Технология монтажа парогенератора ТЭС - Производство и технологии курсовая работа

Технология монтажа парогенератора ТЭС - Производство и технологии курсовая работа




































Главная

Производство и технологии
Технология монтажа парогенератора ТЭС

Техническая характеристика основного оборудования энергоблока, механизация монтажа. Определение потребности в энергоснабжении монтажного участка, источники энергоснабжения. Организация сварочных работ, технология сборки и монтажа; техника безопасности.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1. Краткая техническая характеристика основного оборудования заданного энергоблока
1.1 Назначение, устройство и характеристика
1.2 Общее положение по компоновке плана монтажной площадки
1.3 Определение массы монтируемого оборудования энергоблока
1.4 Нормативная продолжительность монтажа заданного оборудования
2. Механизация монтажа оборудования
2.2 Выбор грузоподъемных механизмов и транспортных средств для сборки и монтажа, их характеристика
2.3 Расчет количества козловых кранов на сборочных и складских площадках
3. Определение потребности в энергоснабжении монтажного участка. Источники и оборудование энергоснабжения
3.1 Электроснабжение монтажных работ
3.3 Обеспечение монтажного участка кислородом
3.4 Обеспечение монтажного участка горючими газами
3.5 Обеспечение монтажного участка сжатым воздухом
4.1 Удельные нормы расхода электродов на монтаж тепломеханического оборудования
4.2 Определение количества сварочных трансформаторов и установок для термообработки
5.1 Составление технологического графика сборки и монтажа блока экрана правой боковой стены котла ТП-108
5.2 Составление ведомости необходимых инструментов, приспособлений, материалов и средств малой механизации
5.3 Схема строповки и расчет стропов с приложением рисунка
5.5 Правила техники безопасности при монтаже оборудования
5.6 Мероприятия по охране окружающей среды
Монтаж оборудования парогенераторных установок есть технологический процесс сборки, завершающих изготовление оборудования, начатое на заводе. Характеристики оборудования, инструмента, материалов, а также рабочие, производственные и технологические приемы, которыми пользуются при монтаже парогенераторных установок, аналогичные применяемым в машиностроительном производстве. Исходя из этого, в технологии монтажных работ укрупнено применяется та же общая технологическая взаимосвязь, что и в технологии машиностроения, а именно: деталь - узел - готовое изделие. В современной технологии монтажа парогенераторов выбрана несколько иная технологическая взаимосвязь: монтажная деталь - монтажный узел - монтажный блок - готовый объект.
На современном этапе основным методом монтажа оборудования ТЭС является метод блочной сборки. Показателем степени блочности укрупнения деталей и узлов оборудования является коэффициент блочности, который равен отношению массы оборудования, собранного в блоки, к общей массе оборудования.
При монтаже большого числа агрегатов представляется возможность применять наиболее эффективный поточный метод монтажа.
Наиболее эффективный метод монтажа ТЭС - поточно-скоростной. Самые благоприятные условия для поточно-скоростного монтажа оборудования с наименьшими затратами труда и средств можно создать при ведении строительных и монтажных работ раздельным способом. Исключая их совмещение благодаря завершению основных строительных работ в главном корпусе электростанции до начала монтажа оборудования.
1. Краткая техническая характеристика основного оборудования заданного энергоблока
Прямоточный котел ТПП-312А производительностью 1000 т/ч для блоков 300МВт предназначен для сжигания каменного угля в пылевидном состоянии, однокорпусный, выполнен по П-образной схеме. Топочная камера призматическая, полностью экранирована. Экраны по высоте разделены на нижнюю радиационную часть (НРЧ) из вертикальных панелей, 2 ступеней средней радиационной части (СРЧ-I и СРЧ-II) и верхнюю радиационную часть (ВРЧ). На фронтовой и задней стенках в один ярус размещены 8 вихревых пылеугольных горелок. На выходе из топки расположен ширмовый пароперегреватель первичного пара. В опускном конвективном газоходе расположены выходная и входная ступени пароперегревателя среднего давления, а также водяной экономайзер. Для подогрева воздуха имеются 2 регенеративных воздухоподогревателя диаметром 9,8м, вынесенных за пределы котельной.
