Техногенные месторождения - Геология, гидрология и геодезия курс лекций

Техногенные месторождения - Геология, гидрология и геодезия курс лекций




































Главная

Геология, гидрология и геодезия
Техногенные месторождения

Понятие техногенного месторождения, особенности и перспективы его разработки. Аппаратурно-методическое обеспечение аналитических исследований. Геоэкологическое картирование и составление эколого-геологических карт по техногенным месторождениям.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
1. Понятие техногенное месторождение (ТМ), особенности и перспективы разработки
Техногенные месторождения представляют собой класс месторождений, сформировавшихся в последние столетия в районах горнорудной промышленности (Северо-запад и Юго-восток европейской части Росси, Урал, Юго-восток и Восток азиатской части, Центр Сибири). Эти месторождения обычно обладают своеобразным минеральным составом и являются потенциальным источником разнообразных полезных ископаемых, в частности цветных, редких и благородных металлов, а также строительных материалов (щебень, песок, гравий и т.д.).
Техногенные месторождения - техногенные образования (отвалы горнодобывающих предприятий, хвостохранилища обогатительных фабрик, шлакозольные отвалы топливно-энергетического комплекса, шлаки и шламы металлургического производства, шламо-, шлако- и т.д. отвалы химической отрасли) на поверхности Земли по количеству и качеству содержащегося в них минерального сырья пригодные для промышленного использования в настоящее время или в будущем по мери развития науки и техники.
Особенностями техногенных месторождений являются:
географически расположены только в промышленно развитых районах;
находятся на поверхности Земли и горная масса в них преимущественно дезинтегрирована;
значительно большее количество минералов (более 30 000), чем в обычных месторождениях (около 3 000).
Последняя особенность определяет сложность переработки техногенных руд, так как из-за многообразия минеральных форм, требуются иные технологии, чем для обычных руд, основанные на последних достижениях науки и техники.
Отвалы горнодобывающих и металлургических предприятий как перспективные источники сырья для различных областей индустрии издавна привлекали внимание. Так ещё в 30-е годы прошлого столетия проводились исследования по оценке медьсодержащих отходов на большинстве медных предприятий Урала. С 50-х годов отходы медного производства оценивались не только на основные, но и на полезные попутные компоненты. Исследованиями последних лет установлено, что в России к настоящему времени накоплено свыше 50 миллиардов тонн техногенных отходов, содержание металлов в которых нередко превышает их содержание в рудах, извлекаемых из недр и поступающих на обогащение. Особенно это относится к старым отвалам и хвостохранилищам, которые формировались в 40-50-е годы прошлого столетия, когда не уделялось должного внимания комплексному изучению минерального сырья, а кондиции добычи и переработки были значительно выше современных.
Известны примеры успешного вовлечения техногенных месторождений в эксплуатацию. Так ещё в 70-80-е годы прошлого столетия Хрустальненский Солнечный, Алмалыкский и Зыряновский комбинаты приступили к ревизии отвалов прошлых лет, добыче и использованию некондиционных руд для получения дополнительной продукции (олова, свинца, цинка и др.). Однако, до настоящего времени техногенные месторождения используются в незначительных масштабах. Основной причиной этого является то, что для широкого вовлечения их в переработку требуется строительство практически новых производств, реализующих новые технологические принципы и решения, которые разработаны, как правило, на уровне научных открытий, лабораторных или полупромышленных исследований и редко доведены до промышленного производства. Отсюда высокая капиталоёмкость нового строительства и реконструкции с последовательной заменой действующих технологических линий на новые производства.
Несмотря на указанные трудности, перспективность использования техногенных месторождений очевидна, так как их использование позволяет одновременно решать целый ряд экономических, социальных и экологических проблем.
1. Постоянное удорожание сырья, извлекаемого из недр, в связи с разработкой месторождений на всё более значительных глубинах, часто с закономерным понижением содержания ценных компонент. В последние 30 лет стоимость сырья неуклонно растёт на 5-10% в год, несмотря на внедрение новой техники и даже автоматизацию некоторых производств.
