Технология производства ферробора - Производство и технологии реферат

Технология производства ферробора - Производство и технологии реферат




































Главная

Производство и технологии
Технология производства ферробора

Требования к рудам и их выбор. Восстановители, железосодержащие материалы и флюсы. Способы подготовки сырых материалов к плавке. Применение и сортамент сплавов. Физико-химические свойства бора и его соединений. Технология производства сплавов бора.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Министерство образования и науки, молодежи и спорта Украины
Запорожская государственная инженерная академия
Черные металлы играют в народном хозяйстве страны исключительно важную роль. От роста производства черных металлов, расширения нх сортамента и улучшения качества во многом зависит расширение социалистического воспроизводства, ускорение технического прогресса во всех отраслях народного хозяйства, повышение эффективности общественного производства в целом. Большое внимание уделяется увеличению производства качественных сталей, необходимых для развития машиностроительной, авиационной, химической и других важнейших отраслей промышленности. Особое значение среди качественных сталей имеют легированные и модифицированные стали, свойства которых улучшены благодаря введению в их состав легирующих и модифицирующих элементов: хрома, никеля, марганца, вольфрама, молибдена, кальция, ванадия и др. Иногда эти элементы вводят в ванну сталеплавильной печи в чистом виде, но чаще всего, в виде ферросплавов. Ферросплавами называют сплавы железа с кремнием, марганцем, хромом, ванадием и другими элементами, а иногда сплавы других элементов, например, сплав кальция и кремния -- силикокальций, применяющиеся при выплавке стали для улучшения ее свойств (связывания вредных примесей, раскисления и легирования). По принятой терминологии в ферросплавах помимо основного элемента, обычно железа или кремния, имеются одни или несколько ведущих элементов, ради которых сплав выплавляют, нежелательные примеси, количество которых невелико и строго ограничивается, и вредные примеси, содержание которых ограничивается тысячными и сотыми долями процента. Например, в низкоуглеродистом феррохроме хром -- ведущий элемент, железо -- основной, кремний -- нежелательная примесь, а углерод, фосфор и сера -- вредные примеси. Комплексные ферросплавы содержат несколько ведущих элементов, например, в ферросиликохроме-- кремний и хром. Лигатурами называют все сплавы иа иежелезиой основе (никелевой, хромовой и др.). Ферросплавы иа железной основе, применяемые только для легирования, часто также называют лигатурами (например, лигатура с бором, селеном, кремииймагниевая лигатура и др.). Целесообразность легирования стали и сплавов ферросплавами, а не технически чистыми металлами объясняется тем, что в этом случае достигается уменьшение угара ведущего элемента, облегчается его введение в сталь, а стоимость ведущего элемента в ферросплавах и лигатурах обычно значительно ниже, чем в технически чистых металлах.
Начало промышленного производства ферросплавов относится к, 60-м годам XIX в., когда во Франции была освоена технология восстановительной плавки в тигельных печах. В последующем некоторое развитие получила выплавка ферросплавов в доменных печах, однако недостаточно высокая температура этих процессов не позооляла производить высокопроцентные сплавы и сплавы тугоплавких металлов. Это затруднение было устранено в дальнейшем путем использования электротермии. Основоположником электротермии был русский ученый В. В. Петров, открывший в 1802 г. явление электрической дуги и впервые в мире осуществивший восстановление окислов углеродом с применением электрической дуги. Электротермический способ производства низкоуглеродистых ферросплавов с использованием в качестве восстановителя кремния был разработан Ф. М. Бекетом в 1907 г. В дальнейшем этот метод получил самое широкое распространение. Другой способ получения низкоуглеродистых ферросплавов -- алюмииотермиче-ский процесс --был разработан русским академиком Н. Н. Бекетовым. Позднее были осуществлены процессы производства иизкоуглеродистьгх ферросплавов продувкой углеродистых сплавов окислительными газами, вакуумированием жидких и твердых сплавов, методом смешивания расплавов и позже путем смешивания жидкого расплава и твердого восстановителя [1--6]. Разрабатываются различные способы рафинирования ферросплавов плавкой в электроннолучевых и плазменных печах [7]. Так, В. Н. Гусаровым был предложен оригинальный способ производства ферровольфрама с вычерпыванием сплава [6].