Давление пара промперегрева, кгс/см 2
экранов из легированной стали (гладкотрубных/из плавниковых)
Наружный диаметр и толщина стенки труб, мм:
каркаса и обшивки из углеродистой стали
Параметры пара: начальные: давление
питательной после регенеративного подогрева
Количество регенеративных отборов, шт.
Удельный расход пара при номинальном режиме, кг (кВтч)
В данной тепловой схеме установлена турбина К-300-240. Турбина К-300-240 - это двухвальный агрегат с частотой вращения обоих валов 50 1/сна начальные параметры 23,5 МПа и 560 °С и температурой промежуточного пара 565 °С. Пар котла по 2-м паропроводам с параметрами Р=250 атм. и t=545°С поступает в ЦВД, после ЦВД холодным пром. перегревом по 2-м паропроводам поступает в котел, где разделяется на 2 потока и уже по 4 ниткам горячего пром. перегрева с параметрами Р=3,8 МПа и t=545°С поступает в ЦСД. После ЦСД по 4-м рессиверным трубам поступает в двухпоточный ЦНД. Отработанный пар после ЦНД поступает в конденсатор, где конденсируется. Основной конденсат по конденсатным насосам I и II ступени проходит 100% очистку в БОУ. Затем конденсатными насосами II ступени направляют основной конденсат в систему регенерации низкого давления (ПНД - 1,2,3,4,5). После ПНД основной конденсат направляется в деаэратор ДСП-2000-185/17. После деаэратора питательная вода при помощи 2-х бустерных насосов подается на 2 турбопитательных насоса, в каждом из которых рассчитаем на 50% номинальной мощности турбины. После питательная вода проходит группу ПВД, состоящая из трех последовательно включенных подогревателей типа ПВ-2300-380. Конденсат греющего пара ПВД каскадно смешивается в деаэратор. ПВД включает в себя встроенный пароохладитель и охладитель дренажа. Уровень конденсата греющего пара в каждом ПВД, а также ПНД поддерживается уровнем регулятора. После ПВД питательная вода поступает в котел.
1.1 Назначение, устройство и характеристика
Топочные экраны получают до 50% всего тепловосприятия рабочей среды в котле. Различают экраны гладкотрубные, в которых трубы расположены в одной плоскости самостоятельно с небольшим зазором 4-6мм и газоплотные, состоящие из панелей, изготовленные из прессованных или гладких труб.
Гладкотрубные экраны применяют в ПК всех систем, работающих под разряжением газового тракта. Трубы имеют наружный диаметр 83-76-60 мм с толщиной стенки 3,5-5 мм, причем для котлов высокого давления используют трубы меньшего диаметра, но с увеличенной толщиной стенки.
Крепление экранных секций делается вверху: верхний коллектор опирается на горизонтальные балки верхнего перекрытия каркаса котла. Нижние коллекторы имеют свободу вертикальных перемещений в пределах расчетного теплового расширения экрана.
Для повышения прочности экрана охватывают по периметру через 3-4 м высоты и перемещаются вместе с экранными трубами вдоль опускных труб при тепловом расширении. Пояс жесткости обеспечивает поддержание заданного шага труб.
В последние годы применяются конструкции экранов с натрубной обмуровкой. Такая обмуровка стен топки Оказалась достаточно легкой и может быть прикреплена непосредственно к трубам экрана на котлостроительном заводе после сборки секции экрана. После их монтажа необходимо уплотнить швы между секциями.
Для повышения прочности экрана, исключения вибрации труб при пульсирующем давлении в топке и выхода отдельных труб из плоскости экрана его укрепляют установкой пояса жесткости, которые жестко связаны с трубами экрана.
1. 2 Общее положение по компоновке плана монтажной площадки
Организация технологического процесса монтажа требуется создание УСП. Состав и размеры сооружения и устройств зависит от общего годового объема монтажных работ, от состояния поставки оборудования на ТЭС. В состав сооружений и устройств входят:
а) открытые складские площадки для хранения оборудования.