2. Истощение запасов полезных ископаемых в недрах Земли. Например, при современном уровне добычи и обогащения, запасов цинка осталось на 25-30 лет, а свинца на 50-60 лет.
3. Снижение производительности труда и уменьшение темпов добычи полезных ископаемых в связи с постоянным ухудшением горно-геологических условий добычи (большие глубины, бедные руды).
1. Осложнение ситуации с использованием рабочей силы во многих рудных районах вследствие уменьшения объёма работ, вызванного истощением запасов полезных ископаемых.
2. Ухудшение условий труда при эксплуатации глубокозалегающих месторождений.
1. Исключение из хозяйственного оборота больших площадей земель, занятых отходами производства. Так, например, площадь золоотвалов топливно-энергетического комплекса Урала составляет около 3 000 га, а площадь нарушенных земель в медной подотрасли превышает 60 000 га.
2. Уничтожение или снижение качества земель из-за пылевых заносов с отвалов и хвостохранилищ. Например, с 1 га отвалов КМА ежегодно сносится до 500 тонн пыли.
3. Загрязнение окружающей среды (почв, поверхностных и подземных вод, атмосферного воздуха) тяжёлыми металлам и солями в концентрациях, нередко превышающих допустимые нормы. Так ориентировочный суммарный объём сброса загрязнённой оборотной воды с золоотвалов АО «Свердловэнерго» составляет не менее 7,6 млн.м 3 /год. Содержание в сбрасываемой воде таких элементов как F, V и Mn превышает ПДК в десятки и сотни раз. С отвалов Садонских месторождений ежегодно выносится в р. Терек до 3 000 тонн цинка.
Вовлечение в переработку техногенного сырья обеспечивает:
1. Сокращение расходов на поиски новых и разведку эксплуатируемых месторождений.
2. Сохранение истощающихся минеральных ресурсов в недрах, так как запасов полезных компонент, накопившихся в отходах ГОК'ов, достаточно чтобы удовлетворить потребности на многие десятилетия вперёд.
3. Повышение производительности труда за счёт рентабельной переработки уже добытого сырья, являющегося, по существу, готовым полупродуктом и находящегося вблизи действующих предприятий, что особенно важно для тех из них, для которых вследствие истощения сырьевой базы оказываются незагруженными производственные мощности, и высвобождается рабочая сила.
4. Улучшение условий труда, так как техногенные месторождения расположены на поверхности Земли в отличие от всё более глубокозалегающих обычных месторождений полезных ископаемых.
5. Производство дешёвых стройматериалов (песок, щебень, гравий, цемент, абразивы, материал для отсыпки дорожного полотна, строительства плотин, дамб, и т.д.), а из шлаков - шлаковаты, шлакового литья (брусчатка, тюбинги, плитки, бордюрный камень и т.д.), литого шлакового щебня, стеклокерамических изделий, вяжущих добавок в цемент, минеральных добавок для улучшения почв, удобрений для сельского хозяйства и др.
6. Освобождение занимаемых им земель и их рекультивацию и ликвидацию источников загрязнения окружающей среды (ОС), улучшая тем самым экологическую обстановку вокруг действующих предприятий. Это относится к тем ТМ, освоение которых сопровождается производством стройматериалов. Если же осуществляется только добыча металлов (цветных, редких и благородных), то из-за низкого их содержания количество техногенных отходов практически не уменьшается.
Таким образом, всё вышеизложенное указывает на актуальность и народно-хозяйственную важность проблемы переработки и полной утилизации отходов горнорудной, металлургической, топливно-энергетической и химической отраслей промышленности. Уже существующие и перспективные технологические разработки позволяют оптимистически оценивать прибыльность переработки ТМ и возможность перехода к безотходным технологиям для их полной ликвидации.
Большинство развитых зарубежных стран осуществляют политику сбережения своих ресурсов, интенсивно вовлекая в переработку ТМ, утилизируя отходы производства, разрабатывая технологии переработки этих отходов. Например, в США ещё в 1993 году доля вторичного сырья в производстве цветных металлов составляла:
по меди - 55%, вольфраму - 28%, никелю - 25%.
