следующей решётки. 

До этого самого момента Мендель не знал, какой признак был рецессивным, а какой доминантным. Так как все горошины были гладкими, теперь он с уверенностью знал, что горошек #1 содержит доминантный генотип гладких горошин, а горошек #2 содержит рецессивный генотип морщинистых горошин. Это означало, что в будущих тестовых скрещиваниях с другими сортами горошка, он мог определить гомозиготный или гетерозиготный у них признак, потому что он идентифицировал рецессивный признак (ss). 


Гибрид второго скрещивания (Поколение F2)

Потомство в первом скрещивании F1 всё было Ss. Когда Мендель скрестил это потомство, он получил следующий результат: 

Мендель скрестил два гетерозиготных по признаку структуры оболочки растения горошка (Ss). В этой группе результаты в потомстве были следующими:

25% потомства были гомозиготны по доминантной аллели (SS)

50% были гетерозиготны, как их родители (Ss)

25% были гомозиготны по рецессивной аллели (ss) 

В его первом скрещивании с целью получения гибрида, Мендель закончил без проявившихся рецессивных признаков формы семян. Но когда он скрестил потомство, из-за того, что оно было гетерозиготно по этому признаку, он получил несколько гомозиготных рецессивных растений, несколько гомозиготных доминантных растений, и несколько таких же, как родители, гетерозиготных. Выражаясь в терминологии селекции, его первое скрещивание растений называется гибрид F1 или поколение F1. Скрещивание этого потомства называется гибрид F2 или поколение F2. 

Теперь, когда он имел генотипы SS, ss и Ss для работы, вы можете используя решётки Пеннета определить, как будут выглядеть последующие поколения. Сравните ваши результаты с тем, что вы узнали о соотношениях и вы увидите, как одно сочетается с другим.

Кое-что ещё о частоте проявления генов

Взгляните на скрещивание между двумя гетерозиготными родителями, приведённое ниже. Если два гетерозиготных родителя скрещиваются, частота сочетания генов будет 50% для каждого. Помните, что генотип может быть SS, ss или Ss, но аллели только S или s

Мы можем видеть S S S S (4 x S) и s s s s (4 x s). Это значит, что частота аллели S 50% и частота аллели s тоже 50%. Посмотрим, сможете ли вы вычислить частоту аллелей S и s в следующих скрещиваниях, для себя. 

Помните, что закон Харди-Вайнберга гласит, что сумма всех аллелей в популяции должна быть равной 100% но отдельные аллели могут проявляться с различной частотой. Есть пять ситуаций, когда может случиться нарушение равновесия. Они обсуждаются ниже. 

1. Мутация. Мутация это изменения в генетическом материале, которые могут дать начало наследуемым различиям в потомстве. Подверженность радиации может стать причиной мутации, для примера. В этом случае результатом будет мутация генетического кода растения, которая будет передаваться потомству. Эффект эквивалентен внедрению чужеродных генов в популяцию. Есть и другие факторы, которые могут стать причиной мутаций. Иногда мутации это результат ошибки восстановления ДНК на клеточном уровне. Всё, что становится причиной нарушения восстановления ДНК, может привести к мутации. 

2. Миграция генов. Со временем популяция достигнет равновесия, которое будет соблюдаться до тех пор, пока другой генетический материал не попадёт в неё. Явление, когда генетический материал вносится из другой популяции, называется интрогрессия. Во время этого процесса в оригинальной популяции может возникнуть множество новых признаков, приводящих к смещению равновесия. 

3. Поток генов. Если популяция маленькая, равновесие нарушается очень легко, потому что небольшие изменения в количестве аллелей приводят к значительным изменениям в частоте проявления генов. Иногда даже случается, что один конкретный признак может исчезнуть в популяции и частота аллелей может сместиться к более низким или высоким значениям. Поток генов это фактически эволюционная сила, которая видоизменяет популяцию и демонстрирует, что закон равновесия Харди-Вайнберга не может соблюдаться в точности на протяжении длительного времени. 

4. Неслучайное скрещивание. Внешние или внутренние факторы могут привести популяцию к точке, когда скрещивание перестаёт быть случайным. Например, если некоторые цветки женских растений развиваются раньше чем остальные, они смогут опылиться раньше, чем остальные. Если некоторые из мужских растений смогут выбросить пыльцу раньше остальных, скрещивание между ними и женскими растениями произойдёт уже не случайно и в случае, если женские растения окажутся поздноцветущими, в итоге получится участок не опылённых растений, сенсимильи. Это означает, что поздноцветущие девочки не смогут внести свой вклад в генофонд будущих поколений. Равновесие не будет соблюдено.