В послевоенные годы были освоены отечественные высокоэффективные угле- и силикотермические способы производства силикокальция и ряда сплавов иа их основе [8]. Было повышено качество ферросплавов как по химическому (повышено содержание ведущих элементов, снижено содержание вредных примесей), так и по гранулометрическому составу, организовано производство фракционированных и порошкообразных сплавов. Одновременно происходило усовершенствование алюми-иотермического процесса за счет предварительного нагрева шихты, применения осадителей, использования электроэнергии для предварительного расплавления шихты и т. д., а также значительного расширения сортамента выплавляемых сплавов [9; 10, с. 27--38; 11, 12]. Совершенствовалась техника ферросплавного производства. Для восстановительных процессов начали широко использовать печи с вращением ванны и закрытые, печи с вращением и наклоном ванны для рафинировочных процессов, а также вакуумные печи сопротивления, индукционные вакуумные и др.[13--15]. Мощность ферросплавных печей превысила 100 МВД, что значительно улучшило технико-экономические показатели производства.
Отечественное производство электротермических ферросплавов было начато в 1910 г. в очень небольших количествах ( -- 500 т в год) на заводе «Пороги» (близ г. Сатка) и по существу отечественная ферросплавная промышленность была создана в годы Советской власти. Первая печь иа Челябинском заводе ферросплавов (теперь это Челябинский ордена Ленина, ордена Трудового Красного Знамени электрометаллургический комбинат --ЧЭМК) была пущена 7 ноября 1930 г. Вскоре'же были построены Зестафонскнй (ЗЗФ) и Запорожский (ЗФЗ) ферросплавные заводы, а затем в годы Великой Отечественной войны Лктюбннский (АЗФ), Кузнецкий (КЗФ) и Ключевской (КлЗФ) заводы ферросплавов и в послевоенные годы -- Серовский (СЗФ), Стахановский (СФЗ), Ермаковскнй (ЕЗФ) и Никопольский (НЗФ) заводы. В настоящее время СССР занимает первое место по производству ферросплавов и является очень крупным экспортером их на мировой рынок *. Дальнейшее развитие ферросплавной промышленности СССР будет осуществляться за счет как реконструкции действующих, так и строительства новых цехов и заводов, в частности будет продолжено строительство Никопольского и Ермаковского и начато строительство Восточно-Сибирского ферросплавных заводов. Новые ферросплавные предприятия будут оснащаться самым современным оборудованием, в том числе уникальными закрытыми печами мощностью до 60--100 МВА, использовать передовую технологию и обеспечат выпуск продукции на уровне самых высоких требований отечественной промышленности и мирового рынка.
Как правило, ферросплавные заводы используют руды или рудные концентраты, не требующие дополнительного обогащения. Исключение составляют бедные марганцевые и реже хромовые руды, которые подвергают пирометаллурги-ческому обогащению с получением богатых по содержанию ведущего элемента шлаков, которые затем перерабатывают в конечную продукцию, и железистого попутного продукта, например по процессу Юди*, а также ванадиевые, никелевые руды и некоторые руды редких элементов, требующие сложного металлургического передела.
При оценке качества руд на первом месте стоит вопрос о содержании в них ведущего элемента, но и этот критерий изменяется. В связи с усиливающимся истощением запасов богатых руд в настоящее время потребители удовлетворяются все более бедными рудами. При решении вопроса об использовании в производстве того или иного сорта руды должны быть оценены технические и экономические результаты работы на этой руде. При этом в первую очередь следует учитывать, что уменьшение доли марганца в шихте на 1 % при прочих равных условиях снижает производительность печи на 2,3 %, а уменьшение содержания Сг203 в руде на 1 % снижает производительность печи и соответственно увеличивает расход электроэнергии при производстве низкоуглеродистого феррохрома на 4,8 % и высокоуглеродистого феррохрома на 3,0 %.