Подобная тенденция использования вторичных ресурсов наблюдается в Канаде, Великобритании, ЮАР Испании и других странах. Вот несколько примеров:
В Канаде из отходов меднорудных предприятий, содержащих 0,45% Cu достигается извлечение 40% меди благодаря новым способам обогащения (кучного кислотного выщелачивания, кучного пиритного и бактериального выщелачивания).
В штате Монтана (США) из отвалов рудника Мандиски получают ежегодно 2т Au и 4т Ag при содержании в отвалах золота - 0,84г/т и серебра - 2,8г/т.
В штате Мичиган (США) из хвостов обогащения, содержащих 0,3% Cu, достигнуто извлечение 60% меди.
В Болгарии из отходов, содержащих 0,1-0,15%Cu, получают медный концентрат, себестоимость которого в 3 раза ниже, чем при получении его из природного сырья.
В ЮАР из отвалов золотоизвлекательных фабрик при содержании золота - 0,53г/т и урана - 40г/т получают 3,5т золота и 696т урана в год при производительности 50000т/сутки.
Однако, необходимость существенного объёма технологической перестройки производства и разработки целого ряда методических и технологических вопросов изучения ТМ не позволяет рассчитывать на скорый повсеместный переход к безотходным технологиям.
2. ТМ пирометаллургических процессов цветной и чёрной металлургии, сложенные шламами и шлаками.
3. ТМ теплоэлектростанций, сложенные золой и шлаками ТЭС.
4. ТМ химического производства (шламы).
По возможным областям использования ТМ подразделяются на 3 типа:
2. ТМ (по извлекаемому металлу) - медные, цинковые и т.д.
3. ТМ смешанного типа, т.е. пригодные для получения стройматериалов и металла.
Разработка месторождений первого типа обеспечивает освобождение площадей земли от техногенных отходов с последующей их рекультивацией, второго типа - позволяет осуществить доизвлечение металла, но не решает проблемы освобождения территории отвалов от отходов, так как вторичная переработка отвалов, учитывая низкое содержание в них полезных компонент, практически даёт то же самое количество отходов.
Третий тип техногенных месторождений позволяет осуществлять и рекультивацию земель и доизвлечение металла.
По экологическому воздействию среди техногенных месторождений выделяют:
1. Неопасные, представленные горными породами и глыбовощебенистыми и щебенистыми шлаками цветной и чёрной металлургии, слабо разрушающимися в течение хранения.
2. Поражающие атмосферу и гидросферу, если они сложены окисляющимися или глинизирующимися породами, окисляющимися шлаками и шламами, пылящими шламами и высохшей пульпой хвостохранилищ.
В настоящее время терминология, классификация ТМ, критерии принадлежности их к тому или иному типу меняются и дополняются по мере углубления исследований и практических работ в области разработки техногенных месторождений.
Наиболее удобной представляется классификация ТМ, в основу которой положены условия их формирования, так как они определяют обычно и морфологию, и вещественный состав, и возможные области использования, и экологическое воздействие на ОС (рис.1).
Пользуясь классификацией, представленной на рис.1, можно оценить основные характеристики любого типа месторождений. Например, ТМ горнодобывающих предприятий, возникающие при обогащении руд и представляющие собой хвостохранилища, относятся к месторождениям
наливного типа (морфологический признак);
по возможным областям использования - смешанного типа, т.е. пригодные для доизвлечения металла и получения стройматериалов;
по экологическому воздействию на окружающую среду - поражающие атмосферу (пыль) и гидросферу (фильтрация вод хвостохранилищ через защитные дамбы).
Рис. 1 Классификация техногенных месторождений.