5. Естественный отбор. В отношении естественного отбора, среда и другие факторы могут стать причиной производства растением большего или меньшего потомства. Некоторые растения могут иметь признаки, которые делают их менее устойчивыми к болезням например, а значит, когда популяция подвергнется заболеванию, небольшая часть её потомства выживет для передачи генетического материала, другие могут производить больше семян или демонстрировать больший иммунитет, результатом которого является увеличение числа выжившего потомства, привносящего генетический материал в популяцию. 

Как по настоящему селекционировать сорт

Выведение сортов конопли это, по сути, манипулирование частотой генов. Большинство сортов, продаваемых завоевавшими репутацию селекционерами посредством банков семян, очень похожи в произрастании. Это означает, что заводчик попытался закрепить определённые гены так, чтобы генотип этих признаков был гомозиготным.

Представьте, что у селекционера есть два сорта: Master Kush и Silver Haze. Селекционер выписывает несколько признаков которые ему особенно понравились (отмеченные *). 


Это означает, что он хочет создать растение, которое будет гомозиготным по этим признакам, и назвать его, типа Silver Kush.

Вся необходимая генетика содержится в генофонде Master Kush и Silver Haze. Селекционер может просто смешать обе популяции и надеяться на лучшее, или попытаться сэкономить время, место и деньги вычислив генотип для каждого признака и используя результаты, чтобы создать генетически чистую линию, IBL

Первое, что должен сделать селекционер, это понять генотип каждого признака, которым будет обладать идеальный сорт «Silver Kush». Для этого необходимо понять генотип этого признака у каждого из родителей. Так как селекционер пытается изолировать четыре признака, и 4 x 2 = 8, восемь аллелей составляют генотип для выражения этого генотипа и должны быть ему известны. 

Давайте возьмём светло-зелёный лист Silver Haze для начала. Селекционер вырастит так много растений Silver Haze, как возможно, отмечая, проявит ли хоть часть растений другой цвет листа. Если нет, он может сделать вывод, что этот признак либо гомозиготный доминантный (SS), либо гомозиготный рецессивный (ss). Если в популяции проявляется другой цвет листа, селекционер может сделать вывод что признак гетерозиготный (Ss) и может быть закреплён путём выборочного скрещивания. Давайте взглянем на родителей поближе на секунду. 

Если оба родителя были бы SS, вариаций по этому признаку в популяции бы не было. Он уже был бы закреплён и всегда точно передавался по наследству без искажений. 

С одним SS и одним ss родителем, у селекционера получилась бы 50:50 популяция, одна группа была бы гомозиготной, а вторая гетерозиготной (Ss). 

Если бы оба родителя были Ss, у селекционера были бы 25% SS, 50% Ss и 25% ss генотипы. Даже хотя частота проявления генов может быть предсказана, селекционер не может с точностью знать, пока не проведёт тестовое скрещивание, доминантным или рецессивным является признак бледно-зелёные листья. Совершив несколько тестовых скрещиваний, селекционер может растение, которое имеет SS или ss генотип и уничтожить все растения с генотипом Ss. Как только генотип изолирован и популяция способна производить растения только с таким генотипом, началась серьёзная программа селекции. Помните, что успех любой программы селекции конопли зависит от аккуратного ведения записей о родительских растениях и их потомстве, чтобы можно было контролировать частоту проявления генов. 

Скажем, вы основали компанию по продаже семян с названием ТОЛЬКО БЛЕДНОЗЕЛЁНЫЕ ЛИСТЬЯ, ВСЁ ОСТАЛЬНОЕ КАК ПОПАЛО LTD. Производимые вами семена все прорастают исключительно с бледно-зелёными листьями и клиенты счастливы. В реальности, клиенты хотят в точности то растение, которое победило в Cannabis Cup в прошлом году или хотя бы что-то очень похожее. И так, в реальности вам придётся изолировать все «призовые» признаки до того как покупатель будет удовлетворён тем, что он покупает

Количество тестов, которое понадобится для узнавания любого генотипа не одинаково. Вам может понадобиться множество селекций растений, чтобы достичь цели, но всё же она достижима. Следующий шаг в программе селекции это закрепление признаков в той же популяции. Это трудная задача. 