б) механизированные площадки для сборки оборудования
в) эстакада для тяжеловесного оборудования
г) установка для пропана (ацетиленовая установка)
д) кислородная станция (мастерская)
План площадки в значительной степени определяется рельефом местности, расположением складов для хранения оборудования, площадок для сборки блоков, расположение УСП со стороны временного торца главного корпуса строящейся ТЭС.
Козловые краны применяются в качестве основных механизмов для погрузочно-разгрузочных работ укрупнительной сборки. Определяют конфигурацию площадок в виде вытянутых прямоугольников значительной длины в зависимости от конкретных условий: мощности ТЭС, ее компоновки, продолжительности строительства, определяется количество и расположение ЖД путей. В соответствии с принятой схемой ЖД путей располагаются все временные сооружения.
1. 3 Определение массы монтируемого оборудования энергоблока
Объем работ определяется в зависимости от массы устанавливаемого оборудования ТЭС. По массовым показателям определяется: грузопотоки, потребности к транспортным средствам, необходимость складов для хранения оборудования, площадок для укрупнительной сборки, потребность в обеспечении энергоресурсов монтажной площадки, трудовые затраты на обеспечение сборочных работ.
Массовые данные определяются в проекте на сооружение ТЭС. При отсутствии проектной документацией для энергоблоков работающих на твердом топливе с котельными агрегатами П-образной компоновки массового оборудования определяется по формуле:
М ГРЭС =N 1 (34,5+vP)+1000=300•(34,5+17,32)+1000=16546 т
1.4 Нормативная продолжительность монтажа заданного оборудования
Продолжительность монтажа заданного оборудования ТЭС устанавливаемой нормативными документами, для ТЭС на жидком топливе и природном газе нормы уменьшаются на 7% при закрытом типе здания и на 15% при открытом. Нормами продолжительности монтажа котельных агрегатов учитываются следующие объемы работ: монтаж котлоагрегата, тягодутьевых устройств, пыле-газо-воздухопроводов, лестницу и площадок, механизмов, пыле-приготовления, шлакозолоудаления, золоуловителей, станционных трубопроводов, контрольно измерительных приборов и автоматики, проведение кислотной промывки парогенератора, выполнение обмуровки и теплоизоляции оборудования и трубопроводов. Начало монтажа считается установка первого монтажного блока котла на фундамент. Для турбин начало монтажа считается установка фундаментных рам.
Сборка блока в продолжительность монтажа не входит в зависимости от условия строительства ТЭС вводятся поправочные коэффициенты к нормам продолжительности, для первого котлоагрегата 1.3, для головного образца 1.2, для котлов на газе и мазуте 0.85.
Продолжительность монтажа вспомогательных цехов устанавливаются в зависимости от фактической массы оборудования конструкции, трубопроводов. Длительность монтажа берется по таблице. Принято следующая продолжительность проведения подготовительных работ по организации монтажной площадки (оборудование временных мастерских, устройств газов и энергетических разводов, установка кранов на УСП).Для ТЭС мощность 50тыс Вт продолжительность подготовительных работ 2 месяца, 300тыс кВт продолжительность 3 месяца, 400тыс кВт продолжительность 4 месяца. Для выполнения монтажа оборудования нормативное время необходимо обеспечить фронт работ для монтажа и поставку агрегатов в расчетное время, дату фактического начала работ по монтажу.
Состав и размеры сооружений и устройств УСП зависит от общего объема монтажных работ. В состав сооружений и устройств для тепломонтажных участков входят:
1) открытые складские участки для оборудования на ТЭС
2) навесы и местные укрытия для оборудования.
3)закрытые холодные склады для хранения оборудования
4) закрытые отапливаемые склады для хранения оборудования.