Состав и строение ТМ определяются целым рядом факторов, важнейшими среди которых являются:
условия образования (добыча и обогащение руд и угля, переработка концентратов руд, сжигание угля и т.д.);
состав исходного сырья (месторождения цветных и редких металлов, полиметаллические, железорудные и другие типы коренных месторождений);
физико-химические и механические процессы климатического воздействия и выветривания отвалов. Они интенсивно окисляются, выщелачиваются и разрушаются, что приводит к изменению минералогического и вещественного состава техногенных отложений, выносу элементов и образованию ореолов рассеяния вокруг отвалов. Особенно это проявляется для отходов добычи и обогащения сульфидных руд, так как они при окислении и выветривании быстро разрушаются и переходят в окисленные минеральные формы, требующие при утилизации особых технологий извлечения полезных компонент
В приповерхностной зоне техногенных отложений под воздействием кислорода, воды, фильтрационных электрических полей и других факторов происходят интенсивное растворение и миграция металлов и их соединений. При этом могут образовываться обеднённые и обогащённые металлом участки с восстановленными и окисленными формами его нахождения. Например, в участках хвостохранилищ с восстановленными сульфидами нередко наблюдаются повышенные содержания золота, а в зонах окисления возможно накопление серебра.
В настоящее время опыт разведки техногенных месторождений невелик. Наиболее тщательно такие исследования выполнены на Урале, поэтому ниже приводятся особенности состава и строения ТМ в основном Урала, используя в некоторых случаях так же обобщённые данные по месторождениям бывшего СССР.
Одной из важных проблем исследования шлакозольных отвалов теплоэлектростанций (ТЭС) является изучение их состава и количества микропримесей, возможно, представляющих ценность как сырьё для извлечения этих микропримесей.
Рассмотрим результаты исследований минерального состава и элементов примесей для зол Рефтинской ГРЭС, работающей с 1970 г и обеспечивающей тепловой и электрической энергией значительную часть Свердловской области. Золы транспортируются по системе гидрозолоудаления и складируются в золоотвал, который занимает площадь 1500 га и содержит 120 млн.т золы при ежегодном складировании золошлаковых отходов около 3,1 млн.т.
Золоотвал Рефтинской ГРЭС вытянут с севера на юг. Его длина более 1000 м, ширина от 100 до 300 м и высота 10-15 м. Опробование поверхности отвала показало, что он имеет неоднородное строение, определяющееся чередованием зол различных по гранулометрическому составу (см. таблицу 1).
Гранулометрический состав (%) зол Рефтинской ГРЭС.
Тонкозернистые золы с обломками шлака
Выделенные разновидности золы отражают её гранулометрическую сортировку при гидровыносе.
Тонкозернистые золы с обломками шлака распространены в северной части отвала. Тонкозернистые золы составляют основную массу тела золоотвала. Пылеватые золы распространены в виде субширотных полос шириной от 10 до 50 м по всей территории отвала.
Содержания микроэлементов в исходном угле и в золе в целом представлены в таблице 2.
Среднее содержание и коэффициент концентрации (КК) микроэлементов в сжигаемых углях и золах Рефтинской ГРЭС.
Содержание микроэлементов, n10 -3 %/KK
Из таблицы следует, что концентрация в золах большинства элементов возрастает (КК>1), для некоторых весьма значительно (КК Ti =20, КК Cu =4,67, КК Zn =3,47, КК Pb =2,76) и только для трёх элементов уменьшается (КК Cr =0,33, КК Co =0,97, КК Ba =0,48).
Наблюдаются определённые различия в содержании отдельных микроэлементов для указанных выше разновидностей зол. Так например, в тонкозернистых золах повышены содержания меди (КК Cu =5,17) и хрома (КК Cr =3,3), пылеватые золы характеризуются понижением содержания меди (КК Cu =2,97) и цинка (КК Zn =3,0) и повышением содержания почти всех остальных элементов (КК Be =1,55, КК Ba =0,7 и др.). В золах, содержащих обломки шлаков повышены содержания хрома (КК Cr =3,0) и марганца (КК Mn =1,82).
Главным минералом, выявленным рентгеноструктурным анализом, является муллит {Al 4 [Al 4 (Si 3 Al)O 19 (F 0,5 O,OH)]} - высокотемпературная фаза с неупорядоченной структурой, а так же тридимит (SiO 2 ) - минерал метастабильной фазы, характерный для молодых образований, в том числе для зол и шлаков.