Ценность руды повышается с уменьшением содержания в ней вредных примесей: фосфора, серы, меди и т. п. Количество вредных примесей зачастую определяет технологию передела. Например, фосфористые марганцевые руды необходимо подвергать дефосфорации переплавом на богатые шлаки или другим методом, что повышает стоимость передела и снижает ценность руды. Очень важное значение имеет состав цементирующей связки руды. Если хромовые руды с железистой связкой легко восстановимы и обеспечивают получение рафинированного феррохрома с высокими технико-экономическими показателями, то использование руд с магнезиальным цементом вызывает ряд трудностей, приводящих к ухудшению технико-экономических показателей производства. Хромовые и марганцевые руды с повышенным содержанием в цементе кремнезема потребуют дополнительного расхода флюса при силикотермическом способе производства рафинированных сплавов и вызовут ухудшение качества продукции и технико-экономических показателей производства, но могут быть успешно использованы при выплавке шлаковым способом ферросилико-хрома и силикомарганца. Важным условием при оценке качества руды является высокое значение соотношения ведущего элемента и железа. Это соотношение должно составлять для марганцевых руд более 9:1, для хромовых низшего сорта не менее 2,2 : и для руд первого сорта 2,9: 1 н выше. Снижение этого соотношения не позволяет получить стандартные сплавы по содержанию ведущего элемента без предварительного обогащения руд и ухудшает технико-экономические показатели производства.
К кварцу и кварцитам дополнительно предъявляют требования по минимальному содержанию шлакообразующих примесей (оксидов кальция и магния и особенно глинозема); необходимо также, чтобы водопоглощенне их не превышало 5 % и они не давали значительного количества мелочи при дроблении и нагревании. Для вольфрамовых и молибденовых концентратов очень важными являются требования по ограничению содержания примесей фосфора, мышьяка и ряда цветных металлов.
Существенную роль при выборе руды играет ее фракционный состав, который очень часто определяет технико-экономические показатели производства. Общего правила об оптимальных размерах кусков руды не существует; они зависят от сорта руды, размера и типа печи, способа производства. Для бесшлаковых и шлаковых рудовосстановительных процессов (особенно при использовании закрытых печей) необходимо использование руды в более крупных кусках, чем для большинства рафинировочных процессов. Пылева-тые руды и флотационные концентраты нельзя загружать непосредственно в печи без принятия специальных мер, предупреждающих вынос мелких частиц, который может составлять ^15% от количества заданной руды. Потери и производственные затруднения в этом случае могут быть устранены за счет предварительного окускования их различными методами (агломерацией, брикетированием, грануляцией и т. д.), но в каждом случае должна быть опре- делена его экономическая эффективность. Как правило, и химический и фракционный состав руды значительно изменяются даже в пределах одного месторождения, а иногда и одного рудника. Для обеспечения постоянства шихтовки, т. е. неизменности технологического режима, на заводе необходимо иметь механизированные склады достаточной вместимости, на которых производится сортировка по фракциям и усреднение по химическому составу, а также в случае необходимости -- дробление или окускование руды. Склады для дорогостоящих руд и концентратов должны быть закрытыми, под навесом следует хранить порошковые руды, так как при хранении на открытых площадках они впитывают от 10 до 20 % влаги.
Правильный выбор восстановителя и соответствующая его подготовка в значительной степени определяют технико-экономические показатели производства. По химическим свойствам в качестве восстановителей оксидов руды при выплавке ферросплавов можно применять многие элементы. Однако экономически выгодно применять углерод, кремний и алюминий. Наиболее широко используют углерод, а если необходимо предотвратить науглероживание выплавляемого сплава, то применяют более дорогие кремний и алюминий.
В качестве углеродсодержащего восстановителя могут быть использованы различные материалы: древесный, бурый и каменный уголь, нефтяной, пековый или каменноугольный кокс, различные полукоксы, древесные отходы и Др. Углеродистые восстановители, применяемые при выплавке ферросплавов, должны обладать хорошей реакционной способностью, высоким удельным электрическим сопротивлением, соответствующим для каждого сплава химическим составом золы, достаточной прочностью, оптимальным размером куска, хорошей газопроницаемостью и термоустойчивостью, невысокой стоимостью .
