Тепло и массообмен в РЭА с перфорированным корпусом. Реферат. Радиоэлектроника.

Тепло и массообмен в РЭА с перфорированным корпусом. Реферат. Радиоэлектроника.




🛑 👉🏻👉🏻👉🏻 ИНФОРМАЦИЯ ДОСТУПНА ЗДЕСЬ ЖМИТЕ 👈🏻👈🏻👈🏻



























































Вы можете узнать стоимость помощи в написании студенческой работы.


Помощь в написании работы, которую точно примут!

Похожие работы на - Тепло и массообмен в РЭА с перфорированным корпусом

Скачать Скачать документ
Информация о работе Информация о работе

Нужна качественная работа без плагиата?

Не нашел материал для своей работы?


Поможем написать качественную работу Без плагиата!

Введение .................................................…………………………
1. Анализ исходных данных .................................. ……………..
2. Расчет тепловых режимов аппарата ......................…………..
2.1. Вычисление геометрических параметров ................………
2.2. Определение объемного и массового расхода воздуха ...…
2.3. Проводимость между воздухом внутри аппарата и окружающей средой .................................………………..
2.4. Определение тепловых коэффициентов ..................……….
2.5. Определение перегревов и температур нагретой зоны и корпуса аппарата……………………………………………
Список используемых источников
..........................……………..
Большинство радиотехнических устройств, потребляя от
источников питания мощность, измеряемую десятками, а иногда и сотнями ватт, отдают полезной нагрузке от десятых долей до единиц ватт. Остальная электрическая энергия, подводимая к аппарату, превращаясь в тепловую, выделяется внутри аппарата. Температура нагрева аппарата оказывается выше температуры окружающей среды, в результате чего происходит процесс отдачи теплоты в окружающее пространство. Этот процесс идет тем интенсивнее, чем больше разность температур аппарата и окружающей среды.
Специалисты в области создания новых радиоэлектронных аппаратов знают, что расчеты теплового режима аппаратов столь же необходимы, как и расчеты, связанные с функциональным назначением их.
Интуитивные методы проектирования РЭС и в частности реализация нормального теплового режима складывались годами. Такой подход в настоящее время оказывается не в состоянии обеспечить выбор в исключительно сжатые сроки безошибочных, близких к оптимальным решений.
Известно, что надежность элементов радиоэлектронной аппаратуры сильно
зависит от температуры окружающей среды. Для каждого типа элемента в
технических условиях указывается предельная температура, при превышении
которой элемент нельзя эксплуатировать. Поэтому одна из важнейших задач
конструктора радиоэлектронной аппаратуры состоит в том, чтобы обеспечить
правильные тепловые режимы для каждого элемента.
Целью данной курсовой работы является получение навыков теплового расчета на примере аппарата с перфорированным корпусом.
Дан аппарат с перфорированным корпусом. Размеры корпуса: L1 = 500 мм;
L2 = 300 мм; L3 = 490 мм. Размеры шасси: l1 = 480 мм; l2 = 200 мм; h = 120
мм. Перфорационные отверстия расположены по бокам корпуса по 12 с каждой
стороны. Перфорационное отверстие показано на рисунке:
Рисунок 1. Перфорационное отверстие
Размеры отверстия: высота 10 мм, длина ( без полукругов ) 45 мм.
Температура окружающей среды tc = 26 оС. Мощность источников теплоты в аппарате Ф = 100 Вт. Внутренние поверхности аппарата покрыты эмалевой краской, коэффициент заполнения Кз = 32%.
2. РАСЧЕТ ТЕПЛОВЫХ РЕЖИМОВ АППАРАТА
2.1. Вычисление геометрических параметров
2.1.1. Среднее расстояние между отверстиями для подвода-отвода воздуха.
Используя исходные данные, получим: hср = 100 + 150 + 100/3 ~ 117 мм = 0,117 м.
2.1.2. Суммарная площадь перфорационных отверстий.
Используя исходные данные находим площадь одного перфорационного отверстия:
Ап = 45(10 + pR2 = 450 + 3,14(52 = 528,5 мм2 ( 5,3(10-4 м2.
Используя исходные данные, определяем:
Авх = Авых = 12(5,3(10-4 = 6,36(10-3 м2.
2.1.3. Площадь поверхности корпуса.
Подставляя известные величины в формулу (1), получим
Ак = 2(0,5(0,49 + 0,3(0,49 + 0,5(0,3) = 1,08 м2.
2.1.4. Площадь поверхности омываемых воздухом деталей и шасси
Подставив известные величины в (2), имеем
Ав = 2(0,48(0,12 + 0,2(0,12 + 0,48(0,2) = 0,36 м2.
2.1.5. Площадь поперечного сечения порожнего аппарата, свободная для прохода воздуха:
Используя исходные данные, из (3) получим:
Аап = 0,5(0,49 - 0,48(0,12 = 0,19 м2.
2.2. Определение объемного и массового расхода воздуха
Выделяемая деталями РЭС тепловая энергия передается конвекцией
воздуху, омывающему их поверхности, а излучением - внутренней
поверхности корпуса. В результате нагревания воздуха его плотность
уменьшается по сравнению с плотностью воздуха вне аппарата,
появляется разность давлений и воздух через верхние отверстия или жалюзи в корпусе выходит из аппарата, а на его место поступает холодный воздух
через нижние отверстия в корпусе. В установившемся режиме перепад
давлений, вызванный самотягой, уравновешивается гидравлическими потерями
на всех участках РЭС.
2.2.1. Определим среднюю площадь поперечного сечения аппарата,
свободную для прохода воздуха: Аср = Аап(1 - Кз); (4)
На основании исходных данных и данных, полученных в результате
вычисления, из формулы (4) следует, что
2.2.2. Определим гидравлическое сопротивление.
Для типичных РЭС, среднеобъемная температура воздуха которых t ~ 40 oC, а температура среды ~ 24 оС, была проведена оценка гидравлических сопротивлений [1] и получена приближенная формула:
Подставляя в формулу (5) полученные в результате расчета по п.2.1 и п.2.2.1 данные, получим:
Массовый расход воздуха определим по приближенной формуле (6), полученной в результате экспериментальных данных [1]:
Подставив известные величины, получим:
G = 1,36( 0,117/6,677104 = 1,8(10-3 кг/с.
Объемный расход воздуха найдем по формуле (7):
где r = 1,28 кг/м2 определен для t = 40 oC из таблицы А3 [1].
Таким образом : GV = 1,8(10-3/1,28 = 1,41(10-3 м3/с = 1,41 л/с.
2.3. Проводимость между воздухом внутри аппарата и окружающей средой
в формулу (8) полученный в п.2.2.3 массовый расход воздуха, получим:
Подставляя получаем : W = 103(1,8(10-3 = 1,8 Вт/К.
2.4. Определение тепловых коэффициентов
Для определения температур в аппарате со свободной вентиляцией следует использовать уравнения (9):
Параметры А1, А3, F1, F3 имеют следующую структуру:
Параметры B и D, входящие в формулы (10), можно определить так:
Анализ экспериментальных данных [1] показал, что при свободной вентиляции РЭС значения коэффициентов конвективной теплоотдачи между зоной и воздухом, корпусом и воздухом внутри аппарата примерно равны a12к = a23к = 6 Вт/(м2(К), тогда
(12к = 6А1, (23к = 6А3, а (3с = 9А3. Подставляя в (10) приближенные значения проводимостей, получим уравнения (13):
В нашем случае А1 = Ав; А3 = Ак. Подставляя известные величины в уравнения (13), получим:
2.5. Определение перегревов и температур нагретой зоны и корпуса аппарата
2.5.1. Средний поверхностный перегрев нагретой зоны Определим по формуле (14): q1 = F1Ф; (14)
Подставляя известные величины, получим q1 = 0,137100 = 13 К.
2.5.2. Средний поверхностный перегрев корпуса аппарата Определим по формуле (15): q3 = F3Ф; (15)
Подставляя известные величины, получим
2.5.3. Средняя температура нагретой зоны
Определим по формуле (16): t1 = tc + q1; (16)
Подставив известные величины в (16), получим t1 = 26 + 13 = 39 оС.
2.5.4. Средняя температура корпуса аппарата Определим по формуле (17): t3 = tc + q3; (17)
Подставив известные величины в (17), получим t3 = 26 + 4 = 30 оС.
На основании данных, полученных в п.2.5, строим график тепловых характеристик корпуса и нагретой зоны аппарата.
В данной курсовой работе был проведен расчет тепловых режимов
аппарата с перфорированным корпусом для получения практических навыков
тепловых расчетов радиоэлектронных устройств, так как для обеспечения
стабильной и безотказной работы в течении всего срока эксплуатации любого
радиоэлектронного устройства требуется правильно обеспечить тепловой режим
работы электронных компонентов данного аппарата.
В результате расчета были определены:
- средний поверхностный перегрев нагретой зоны;
- средний поверхностный перегрев корпуса аппарата;
- средняя температура нагретой зоны;
- средняя температура корпуса аппарата;
- массовый расход воздуха через аппарат;
1. Дульнев Г.Н. Тепло- и массообмен в радиоэлектронной аппаратуре. -
2. Фрумкин Г.Д. Расчет и конструирование радиоаппаратуры. -
3. Гелль П.П., Иванов-Есипович Н.К. Конструирование и микроминиатюризация радиоэлектронной аппаратуры. - Л.:
4. Стандарт предприятия. Проекты (работы) дипломные и курсовые.
Правила оформления. - Тамбов: ТГТУ, 1997 г.