Муллит, содержащий 71,83% Al 2 O 3 и 28,17% SiO 2 образуется при термическом перерождении ряда глинистых минералов (каолинит - Al 4 [Si 4 O 10 ][OH] 8 , галлуазит, пирофиллит и др.), мусковита, гидрослюды и других природных алюмосиликатов. По экономическому значению и объёмам производства муллит входит в число важнейших искусственных минералов.
Содержание глинозёма (Al 2 O 3 ) в золах сопоставимо с его содержанием в бокситах (С45%), поэтому золы Рефтинской ГРЭС могут служить сырьём для производства алюминия. Попутно с глинозёмом возможно извлечение фосфора.
Среди элементов примесей особое внимание привлекают редкие элементы Sc, Zr, Ti и B. Необходимы дальнейшие исследования с целью их количественной оценки.
Складирование золошлаковых отходов сопряжено с широкомасштабным их воздействием на окружающую среду (ОС), выражающееся в отчуждении земель и загрязнении атмосферы, подземных и поверхностных вод. Однако, проблема использования шлакозольных отвалов до настоящего времени не решена. Ежегодно утилизируется в основном в производстве стройматериалов менее 1% от образующегося за тот же период времени количества золы.
О воздействии золоотвалов на ОС можно судить по результатам обследования золоотвалов АО «Свердловэнерго», входящего в состав РАО «ЕЭС».
На всех электростанциях АО «Свердловэнерго» организовано оборотное водоснабжение. Однако, несмотря на наличие замкнутого цикла водоснабжения, в действительности существует сброс загрязнённых вод с золоотвалов в поверхностные и подземные водные системы. Основной причиной сброса являются фильтрационные потери оборотной воды из гидрозолоотвалов через ограждающие дамбы и их основания.
Химический состав оборотной воды электростанций АО «Свердловаэнерго» характеризует таблица 3.
Химический состав оборотной воды электростанций АО «Свердловэнерго».
ПДК элементов в воде водоёмов различного назначения
Хозяйственно бытового назначения, мг/л
Рыбохозяйственного пользования, мг/л
* Изменение содержания каждого из элементов обусловлено сжиганием углей разных типов и зольности (Экибастузский - до 43%, Волчанский - 20-37%, Буланашский - 20-37%, Кузнецкий - до 22%).
**Использованы значения рыбохозяйственных ПДК.
Из таблицы 3 следует, что в оборотных водах всех золоотвалов имеет место превышение ПДК для всех элементов, а для V, Мо и F - до 170-230 раз. Объём сброса оборотной воды с золоотвалов АО «Свердловэнерго» составляет не менее 7,6 млн 3 /год в поверхностные водоёмы (реки, ручьи) и более 50 млн 3 /год в горизонты подземных вод посредством фильтрации через основания дамб.
Площади, занимаемые каждым золоотвалом, измеряются сотнями гектаров, составляя в целом для АО «Свердловэнерго» не менее 3100 га, а с учётом площади санитарно-защитных зон (около 1700 га) из землепользования исключается 4800 га только для одной Свердловской области.
Основными источниками загрязнения атмосферы являются пылящие поверхности золоотвалов. Их негативное воздействие заключается в загрязнении воздушного бассейна неорганической пылью в результате ветровой эрозии сухой части поверхности отвалов. Результаты расчётов показали, что для золоотвалов АО «Свердловэнерго» площадь пылящих поверхностей составляет около 600 га, т.е. около 20% общей площади золоотвалов, а суммарный объём пылевыделения превышает 1700 т/год.
Риск экологических последствий аварийных ситуаций.
Экологический риск, т.е. вероятность возникновения неблагоприятных для ОС и человека последствий складирования золошлаковых отходов на золоотвалах обуславливается возможностью прорыва ограждающих дамб, что в действительности хотя и не часто, но имеет место.