Почти все углеродистые материалы при нагревании до высоких температур (1800--2300 К) выравнивают свою химическую активность, приближаясь к так называемому графитовому пределу, однако в процессе плавки различные углеродистые материалы проявляют свои специфические свойства и присущую им реакционную способность, так как скорости графитизации для различных материалов различны и проходят в печи эти .процессы до разной степени полноты. На реакционную способность кокса определенное влияние оказывают минеральные включения, содержащиеся в золе угля, а также искусственно внесенные. Так, отмечено повышение реакционной способности при внесении в угольную шихту для изготовления кокса или в готовый кокс солей щелочных металлов, железной руды и др. На рис. 1 приведена зависимость реакционной способности ряда производственных и опытных коксов, а также некоторых других видов углеродистых материалов от температуры опыта. Хотя и в этом случае наблюдается тенденция к сближению значений реакционной способности различных углеродистых материалов с ростом температуры, но различие между ними остается существенным. Исследование скорости восстановления смеси оксидов А12О3 и SiO2 разными восстановителями при 1850°С в вакууме показало, что они имеют различную реакционную способность и при высокой температуре. Заметное различие значений скорости образования наблюдалось для различных восстановителей при относительно низких температурах (-- 1900 К) (и сравнительно небольшой продолжительности опыта -- 15 мин).
При высокой реакционной способности восстановителя процесс начинается при более низких температурах, т. е. в более высоких горизонтах печи, и происходит более полное восстановление. Высокое электрическое сопротивление восстановителя обеспечивает работу при более высоком рабочем напряжении, т. е. при более выгодных электрических характеристиках печной установки. В составе золы восстановителя должно быть минимальное количество вредных примесей, так как они в значительной степени переходят в готовую продукцию. Желательно, чтобы зола содержала максимально высокое количество полезного элемента, например кремнезема при выплавке ферросилиция, и минимальное количество шлакообразующих при использовании восстановителя в бесшлаковых процессах. Для восстановителя желательно невысокое содержание летучих, отсутствие склонности к спеканию, что обеспечивает хорошее газовыделение на колошнике печи и облегчает ее обслуживание. При подготовке, дозировании и подаче шихты восстановитель должен давать минимальное количество мелочи, т. е. обладать достаточной механической прочностью. При увеличении количества мелочи ухудшается работа печей вследствие снижения газопроницаемости колошника.
Очень хорошим восстановителем является древесный уголь, обладающий высокими удельными электрическим сопротивлением и реакционной способностью, чистотой. Древесный уголь уменьшает спекание шихты, что особенно важно при выплавке высокопроцентных сплавов кремния. Древесный уголь--пористый высокоуглеродистый продукт, получаемый из древесины в результате ее нагрева без доступа или с очень ограниченным доступом воздуха в ретортах или углевыжигательных печах различных систем. Состав древесного угля зависит от конечной температуры переугливания и от вида использованной древесины. Древесный уголь имеет достаточную прочность и малую истираемость, лучшим является уголь из твердых пород дерева. Высокая пористость древесного угля обеспечивает его высокую реакционную способность.
Ретортный уголь характеризуется повышенным содержанием твердого углерода, большей однородностью химического и гранулометрического состава и меньшей стоимостью. Он более мелок, чем печной, но, так как его не нужно дробить, отходы при подготовке шихты практически одинаковы (~20 %)* Сравнительные плавки кристаллического кремния на печном и ретортном древесном угле показали, что, несмотря на увеличение в последнем случае расхода электроэнергии на 1080 МДж/т (300 кВт-ч/т), стоимость сплава снизилась. Однако при утлетермическом производстве богатого силикокальция такой уголь непригоден, так как при его использовании резко ухудшаются все показатели производства. Следовательно, в каждом случае должно быть сделано технико-экономическое обоснование выбора того или другого вида древесного угля. Древесный уголь способен самовозгораться, характеризуй ется резкими колебаниями содержаний золы и влаги (от 5 до 40 %), что затрудняет правильную дозировку восстановителя, кроме того, он дорог. В связи с этим древесный уголь применяют, как правило, лишь при плавке кристаллического кремния и 90 %-ного ферросилиция, силикоалю-миння н силикокальция и стремятся заменить его различными древесными отходами (щепой, стружкой, опилками и т. п.), что дает значительный экономический эффект [14]. Применение древесных отходов обеспечивает уменьшение спекания шихты и улучшение газопроницаемости, повышение электрического сопротивления шихты и снижение испарения восстановленных элементов, тепловых потерь и уноса пыли, позволяет регулировать температуру в печи и дает возможность вести восстановление руд, имеющих температуру плавления значительно ниже температуры требуемой для восстановления. Хорошими восстановителями являются нефтяной и пековый кокс, обладающие достаточной механической прочностью, высокой реакционной способностью и низким содержанием золы и летучих. Различие реакционной способности нефтяных коксов разных видов невелико, все эти восстановители склонны к графитизации при температурах плавки, что ухудшает их реакционную способность и снижает электрическое сопротивление. Этот недостаток, а также высокая стоимость ограничивают их применение только для выплавки кристаллического кремния или особо чистых по примесям ферросплавов (ряда сортов высокопроцентного ферросилиция, ферровольфрама).