1) Определяем площадь укрупнительной площадки
Sук=(M•б•Kc)/q=(21509,8•0,35•2,3)/0,25=69261,556 м 2
2) Определяем площадь открытых складов
S ос =(М•б тм •К с )/q тм +(М•б э •К с )/q с =21509,8•0,53•2,3/0,7+21509,8•0,59•2,3/0,6
3) Определяем площадь складов под навесом
S н = (М•б тм •К с )/q тм +(М•б т •Кс)/q т +(М•б о •К с )/q о +(М•б э •К с )/q э =
= 21509•0,05•2,3/0,8 + 21509,8•0,35•2,3 /0,92 +
+21509,8•0,5•2,3/2,1+21509,8•0,15•2,3/0,3=46649,37 м 2
4) Определяем площадь закрытых холодных складов
S зх =(М•б тм •К с )/q тм +(М•б т •Кс)/q т +(М•б о •К с )/q о +(М•б э •К с )/q э =
= 21509,8•0,05•2,3/1,1 + 21509,8•0,65•2,3/0,85+21509,8•0,5•2,3/2,0 +
+ 21509,8•0,22•2,3/0,27=92759,77 м 2
5) Определяем площадь закрытых теплых складов
S зт =(М•б nv •К с )/q тм +(М•б э •К с )/q=21509,8•0,02•2,3/0,6+21509,8•0,04•2,3/0,48
6) Определяем общую площадь всех складов
S зт = S ук + S ос + S н + S зх + S зт =
= 69261,556+83065,27+46649,37+92759,77+5771,79 = 297507,756 м 2
Все полученные площади проверяют по таблице 2.3(2).
2. Механизация монтажа оборудования
Краны козловые применяются для монтажа эксплуатационного обслуживания и ремонта оборудования тепловых и атомных эл. станций.
Краны козловые КС-50-42 устанавливают на специальных эстакадах, на открытых площадках для монтажа и обслуживания регенеративных воздухоподогревателей, электрофильтров и газовоздухопроводов паровых котлов. Электропитание кранов - троллейное или гибким кабелем; род тока - переменный трёхфазный - 380 В.
2.2 Выбор грузоподъемных механизмов и транспортных средств для сборки и монтажа, их характеристика
Количество кранов на сборочных и складских площадках определяют по формуле:
К н = (М ко •К с )/(П•Т н •Д н n)=0,7•2,3/0,001•8•21,2•3=3 мостовых крана
Q- масса оборудования и материалов с учетом вторичных перегрузок
21.2- среднее число рабочих дней в месяц
m1 и m2- средняя производительность, козловых кранов на сборке блоков и складских операций, т/смену; принимаем в зависимости от типа крана, кран КС-50-42 значит m1=22 , m2=33
П = (М ко •К с )/(Т н •Д н •n) = 0,7•2,3/8•21,2•3 = 0,003
Мко - масса оборудования и материалов монтируемых котельным отделением.
П- производительность мостового крана
2 .3 Расчет количества козловых кранов на сборочных и складских площадках
N к = (М•в•К б •К с )/(П 1 •Т 1 •Д н •n)+М/(П 2 •Т 2 •Д м •n)
N к = (21509,8•1,1•0,8•2,3)/(12,3•3,4•21,2•3)+21509,8/(17•5,1•21,2•3) =
Т1- длительность сборки блоков, месяцев; определяют по формуле:
Тн- длительность монтажа, Тн= 14 месяцев по таблице 1.17 (2).
Т2- длительность складских операций, определяется сроками поставки оборудования, месяцев; определяют по формуле:
n1- число смен производства сборки блоков, принимаем n1= 2
n2- число смен складских операций, принимаем n2= 3
К б ?коэффициент блочности, равный 0,8
П 1 , П 2 ? средняя производительность козловых кранов на сборке блоков и складских операций. Принимаем П 1 =12,3т/см, П 2 =17 т/см
Где Тн- продолжительность монтажа Тн= 8
Дм- количество рабочих дней при пятидневной рабочей недели Дм= 21.2
Выбираем мостовой кран Км-50/10-27.5 грузоподъемностью основного крюка 50т, вспомогательного 10т и пролетом 27.5 м
Платформа железобетонная четырехосная
Техническая характеристика козлового крана КС- 50- 42
главного подъема: в пролете, на консоли
вспомогательного подъема: на консоли
4) Длина подачи грузовой тележки главного,
6) скорость перемещения крана м/мин
8) Суммарная мощность электродвигателя
энергоблок энергоснабжение сборка монтаж
3 . Определение потребности в энергоснабжении монтажного участка. Источники и оборудование энергоснабжения
3 .1 Электроснабжение монтажных работ
Временное электроснабжение монтажных работ решается проектом организации строительства (ПОС). Электроэнергия на монтаже необходима для грузоподъемных и монтажных работ, сварочных машин, освещения и т.д.