Таким образом, в свете рассмотренного воздействия золоотвалов на ОС, совершенно очевидна необходимость проведения исследований по утилизации техногенных отходов, накапливающихся в золоотвалах топливно-энергетического комплекса России. В решении этой проблемы заинтересован и топливно-энергетический комплекс, выплачивающий многие сотни миллионов рублей в год за загрязнение ОС, складирование отходов, изъятия земель.
При добыче и обработке ископаемых углей возникает большое количество отходов, содержащих кроме пустой породы значительное количество угля.
Первую группу этих отходов составляют углесодержащие вскрышные (при открытой добыче угля) и шахтные породы, т.е. ТМ горнодобывающей промышленности, возникающие при добыче полезных ископаемых (см. классификацию ТМ). К настоящему времени нет достаточных сведений о ежегодных масштабах образования и складирования в отвалах подобных отходов. Наиболее изучены они в Кузнецком бассейне, где, по ориентировочным расчётам, ежегодно получают 12-15 млн.т вскрышных пород со средней зольностью 72-86%.
Вторую группу представляют отходы углеобогатительных фабрик, где они составляют 5-40% от перерабатываемой массы добытого сырья и превышают 1 млн.т/год на каждой фабрике. В зависимости от способов обогащения угля образуются кусковые и мелкодисперсные отходы соответственно при гравитационном и флотационном методах обогащения. Выход кусковых углеотходов обогатительных фабрик Кузнецкого бассейна составил в 1987 году около 11,5 млн.т, а Уральских - 4,8 млн.т.
Крупность зёрен при флотационном обогащении менее 1 мм. Представление о крупности кусковых отходов даёт таблица 4.
Гранулометрический состав отходов гравитационного обогащения.
Содержание мелкой фракции (<13 мм) не превышает 6,5%, а зольность почти не зависит от размера кускового материала.
Представление о химическом составе отходов обогатительных фабрик можно получить, проанализировав данные таблицы 5.
Преобладающей горной породой в углеотходах уральских месторождений является аргиллит, в небольших количествах присутствуют алевролиты, песчаники, карбонаты и сульфиды.
Основные минералы представлены каолинитом (20-40%), гидрослюдами (5-25%) и кварцем (30-40%). Кизеловские отходы имеют повышенное содержание сульфидов железа, следствием чего является более высокое содержание в них серы.
Содержание углерода зависит от качества обогащения.
Углеотходы представляют интерес для цементной промышленности, которая может утилизировать значительный их объём. Например, в Польше ежегодно используют 40 000 т отходов углеобогащения, применяя их в качестве компонента исходного сырья цемента в количестве 8-18%. На Днепродзержинском цементном заводе в сырьевую смесь вводят 8-9% углеотходов. На Одесском цементном заводе используют углемоечные отходы коксохимического производства для частичной замены глины и снижения расходов топлива на обжиг клинкера (около 11%).
Воздействие отходов обогащения углей на ОС аналогично, по-видимому, воздействию золоотвалов ТЭС, рассмотренному выше.
Полезные компоненты распределены в хвостохранилищах неравномерно. Возникновение участков с повышенной концентрацией металла зависит не только от изменения показателей технологии обогащения, но и от ряда других факторов, таких как
временной режим и место сброса пульпы, которые не являются постоянными;
окислительные и восстановительные процессы в приповерхностной зоне (см. выше).
Металлоносные участки представлены системой разобщённых пластообразных, линзообразных, изометрических и неправильной формы тел.
В хвостохранилищах помимо цветных и редких металлов наблюдаются повышенные содержания благородных металлов (Ag, Au, Pt) и редкоземельных и рассеянных металлов (Ge, Se, Te и др.).
Шлаки металлургического производства имеют две разновидности:
литые, поступающие в шлакоотвалы в горячем состоянии;
гранулированные - исходные шлаки после предварительной грануляции.
Распределение полезных компонент в шлаках зависит от изменения состава исходного сырья и показателей извлечения различных компонент, входящих в состав перерабатываемых концентратов, а так же от интенсивности процессов вторичного перераспределения металлов в них, которые для литых шлаков проявляются лишь в приповерхностной части, а для гранулированных - на большую глубину и более интенсивно.