За рубежом в качестве восстановителя успешно используют торфяные брикеты и торфяной кокс, характеризующиеся высокой реакционной способностью, пористостью, чистотой и низкой электрической проводимостью. Высокая стоимость этих материалов (на единицу содержащегося в них углерода) и значительные транспортные издержки при их перевозке в настоящее время препятствуют их широкому применению в СССР, однако при организации крупномасштабного производства их в определенных районах положение может коренным образом измениться. При этом следует учитывать, что в СССР имеются большие запасы малофосфористых торфов (<0,05 % Р). причем опытные работы по их использованию показали преимущество торфа перед рядом других восстановителей.
Использование в качестве восстановителя торфа способствует снижению расхода коксующихся углей, улучшению восстановимости подготовленного сырья и получению ферросплавов с более низким содержанием фосфора. Широко используют в качестве восстановителя и каменный уголь. В отечественной практике каменный уголь (антрацит) систематически применяют как восстановитель при выплавке силикокальция, углеродистого феррохрома, карбида кальция, фосфора и реже--при выплавке ферросилиция и других сплавов. За рубежом каменный уголь при выплавке ферросплавов используют более широко.
Наиболее широко используют при выплавке ферросплавов наиболее дешевый сорт восстановителя -- «орешек» металлургического кокса («коксик»), получающийся как отсев при сортировке доменного кокса. В зависимости от качества использованного для производства угля и условий получения кокса на коксохимическом заводе свойства коксика различны, но общим его недостатком являются невысокие электрическое сопротивление и реакционная способность, относительно большое содержание золы, серы и фосфора и высокое, нестабильное содержание влаги. Коксик имеет губчатую структуру с большим количеством трещин, пористость его колеблется в пределах 35--55 %. Кажущаяся плотность кокса составляет 800--1000 кг/м3. Теплоемкость кокса возрастает с повышением конечной температуры коксования и уменьшается с увеличением зольности кокса, колеблясь в интервале 1,38--1,53 кДж/(кг-К). Теплопроводность монолитного куска кокса при 300 К равна 0,47--0,81 Вт/(м-ч-К) и с повышением температуры до 1400 К возрастает до 1,7--2 Вт/(м-ч-К).
Электрическое сопротивление коксика фракции 25-- 40 мм примерно на 10--15% ниже, чем у орешка (10-- 25 мм).
Замена отсеянного коксика-орешка дробленым фракции 25--40 мм при выплавке 45 %-ного ферросилиция на ЗФЗ привела к снижению производительности печей на 13 % и росту удельного расхода электроэнергии на 6 %. Стремление улучшить технико-экономические показатели производства и уменьшить дефицитность коксующихся углей определили значительный объем работ по созданию специальных видов восстановителей для ферросплавного производства. В последние годы для производства ферросплавов опробованы коксы из газовых и бурых углей, формованный кокс, различные виды полукоксов, углекварцито-вый кокс и т. д. Эти работы особенно важны если учесть, что мировые запасы коксующихся углей составляют всего 19,8 °/о от общих запасов углей, а добыча их --28-- 29 %* При прогнозируемых темпах развития черной металлургии запасы коксующихся углей будут исчерпаны менее чем за 100 лет.
Кокс из молодых (газовых, длиннопламенных) углей обладает высоким электрическим сопротивлением и реакционной способностью. Опыты, проведенные с газовым коксом и формованным из газовых углей при выплавке 75 %-ного ферросилиция, показали, что посадка электродов была более устойчива, чем на обычном коксе, печь могла работать при более высоком напряжении, увеличилась производительность печи и снизился удельный расход электроэнергии. Положительные результаты были получены В. Г. Мизиным, Б. П. Сафоновым, В. А. Кравченко и при работе на коксах, полученных из шихты с повышенным (до 60 %) количеством газовых углей. В этом случае получены снижение расхода электроэнергии на 4,4 % и рост производительности печи на 10% (в том числе 5,4 % за счет работы при более высоком напряжении).