Расход электроэнергии для обеспечения монтажных работ, определяют по формуле:
- масса оборудования, принять по проекту
- масса материалов, принять по проекту
- удельный расход электроэнергии на 1 Т смонтированного оборудования и металлоконструкций, принимаем
Общая мощность трансформаторов подстанций при поточном монтаже двух и более энергоблоков Nтр, квА, определяют по формуле:
N тр =2839293,6*1,5/8*21,2*0,5=11884,66
Км- коэффициент, характеризующий наиболее число рабочих к среднему, принимаем Км=1.5
- коэффициент мощности, принимаем равным 0.5
21.2- количество рабочих дней в месяц
Выбор типа и количества трансформаторных подстанций обслуживающий монтажный участок производят по таблице 3.54(8)
Выбранные трансформаторы свести в таблицу 3.1.1
Однокорп. Обмотка из алюмин. проводов
На монтажных участках осуществляется централизованное снабжение рабочих мест кислородом, пропан-бутаном, природным горючим газом или ацетиленом; для этого устраивают временные разводки газопроводов от мест питания к укрупнительно-сборочной площадке и складским помещениям, мастерским, главному корпусу и др. потребителям.
К сут =(М об *К 1 -М мет *К 2 )*К н /Т н *25
К сут =(21509,8*10-2350,98*3)*1,3/8,6*25=788484,23 м 3
К1 и К2 - средний удельный расход кислорода на монтаж оборудования и строительных металлоконструкций, принимаем по проекту К1=10мі/т
Кп- коэффициент неравномерности производства монтажных работ, принимаем=1.3
3 .3 Обеспечение монтажного участка кислородом
Газификационная кислородная установка жидкого кислорода снабжает основных потребителей через разводку.
Расход кислорода отдаленными потребителями Б к , баллонов/сут, составляет:
К 0 - среднечасовой расход кислорода отдаленными потребителями, м 3 /ч
К 0 =К с /24= 788484,23/24=32853,5м 3 /ч
Запас баллонов на складе, зависящий от оборачиваемости баллонов на площадке строительства, баллонов/сут.
Б 3 =1,2*131414=157696,8баллонов/сут.
n-оборачиваемость баллонов/ сут, принимаем 1,2
Б=4К 0 (n+1)=4*788484,23(1,2+1)=6938661,224 баллонов/сут.
3 .4 Обеспечение монтажного участка горючими газами
При обработке монтажа оборудования для газовой резки применяют пропан-бутан и природный горючий газ как наиболее дешевые.
Резервуары для пропан - бутана покрывают гидроизоляцией. Подается к рабочим постам со склада трубопроводом, проложенным по УСП и в главном главном корпусе. Установки резервуара и трубопроводов пропан - бутана сдаются газовой инспекции ГГТН. Для снабжения отдельных объектов устраивается рамка для наполнения баллонов пропан - бутаном, которые затем перевозят на рабочие места.
Суточный расход пропан - бутана определить по формуле
Пб=3*Q 1 +Q 2 /Т н *25=3*21509,8+2150,98/8,6*25=310,14
Бскл=Пб**Тз/1000*0,85=1240,56*4/1000*0,85=5,83м 3
Тз - запас пропан - бутана, зависящий от дальности подвоза, принять Тз=4
0,85 - коэффициент заполнения резервуара
Выбираем емкость резервуара по таблице 2.15(2)
Геометрическая емкость резервуара, м - 10
3 .5 Обеспечение монтажного участка сжатым воздухом
При разборке ППР потребность монтажного участка в сжатом воздухе определяется расходом воздуха на пневматический инструмент, необходимый для строительно-монтажных работ, а также расход воздуха для продувки трубопроводов и др.