Когда вы работаете над закреплением признаков, вы не должны утерять другие необходимые признаки в популяции. Так же возможно случайно закрепить нежелательные признаки, или утерять желательные, если вы не аккуратны. Если это случится, вам придётся работать намного больше, исследуя генотип посредством множественных тестовых скрещиваний и закрепляя желанные признаки. В итоге, путём тщательного отбора и ведения записей, вы закончите свой труд с растением, генетически однородным по всем признакам, которые вы хотите. В сущности, у вас будет собственная генетическая карта собственного растения конопли. 

Успешные бридеры не пытаются спланировать всё разом. Напротив, они концентрируются на основных проявлениях фенотипа, которые делают их растение уникальным и качественным. Закрепив четыре или пять признаков они могут продолжать движение. Генетически однородные сорта создаются медленно, шаг за шагом. Создание таких известных чистых сортов Skunk#l и Afghani#l заняло около 20 лет. Если кто-то утверждает, что создал генетически однородный сорт за 1 или 2 года, можете быть уверены, что он и начинал с генетически однородных, гомозиготных сортов. 

В итоге вы получите ваш сорт Silver Kush, но лишь с четырьмя генотипами, которые вы решите сохранить. У вас могут сохраняться различия между растениями в группе. У некоторых могут быть фиолетовые стебли, тогда как у других зелёные. Некоторые могут быть очень сильными, а другие нет. Непрерывным отбором необходимых признаков вы теоретически можете привести сорт к генетически однородному состоянию по каждому признаку. Однако, это чрезвычайно маловероятно, чтобы кто-то когда-то создал сорт на 100% генетически однородный по каждому отдельному признаку. Такой сорт был бы назван идеально чистой селекцией. Если вам удастся закрепить 90% фенотипа растения в популяции, вы вполне можете утверждать, что ваше растение генетически однородно. 

Ключевая идея в основе чистой селекции это найти то, что называется растением-донором. Растение-донор содержит признаки чистой селекции (гомозиготные, предпочтительно доминантные). Чем больше закреплённых признаков гомозиготные доминантные, тем лучше ваши шансы на создание генетически чистого сорта, что не означает, что генетика будет в точности передаваться по каждому признаку, но значит, что большинство растений очень схожи по фенотипу. 

Некоторые дополнительные продвинутые техники селекции, которые помогут вам избавится от признака или развить его в популяции, рассмотрены ниже. Использование этих техник не позволит создать генетически однородное по выбранному признаку растение, но обязательно поможет сделать популяцию более однородной по этому признаку. 

Продвинутые техники селекции

Простое обратное скрещивание

Наше первое скрещивание растений Master Kush и Silver Haze известно как скрещивание гибридов первого поколения F1. Давайте считать, что оба признака цвета гомозиготны: у Silver Haze бледно-зелёный, у Master Kush тёмно-зелёный. У кого генотип SS а у кого ss? Мы не узнаем, пока не увидим потомство. 

Это потомство F1 привело к появлению гибридных семечек. Так как S доминирует над s, Мы узнаем, какой цвет является доминантным и от какого родителя он передаётся. В этом примере результатом явился бледно-зелёный цвет. Таким образом, бледно-зелёный цвет доминирует над тёмно-зелёным. 

S = Silver Haze бледно-зелёный лист, доминантный признак

s = Master Kush тёмно-зелёный лист, рецессивный признак. 

Мы так же знаем, что из-за того, что в популяции не было вариаций, оба родителя были гомозиготны по этому признаку. Однако, всё потомство гетерозиготно. Вот тут то мы и вмешаемся в генофонд этой популяции. Клонировав растение SS, мы используем эти клоны для скрещивания с потомством Ss. Это известно как обратное скрещивание, бэккросс. Очевидно, что если наш родитель девочка, то нам необходимо использовать мальчиков из группы Ss для обратного скрещивания, и наоборот. 

Теперь в потомстве нашего первого обратного скрещивания окажется 50% гомозиготных (SS) и 50% гетерозиготных (Ss) по этому признаку особей. Всё это потомство будет светлозелёного цвета. Если мы не будем делать бэккросс, а просто используем гетерозиготное потомство для разведения, мы получим 25% гомозиготных доминантных (SS), 50% гетерозиготных (Ss) и 25% гомозиготных рецессивных (ss) растений, как показано ниже. 

Бэккросс существенно помогает контролировать частоту проявления отдельного признака в потомстве. При скрещивании гибридов в потомстве часть растений получается с тёмно-зелёными листьями. При обратном скрещивании нет. 