Качество кокса из газовых углей можно значительно улучшить в результате введения в шихту полукокса из бурых углей Канско-Ачинского бассейна. Буроугольный полукокс, получаемый методом высокоскоростного пиролиза, характеризуется высокой реакционной способностью. Добавка 25 % полукокса в шихту обеспечила получение кокса, реакционная способность которого в два раза, а электрическое сопротивление в пять раз выше, чем коксового орешка. Успешно используют в качестве углеродистого восстановителя полукокс из длиннопламенных углей. Полукокс получают в шахтных печах с внутренним обогревом газовым теплоносителем. Электрическое сопротивление полукокса при температурах до 1200 К в тысячи раз больше, чем у обычных коксов, а при более высоких температурах оно приближается к электрическому сопротивлению обычных коксов. Полукокс содержит ~15 % летучих, механически мало прочен, но это не препятствует его использованию в ферросплавных печах, как и повышенная зольность, так как основной составляющей золы является кремнезем. При выплавке ферросилиция и ферросиликохрома наилучшие результаты получены при замене в шихте ~50 % коксика полукоксом. Применение полукокса стабилизировало работу закрытых печей при выплавке сплавов кремния. Расход электроэнергии снижается на 3--6 %, производительность печей увеличивается на 3--10 %, снижается расход сырья и улучшается качество сплавов вследствие снижения в них содержания фосфора. При рациональной схеме использования полукокса, включающей поставку ферросплавным заводам полукокса фракции 10--25 мм для производства сплавов кремния и валового полукокса для производства углеродистого феррохрома и аналогичных процессов, экономическая эффективность его использования повышается. Для получения специальных видов кокса Для электротермических производств разработаны и начинают использовать в промышленности процессы непрерывного коксования, а также новое оборудование -- вертикальные, ретортные, кольцевые печи и печи с движущимися колошниковыми решетками.
На заводе в г. Лаухгаммере (ГДР) из бурых углей получают 1 млн.т/год брикетированного кокса, используемого в небольших доменных печах и для рудной электротермии. Процесс включает сушку исходного угля до влажности ?12 %, брикетирование тонкоизмельченного угля, медленную сушку и коксование полученных брикетов в специальной печи непрерывного действия.
На непрерывно действующей установке производительностью 200 т/сут в г. Каммерере (США) освоено производство формованного кокса из неспекающегося угля с выходом летучих веществ ~45 %. Кокс содержит 92,9 %С; 4,5% золы и 0,6 % S (на сухую массу). Выход летучих веществ составляет 1,6 %. Размер коксовых брикетов 32х28х19 мм. Применение формования позволяет получать кокс требуемого состава и формы, ликвидировать дробление кокса, уменьшить количество мелочи. Некоторые свойства формованного кокса приведены в работе. В СССР и США проведены исследования по коксованию углей в кольцевых печах непрерывного действия. В США в г. Дорчестере работает кольцевая печь с подом диаметром 5,35 м. Кокс используют в производстве ферросплавов. В г. Рок Спрингс (США) находится в эксплуатации кольцевая печь диаметром 7,93 м, вырабатывающая кокс из неспекающихся углей для выплавки элементарного фосфора. Кокс содержит 91,6 % С и 0,5 °/о влаги, выход летучих веществ составляет ~1,5 %.
Для получения специального кокса в ряде стран применяют процесс коксования угля на непрерывно движущейся колосниковой решетке. В США и Канаде на нескольких установках производят из углей с выходом летучих 16-- 44 % кокс для электротермических и химических производств. Температура процесса составляет 1400--1500 К. Горячий кокс выдается с конца колосниковой решетки в шахтную печь, где подвергается дополнительному прокаливанию для снижения выхода летучих веществ. Годовая мощность установок по углю равна 180 тыс. т. В Англии в г. Коулвилле для производства кокса используется установка, состоящая из пяти ретортных печей непрерывного действия; производительность установки 200 т/сут. Получаемый кокс применяют для выплавки ферросплавов, мелкие фракции -- для агломерации.
Углекварцитовый кокс испытан на ЧЭМК при производстве 90 %-ного ферросилиция вместо дефицитного и дорогостоящего древесного угля. При этом производительность печей увеличилась на 6,5 %, расход электроэнергии уменьшился на 4,5 %* Аналогичные испытания были успешно проведены на ЗФЗ при выплавке 75 %- и 90 %-ного ферросилиция. Успешно был получен и железококс. Препятствием для широкого использования углекварцитового кокса и аналогичных материалов, получаемых при слоевом коксовании, является его повышенная крупность и низкая прочность. При одностадийном дроблении углекварцитового кокса образуется большое количество высокозольной мелочи, реализация которой затруднительна.