Особенно велики потери металлов при добыче и обогащении руд, а, следовательно, весьма значительны их запасы в ТМ горнодобывающей промышленности. Оценим эти запасы на примере крупнейшего комбината нашей страны - Тырныаузского (Предкавказье), осуществляющего добычу и переработку вольфрамовых руд.
Кондиционными считаются руды с содержанием триоксида вольфрама C WO3 >0,1%. В хвостах флотации содержание C WO3 <0,04%. В процессе подготовительных горных работ эксплуатационный блок расчленяется на кондиционные и некондиционные руды, выемка которых из недр осуществляется раздельно: кондиционные руды отгружаются на обогатительную фабрику, а некондиционные направляются в отвал.
Технологическая схема и показатели добычи и переработки руд показаны на рис. 2, из которого следует, что на долю кондиционных руд приходится всего 13,5% от всей добытой горной массы. В этих рудах содержится лишь 34,6% полезного компонента. Некондиционные руды, составляющие 86,5% добытой горной массы, уходят в отвал, унося с собой 65,4% металла, содержащегося в эксплуатационном блоке. Таким образом, уже первая стадия добычи коренных руд связана с огромными потерями полезного компонента, причём это потери не в недрах, а в отвалах.
Рис. 2. Схема отработки и обогащения руд Тырныаузского месторождения с технологичес-кими показателями по отдельным этапам.
, , - содержание C WO 3 в исходной горной массе, обогащённом и отвальном продуктах соответственно, %;
- выход продуктов переработки и обогащения руд, %;
- извлечение триоксида вольфрама в соответствующий продукт, %.
На обогатительной фабрике руда подвергается дроблению, измельчению и флотации. В хвосты флотации уходит 13,48% рудной массы, вместе с которой уносится ещё 11,4% полезного компонента. В итоге из всей массы металла, содержащегося в эксплуатационном блоке, в товарный концентрат извлекается всего 23,2%, а 76,8% теряется в отвалах некондиционной руды и хвостохранилищах.
Изучение технологической пробы некондиционной руды Тырныаузского месторождения показало, что отвалы некондиционной руды это полноценное техногенное месторождение, пригодное для переработки, причём со значительно меньшими затратами, чем месторождения коренных руд.
Распределение содержания триоксида вольфрама в порциях этой пробы приведено в таблице 6.
Распределение триоксида вольфрама в порциях технологической пробы некондиционной руды Тырныаузского месторождения.
*Среднее содержание WO 3 по всем вышестоящим порциям, включая данную (С n' ), ко торое рассчитывается по формуле Сп'=(?miCi)/(?mi)
где m i и C i - масса и содержание WO 3 в i-й порции технологической пробы;
n' - количество порций, для которых рассчитывается С n' .
?**Относительная масса (М i , %) WO 3 в i-й порции технологической пробы, которая оп-
ределяется равенством М i = m i C i / (m i C i )100, %,
где n - суммарное количество порций в технологической пробе, в данном случае - 20.
***Суммарная относительная масса WO 3 (М n' ) для всех вышестоящих порций, включая
данную, равная М n' = (С n' m i )/(С n m i )100, %.
Проба состояла из кусков крупностью 25-50 мм. Среднее содержание C WO3 =0,057%, т.е. в целом она относится к категории забалансовых руд, так как минимальное промышленное содержание в руде C WO3 =0,1%. После взвешивания и анализа каждого куска и ранжирования кусков по содержанию C WO3 вся проба была разделена на 20 отдельных порций примерно равных по массе. Затем эти порции были объединены в три группы. В группу I вошли 5 порций с самыми высокими значениями C WO3 , для каждой из которых содержание C WO3 оказалось выше, чем в хвостах флотации, т.е. C WO3 >0,04%. В группу II попали 5 порций, у которых среднее накопленное содержание металла оказалось выше, чем минимальное промышленное на месторождении, т.е. C WO3 >0,1%, но в самих порциях содержание металла ниже, чем в хвостах флотации, т.е. C WO3 <0,04%. В группу III попали оставшиеся 10 порций, у которых оба показателя ниже установленных пределов.