Обратное скрещивание F2, приведённое выше, это пример простого бэккросса. Давайте посмотрим, что произойдёт когда мы сделаем наш второй бэккросс (F3) используя то же родительское растение, сохранённое посредством клонов. Наш второй бэккросс известен как стабилизация признака. Так как мы имеем дело лишь с двумя типами потомства, SS и Ss, мы либо повторим результаты первого бэккросса…

Или успешно закрепим признак, как показано далее:

Во втором бэккроccе F3 с гомозиготным растением, всё потомство гомозиготное доминантное (SS) и таким образом является генетически однородным по этому признаку. Это поколение является результатом стабилизации и не сможет произвести признак ss потому что признак SS отобран в чистом виде и стабилизирован. Бэккросс F3 с гетерозиготным растением даст часть потомства с генотипом Ss. Если мы скрестим потомство Ss и Ss, то сможем произвести признак ss. Эта черта будет не стабильна. 

Как создать материнское растение

Самый лучший способ создать материнское растение для клонирования это вырастить большую популяцию растений одного сорта. Если сорт является генетически однородным, вам следует найти растения, не проявляющие значительных различий. Найти материнское растение для клонирования может быть трудной задачей для чистого сорта, потому что чистые сорта созданы для обеспечения популяции растений из семечек из второго бэккросса F3 с гомозиготным генотипом, и все похожи на материнское растение, которое понравилось селекционеру, и которым он захотел с вами поделиться.

Самый лучший способ создать материнское растение для клонирования это выбрать его из большой популяции гибридов первого поколения F1. Если вы не нашли её в популяции F1 то позвольте случиться случайному опылению и посмотрите, не найдётся ли она в популяции F2. Если вы и там не нашли мамку для клонирования, то снова вырастите большую популяцию или выберите других родителей для создания новой популяции гибридов F1. 

Материнское растение хорошо ровно настолько, насколько хороша окружающая его среда. Среда влияет на то, как генотип отражается в фенотипе. Хотя выращиваемые в закрытом помещении растения могут расти в открытом грунте, внешнее выражение генотипа может измениться из-за смены условий произрастания. Вот почему селекционеры настоятельно советуют придерживаться рекомендованных условий. 

Самоопыление 

Самоопыление это способность растения производить семена без помощи другого растения и относится к растениям-гермафродитам, которые могут опылять себя. У гермафродитов имеются и женские и мужские соцветия. Обычно это означает, что растение-гермафродит однодомное. Большинство растений двудомны и несут женские и мужские соцветия на разных особях. 

Однодомные сорта конопли будут всегда показывать оба пола независимо от условий среды. В оптимальных условиях выращивания однодомная конопля будет производить и мужские и женские соцветия на одном растении. Двудомная конопля в оптимальных условиях будет производить мужские и женские соцветия на разных растениях. 

Стрессовые условия выращивания могут стать причиной того, что некоторые двудомные сорта конопли произведут и мужские и женские соцветия на одном растении. Манипуляции с фотопериодом во время цветения это простой способ сделать двудомные растения гермафродитами. Не все двудомные сорта конопли могут огермиться. Двудомная конопля должна иметь генетические предпосылки чтобы стать гермафродитом в неблагоприятных условиях для производства женских и мужских соцветий на одном растении. 

Если вы обнаружите гермафродита среди двудомных растений, можете отделить его от остальных и позволить случиться самоопылению. Если пыльца способна оплодотворить это растение, гермафродит произведёт семена. Самоопылённое растение произведёт семена, которые:

1. Все будут женского пола

2. Все будут гермафродитами

3. Будут мальчиками, девочками и гермафродитами, так как среда так же влияет на окончательное выражение пола самоопылённых растений

4. Продемонстрируют ограниченные отличия от оригинального самоопылённого растения 

Селекционеры должны знать, что практически невозможно из гермафродитов создать мужские растения, хотя окружающая среда может повлиять на их появление. Гермафродиты обычно производят либо феминизированные семечки, либо гермафродитов. Феминизированныесемена часто несут признаки гермафродитов. Самоопыление стало популярным среди тех, кто хотел вывести феминизированные семечки. К сожалению, феминизированные семечки не многое решают для генотипа конопли, потому что появление гермафродитов препятствует выращиванию сенсимильи, шишек без семян

Знающие селекционеры стараются держаться подальше от производства феминизированных семян. Они должны использоваться для производства шишек, а не селекции. Создание семян от феминизированных растений рекомендуется только для персонального использования, а не распространения. 