При разработке технологии получения рудоуглеродистых композиций в большинстве случаев стремятся комплексно решить проблему подготовки рудных материалов к плавке и улучшить условия восстановления металлов путем совместного окускования рудных и углеродистых составляющих шихты, что обеспечивает достаточно высокую механическую прочность кусков шихты, хорошую восстанови-мость оксидов, благоприятные условия восстановления ведущих элементов и высокое электрическое сопротивление шихты. Кроме того, имеется возможность использовать мелкие фракции руд, концентраты и недефицитные углеродистые материалы.
Окускование измельченной рудоуглеродистой шихты осуществляется путем брикетирования или гранулирования. Способы получения брикетов и гранул можно разделить на две основные группы: 1) в состав шихты вводят только часть оксидов, необходимых для плавки, а другую часть подают непосредственно в ферросплавную печь; 2) в состав шихты вводят все компоненты, необходимые для получения ферросплавов для улучшения условий восстановления оксидов и изменения механизма реакций (получение моношихты). В свою очередь в каждой группе способов можно выделить две подгруппы, различающиеся характером обработки брикетов или гранул перед их использованием в электропечах. К первой подгруппе относятся способы, в которых предусмотрена термическая обработка брикетов (гранул) при температуре выше 600 °С, что обеспечивает хорошую транспортабельность материала, высокие термо- и токостойкость, частичное или полное восстановление легковосстановимых оксидов. Кроме того, при терми ческой обработке из брикетов и гранул удаляются летучие вещества, что позволяет использовать брикеты в закрытых электропечах и устранить забивание газоходов смолистыми веществами. Ко второй подгруппе относятся способы, в которых упрочнение брикетов (гранул) достигают сушкой при невысоких температурах (130--180°С) или же другим видом обработки (автоклавная обработка и т. п.). На основе технологии брикетирования шихты с органическими связующими веществами разработаны способы получения брикетов и коксобрикетов с использованием кремнеземсо-держащих материалов, хромовой руды, извести, железной руды и окалины. При получении брикетов с хромовой рудой ее содержание в шихте может составлять 80--85 %. Опытные плавки на таких брикетах показали, что расход электроэнергии снижается на 2,4 %, а производительность печи увеличилась на 3,7 %.
Ко второй группе способов получения рудоуглеродис-тых композиций (моношихты) относится способ, примененный на ЗЗФ. Способ заключается в брикетировании шихты из руды и ткварчельского спекающегося угля в соотношении 60--85 и 40--15 %. В качестве связующего используют сульфит-спиртовую барду (с. с. б.), расход которой составляет 7--8 %. Брикеты подвергают сушке и коксованию
Технология производства ферробора реферат. Производство и технологии.
Фгос Комплексная Контрольная Работа
Образ Молчалина В Комедии Сочинение
Эссе 11 Класс Русский Язык
Эссе Всякий
Основы Организации Газодымозащитной Службы Реферат
Лекция На Тему Функция Почек. Механизм Образования Мочи
Реферат: Современное оборудование для удаления нефти и нефтепродуктов
Английский Кузовлев 3 Класс Контрольные Работы
Курсовая Работа На Тему Разработка Арифметического Устройства, Выполняющее Операцию Сложения С Накоплением Суммы
Иммунные Реакции При Гельминтозах Реферат
Титульный Лист Эссе Скачать Word
Темы Сочинений По Музыке Для 6 Класса
Курсовая работа: Построение радиолинейной линии связи
Реферат: Тесты по ботанике
Контрольная работа по теме Химическая технология получения аксессуаров швейных изделий
Реферат: Экономико-географическая характеристика Японии
Курсовая работа: Развитие туризма
Реферат по теме Применение криволинейных интегралов в различных областях наук
Курсовая работа по теме Функциональная эквивалентность
Курсовая работа по теме Расчет судовой электростанции электрических сетей и систем потребителей
Аудит - Бухгалтерский учет и аудит шпаргалка
Создание и реализация стека - Программирование, компьютеры и кибернетика лабораторная работа
Проведение периодических и внеплановых инвентаризаций - Бухгалтерский учет и аудит контрольная работа


Report Page