Потребность монтажного участка в сжатом воздухе, м 3 /мин:
Общую производительность компрессоров, м 3 /мин, определяют по формуле:
Кв- коэффициент равный 1.1 для блоков больше 300мВт
4 .1 Удельные нормы расхода электродов на монтаж тепломеханического оборудования
У= 12.0 кг/ч- для основного оборудования
У= 13.6 кг/ч- для вспомогательного оборудования
У= 90.1 кг/ч- для трубопроводов высокого и низкого давления
Определение общего количества персонала для сварочных работ
Количественный состав инженерно-технологического персонала цеха сварки зависит от объемов сварочных работ, условно выражаемых через мощность монтируемого блока:
4 .2 Определение количества сварочных трансформаторов и установок для термообработки
М св =0,8*М*К св ,=0,8*20360*1=16288
Где: 0.8- поправочный коэффициент для станций, работающих на газе.
Ксв=1- для котлов, станционных трубопроводов высокого давления, деаэратора баков, котельно-вспомогательного оборудования.
Расчет количества сварочных аппаратов
Количество сварочных аппаратов- Псв., в штуках.
П св =(0,22*N+20)*К с =(0,22*300+20)*1,5=129 шт
Расчет количества трансформаторов для термообработки стыков.
Количество трансформаторов- Пт об в штуках
У= 12.0 кг/ч- для основного оборудования
У= 13.6 кг/ч- для вспомогательного оборудования
У= 90.1 кг/ч- для трубопроводов высокого и низкого давления
Количественный состав инженерно-технологического персонала цеха сварки зависит от объемов сварочных работ, условно выражаемых через мощность монтируемого блока:
Производительный персонал для выполнения сварочных работ распределяется следующим образом:
На каждого ИТР- 15-20 сварщиков и термистов;
На каждые 10-12 сварщиков- 1 дефектоскопист
Поверхности нагрева составляют значительную часть общей массы металлической части парогенератора. Например, масса металла парогенератора ТП-108 паропроизводительностью 640 т/ч составляет около 3 тыс. т., а масса трубной поверхности нагрева его - 1331 т., или 43,8 %. Приведенные количественные соотношения определяют трубную поверхность нагрева как наиболее трудоемкую часть парогенератора при его монтаже. Трудоемкость монтажа трубной поверхности нагрева, кроме того, определяется ее конструктивной и технологической сложностью. Для изготовления труб поверхностей нагрева парогенераторов, работающих в тяжелых температурных условиях, применяется низколегированная теплоустойчивая сталь марки 12Х1МФ. Из этой стали изготавливается большинство поверхностей нагрева (экраны, пароперегреватели), температура стенки которых в эксплуатационных условиях не превышает 585°С, а также коллекторы и трубопроводы в пределах парогенератора - при температуре не более 570°С. Наиболее распространенными марками сталей, из которых изготавливаются трубы поверхностей нагрева, являются так же 12Х2МФСР, 15ХМ, 1Х11В2МФ, Х18Н12Т и сталь марки 20 (для рабочей температуры стенки не более 500°С). Трубы из стали марки 15ХМ могут применяться для поверхностей нагрева, коллекторов и трубопроводов, работающих при температуре стенки не более 550°С
5 .1 Составление технологического графика сборки и монтажа блока экрана правой боковой стены котла ТП-108
Календарные линейные графики составляют для определения потребности. Сетевой график полается математическому анализу, на основании которого определяется реальный, календарный план выполнения работ и решаются задачи радиального использования имеющихся ресурсов.
Использование графиков позволяет оценивать фактическое состояние работ, прогнозировать их будущее и тем самым заблаговременно обнаруживать затруднения.
Почти все графики , построенные по фактическим данным выхода рабочих и отвечающие правильному технологическому процессу монтажа, имеют сдвиг оси в правую сторону. Нарастание рабочих идет более равномерно, наибольшее количество их достигается на 75% пути продолжительности монтажа.
5 .2 Составление ведомости необходимых инструментов, приспособлений, материалов и средств малой механизации
Наименование, область применения, марка
Переносной труборез ПТ-32-42 для обрезки котельных труб и снятия фасок под сварку
Переносной станок неразъемный для резки труб из аустенитных сталей 2Т-194
Труборез ручной для резки труб из цветных металлов
Для труб диаметром до 30мм. Вес 0,57кг
Приспособление для торцовки и снятия фаски труб
Переносной труборез ГРВ-1 с газовым резаком для углеродистых и низколегированных сталей
Машинка для зачистки концов труб под вальцовку или сварку
Машинка для зачистки наружной и внутренней концов труб диаметром 133-273мм. Тип ЗШМ
Привод от электросверлилки И-59. Вес 13,5кг
Приспособления для притирки трубопроводной арматуры А-1592
Приспособления для центровки и стяжки труб со щтуцерами барабанов и коллекторов
Приспособления для центровки и стяжки при стыковке
Для труб диаметром 16-32мм. Вес 24кг
Диаметр сверлений 15-23мм. Напряжение 36В. Частота тока 200Гц
Преобразователи частоты тока И-75-Б, И-75-А, С-672
Напряжение первичное 380/220В. Вторичное 36В.