Записки по самоопылению от Вика Хая

[Эти записи были сделаны во время он-лайн интервью и предоставлены Виком Хаем, селекционером BCGA.] 

100% женских семян

Опубликовано пользователем Silicon Magician 13 февраля 1999 at 05:17:41. Как некоторые из вас знают, я регулярно появляюсь в чате и провожу там много времени. Я получил огромное удовольствие от разговора с Mr. XX в течении многих часов в последние несколько ночей и неплохо узнал его через чат и письма. Он доверил мне и нескольким другим людям свой секрет получения 100% женских семян.

Mr. XX отличный парень, очень забавный и поговорить с ним всегда приятно. Он не очень хорошо знает английский, но его остроумие понятно даже через недостатки знания языка и он настоящий мятежник. Он истинный любитель конопли и чувствует, что все должны заразиться этим чувством. Он просто хочет распространить своё знание на сообщество любителей конопли, а так как он провёл 15 лет исследуя её, я поговорил с ним стараясь поглубже вникнуть в суть предмета. 

Он подвергал стрессу целые сотни растений, используя сбои в фотопериоде. Он просто включал свет 12\12 в течении 10 дней. Затем переключал его в режим 24\0, затем снова 12\12 на несколько дней, затем ещё на день 24 часа, затем снова 12\12 на несколько недель. Если он делал это и гермафродитов не появлялось, значит он обнаруживал 100% ХХ девочек не способных огермиться. Он утверждал, что ваш шанс найти 100% ХХ девочку сильно повышается при использовании генотипа Indica. Он так же рассказал мне, что чем больше Афганской или Непальской генетики в растениях, тем больше шанс найти среди них абсолютную ХХ девочку. Его собственные слова: «Где природа изначально стала домом для травы?» Я пытался добиться у него точное процентное соотношение, но он никогда не уточнял, сколько растений из группы обычно 100% ХХ девочки. Он утверждал, что их множество в каждом сорте, и больше ничего не говорил на этот счёт. Может потребоваться много времени и множество растений, чтобы найти 100% девочку

Затем он использовал гибберлиновую кислоту, смешанную в пропорции 2 мл кислоты на 300 мл воды и 2 капли гидроксида натрия чтобы расплавить кислоту. Затем вносил как обычно и получал мужские соцветия. Он получил 4 поколения без снижения выживаемости, генетических недостатков и гермафродитов. Он утверждает, что растения точные генетические клоны друг друга, абсолютные сёстры. Просто они клонированы через семечку, а не путём нормального клонирования. 

Опубликовано пользователем Silicon Magician 13 февраля 1999 at 05:17:41 Mr. XX так же говорит, что для растящего в домашних условиях найти ХХ девочку так же просто. Это очень продолжительный, но результативный процесс. Он советует сосредоточить усилия на одном сорте. Mr. XX использовал Skunk#l x Haze x Hawaiian Indica. Он советует отделить эти растения от основной популяции и подвергнуть стрессам. Необходимо повторять это с каждым новым посевом семян этого сорта, пока не обнаружится 100% ХХ девочка. Хотя это и затратно по времени, но всё же не невозможно. 

Заключительные мысли о селекции

Результатами экспериментов становятся новые гибриды. Стабилизация гибридов ведёт к появлению новых сортов. Гораздо лучше создать один великолепный стабильный сорт, чем несколько средних и не стабильных. Селекция это длительное предприятие. Множество селекционеров прекращают свои занятия всего через несколько лет из-за недостатка времени, места и денег. Хотя они и могут узнать кое-что о селекции за это короткое время, но у них не будет возможности использовать эти знания на практике. Если вы хотите селекционироватьконоплю, будьте готовы к тому, что вам придётся вырастить немало растений до получения первых результатов

Вся суть селекции в том, что необходимые признаки стараются закрепить. Не бойтесь признавать, что вы так и не вывели ничего ценного. Некоторые из лучших селекционеров прошли через дюжины различных популяций перед обнаружением растения, отличающегося от остальных. 

Есть множество причин, чтобы вывести свой собственный сорт конопли. Попытайтесь найти оригинальную идею для получения собственного сорта. Оригинальные идеи это то, что всегда работает наилучшим образом. 

Начало главы - The Cannabis Breeder's Bible:  ГЛАВА 2: ОСНОВЫ СЕЛЕКЦИИ [I]

Cодержание.

Предыдущая глава.

Следующая глава.


Report Page