Похожие работы на - Тепло и массообмен в РЭА с перфорированным корпусом Реферат. Радиоэлектроника.
Дневник По Практике Фармацевта В Аптеке
Реферат: Girls And Boys Essay Research Paper Girls
Химия 11 Практическая Работа 2
Реферат: Same Difference Essay Research Paper 1 Considering
Реферат На Тему Гибель Царской Семьи
Реферат На Тему Динамика Развития Смысловой Стороны Речи У Младших Школьников
Курсовая работа по теме Маркетингове дослідження гастроентерологічних препаратів в Україні
Реферат: Основные виды и особенности рекламы в Интернете. Скачать бесплатно и без регистрации
Реферат: Effects of deflation
Реферат Наука Двигатель Прогресса
Курсовая работа: Исторический материал, как одно из средств развития познавательной активности младших школьников на уроке математике
Реферат На Тему Анализ Технико-Экономических И Финансовых Показателей Деятельности Предприятия Ооо "Иц "Амтинжиниринг"
Реферат по теме Брутализм в архитектуре
Курсовая Работа Рисование
Изучение Английского Языка Сочинение
Сочинение Маленький Цветок
Реферат: Система команд. Структура слова команд. Синтаксис команд. Группы команд
Реферат: Robin Williams Essay Research Paper
Реферат: Теория надежности
Курсовая работа: Графический дисплей. Скачать бесплатно и без регистрации
Курсовая работа: Структура оценки персонала
Курсовая работа: Химическое оружие. Действие гражданской обороны и населения в очаге химического заражения
Реферат: Электрооптические модуляторы света

Report Page