Крановые захваты для подъема длинномерных жестких конструкций
Насос гидравлический ГН-1200/1400 с электроприводом
Производительность 1200л/ч, давление 400атм
Расход воздуха 900л/ч, мощность 0,45кВт
Комплект инвентарных стропов для монтажа котла
Заглушки самозатягивающиеся для гидравлического испытания арматуры, типа 1 и 2
Для труб диаметром 50 и 100мм Р max =400атм
5 .3 Схема строповки и расчет стропов с приложением рисунка
Перед строповкой поверхности нагрева, для погрузки их на платформу, а также для последующего монтажа необходимо еще раз ознакомиться с технологическими картами, части указания по способу строповки. Для строповки блоков применяют набор петлевых и кольцевых стропов, заблаговременно изготовленных и испытанных. Использовать можно только испытанные стропы, имеющие бирки с указанием допустимой грузоподъемности, диаметра каната, длины стропа и даты испытания.
При проведении такелажных работ следует применять следующие правила:
1. строп должен крепиться за надежные части груза
2. все ветви стропа должны быть распределены равномерно и не должны соскальзывать вдоль груза в случае положения при подъеме
3. не допускается перелома стропа на острых кромках груза, для чего подкладываются деревянные подкладки, их привязывают к грузу во избежание падения их с высоты при снятии стропа
4. следует избегать строповки груза за обработанные поверхности
5. нельзя допускать образования заломов стропа при обвязки груза
6. при необходимости увеличения числа ветвей стропа следует применять один длинный строп, а не два самостоятельных коротких, для равномерного распределения нагрузки на отдельные ветви стропа
7. строповка длинномерных грузов во избежание раскачивания их при подъеме должна производиться стропом в двух местах достаточно удаленных друг от друга.
Расчет стропов производится с учетом числа ветвей стропа и угла наклона их к вертикали. Натяжение каждой ветви каната S, кгс, определяется по формуле:
К- запас прочности, для стропов равен 6
выбираю строп: УСК-1.6-1- Универсальный кольцевой строп
Длина стропа L=4000 мм, Диаметр каната dк=15.5 мм.
Трубы для поверхностей нагрева и подготовка их к монтажу
Для изготовления труб поверхностей нагрева наиболее распространенными марками являются 12Х1МФ, 12Х2МФСР, 15ХМ, 1Х11В2МФ, Х18Н12Т и сталь марки 20.
На наружной и внутренней поверхностях труб не допускаются окалины, плены, трещины, закаты, глубокие риски и шлаковые включения. Такие дефекты должны быть полностью устранены зачисткой, шлифовкой или заменой дефектного участка. Толщина стенки труб в местах устранения дефектов не должна выходить за пределы минимальных значений, установленных техническими условиями на их поставку.
Каждая партия труб обязательно должна иметь сертификат, в котором указываются: химический состав металла, механическое его свойство, номера плавки и партии труб, результаты технологических испытаний и внешнего осмотра. Кроме того, на каждой трубе диаметром 25мм и выше с толщиной стенки не менее 3мм на расстоянии не более 1м от конца трубы наносится следующая маркировка: товарный знак, марка стали и номер партии. Концы труб диаметром от 108мм и менее при отправки их заводом- поставщиком плотно закрываются специальными колпачками или заглушками во избежание засорения труб и попадания в них воды.
Операция указанной проверки называется плазировка. Для удобства плазировки все трубы поверхностей нагрева, поступающие на монтаж в виде россыпи, сортируются по позициям, указанным в чертежах. Во время сортировки труб одноименных позиций раскладываются в отдельные штабеля.