Данные таблицы 6 показывают, что распределение вольфрама в кусках и порциях некондиционной руды очень неравномерно. Действительно, некондиционная в целом горная масса технологической пробы, оказывается, наполовину (10 из 20 порций) представлена вполне кондиционной рудой, в которой сосредоточено 92,8% всего металла, а его средняя концентрация C WO3 =0,106% (групповые порции I и II вместе). Более того, кондиционная рудная часть пробы также наполовину сложена некондиционной рудой со средним содержанием C WO3 =0,026% и запасом металла в 11,4% (групповая порция II). Следовательно, в данном случае отвал некондиционных руд на 50% представлен вполне кондиционными рудами, в которых сосредоточено 92,8% металла со средним содержанием C WO3 =0,106%. Такой отвал нельзя считать бросовым, он должен рассматриваться как ТМ, вполне пригодное для разработки, причём, с гораздо меньшими затратами, чем коренное, так как горная масса в нём уже добыта и складирована.
Аналогичные результаты анализа состава отвалов некондиционных руд получаются и для многих других типов рудных месторождений. В настоящее время уже имеется опыт переработки отвалов некондиционных руд при использовании крупнопорционной сортировки горной массы и покусковой и мелкопорционной сепарации некондиционных руд с помощью ядернофизических методов. Например, извлечение Pb и Zn из некондиционных полиметаллических руд Алмалыкского ГОК'а (Узбекистан) составляет около 50% от массы полученного комбинатом металла.
ТМ цветных и редких металлов помимо доизвлечения основных полезных компонент и получения стройматериалов (щебень, песок, гравий, закладочный материал и т.д.) могут являться ценным источником попутных элементов, которые в начальный период добычи руд по тем или иным причинам не извлекались. Так, например, отвалы и хвосты медно-никелевых руд Норильска содержат промышленные с точки зрения современных технологий их переработки концентрации платиноидов, золота и серебра, которые ранее извлекались лишь частично. Практически все полиметаллические и медно-цинковые месторождения содержат Ag, Cd редкие и рассеянные элементы, потребность в которых резко возросла в последнее время, и промышленные кондиции на них в связи с этим существенно понизились.
ТМ цветных
Техногенные месторождения курс лекций. Геология, гидрология и геодезия.
Курсовая работа по теме Роль комп'ютерних технологій при навчанні іноземній мові
Реферат На Тему Доисторический И Исторический Периоды Развития Человека
Курсовая работа по теме Особенности воспитательного процесса в учреждениях дополнительного образования
Курсовая работа по теме Разработка технологического процесса изготовления детали 'гайка'
Сочинение: Педагогика Сократа
Реферат: Суд присяжных: традиция или новация. Скачать бесплатно и без регистрации
Эссе Дар Бораи Шукри Истиклоли Ватан
Пособие по теме Разнообразие кристаллографических форм
Курсовая работа: Применение тестовых заданий на уроках биологии
Реферат Воздушно Космические Силы
Сейчас преобладает мобилистическая теория
Crm Система Реферат
Сочинение На Тему Образ Капитанской Дочки
Смерть Реферат
Профилактика Алкоголизма И Наркомании Реферат
Контрольная работа по теме Экспортное страхование
Реферат по теме Математическая логика и теория алгоритмов
Реферат по теме Юридические лица как участники международных правоотношений
Менің Жанұям Эссе
Курсовая работа: Технические средства образования в детском саду. Скачать бесплатно и без регистрации
Разработка программы и методики аудиторской проверки операций по движению товарно-материальных ценностей. Выявление типичных ошибок и способы их исправления - Бухгалтерский учет и аудит курсовая работа
Отчет о прибылях и убытках: порядок составления и информационные возможности - Бухгалтерский учет и аудит курсовая работа
Безналичные расчеты и кассовые операции гостиничных организаций - Бухгалтерский учет и аудит курсовая работа


Report Page