При плазировки гнутых труб проверяется также следующие значения: а) угла загиба; б) длины прямого участка между гибами; в) длины прямого участка на конце трубы; г) смещения осевой линии.
Устранение дефектов гнутья производится на месте плазировки. При больших радиусах гибов (500мм и выше) и малых диаметрах (примерно до 50мм) возможно устранение неточностей подгибкой трубы в холодном состоянии. В остальных случаях требуется нагрев трубы.
Перед началом плазировки труб бригада квалифицированных монтажников под руководством опытного мастера производит внимательный и внешний осмотр с целью выявления дефектов. Перед осмотром трубы очищаются при помощи стальных щеток от грязи и ржавчины. При удалении дефектов частей труб и замене их качественными вставками запрещается располагать сварные швы на гнутых коленах и в местах размещения приварных деталей. Если после такой проверки дефекты не обнаруживаются и толщина стенки не выходит за пределы установленных допусков, труба признается годной к установки.
После плазировочной проверки труб может потребоваться обрезка их концов по чертежным размерам. Для этого используются специальные станки или труборезы, которыми при необходимости одновременно с обрезкой снимается также фаска. После обрезки концов труб производится подготовка торцов под сварку (обработка кромок).
Последней операцией, завершающей подготовку труб поверхностей нагрева к сборке в блоки или установке, является их продувка сжатым воздухом с давлением 0,39-0,59 МПа (4-6 кгс/смІ) с последующей прогонкой деревянного или металлического (алюминиевого) шарика. Свободный проход шарика через внутреннюю часть трубы под давлением сжатого воздуха служит показателем пригодности к установке в проектное положение. В случае застревания шарика в трубе место застревания определяется по глухому звуку при обстукивании. Удаление постороннего предмета, обнаруженного внутри трубы, и застрявшего шарика производится, как правило, вырезкой участка трубы с последующей вваркой вставки. Иногда удаление застрявшего шарика возможно пропуском второго шарика под давлением сжатого воздуха с противоположного конца трубы. Все элементы поверхностей нагрева, прошедшего проверку шариком, должны быть отмечены на внешней поверхности.
Проектирование укрупнительно-сборочной площадки
Современная организация технологического процесса производства монтажных работ методом блочной сборки требует создания на строительстве любой электростанции укрупнительно- сборочной площадки.
Для выполнения столь значительного объема работ по сборке монтажных блоков требуется производственная площадь, оборудованная подъемными кранами, станками и пр. Ее площадь должна обеспечивать сборку и раскладку всех монтажных блоков, входящих в состав одного парогенератора, со всем вспомогательным оборудованием и трубопроводами. Общая площадь укрупнительно-сборочной площадки всегда больше ее производственной площади в связи с необходимостью организации железнодорожных и автомо
Технология монтажа парогенератора ТЭС курсовая работа. Производство и технологии.
Взаимосвязь Планирования И Управления На Предприятии Реферат
Реферат: Автоматизированная подготовка производства на базе современных CAD CAM CAE PDM систем
Физические основы работы современного компьютера
Собрание Сочинений Стаут
Механизм Преступления И Его Элементы Реферат
Рак Почек Реферат
Реферат: Империя стиля. Скачать бесплатно и без регистрации
Целеустремленность Сочинение 9.3 Куклин
Курсовая работа по теме Виды договоров и их классификация в гражданском праве
Дипломная работа по теме Применение автоматизированного адаптивного интерферометра для исследования наносмещений микрообъектов
Выводы В Дипломной Работе
Контрольная работа: Проблема Курил в российско-японских отношениях
Реферат: Программа Adobe Photoshop
Сочинение На Тему Мысли
Реферат по теме Краудфандінг як різновид зовнішньо-економічної діяльності
Реферат: Черезвычайные ситуации
Реферат: One Flew Over The Cuckoos Nest Essay
Доклад: Васильев Владимир Викторович
Реферат: Бумажный туннель
Курсовая работа по теме Паломницький туризм
История России второй половины ХIХ – начала ХХ веков - История и исторические личности методичка
Аберрационный расчет зеркально-линзового теплопеленгатора - Коммуникации, связь, цифровые приборы и радиоэлектроника курсовая работа
Рак тіла матки - Медицина презентация


Report Page