Техника безопасности при работе слесаря контрольно-измерительных приборов и автоматики - Безопасность жизнедеятельности и охрана труда дипломная работа

Техника безопасности при работе слесаря контрольно-измерительных приборов и автоматики - Безопасность жизнедеятельности и охрана труда дипломная работа




































Главная

Безопасность жизнедеятельности и охрана труда
Техника безопасности при работе слесаря контрольно-измерительных приборов и автоматики

Понятие осциллографа и его значение. Сравнительная характеристика осциллографов С1-67 и С1-102М. Технологические основы работы осциллографа С1-65А, его неисправности и особенности ремонта. Безопасность труда слесаря контрольно-измерительных приборов.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Глава 1. Общие сведения об осциллографах
1.1 Понятие осциллографа и его значение
1.1.2 Принцип действия осциллографов
1.1.3 Структурная схема осциллографа
1.1.4 Виды регулировок осциллографа
1.2 Сравнительная характеристика осциллографов С1-67 и С1-102М
Глава 2. Технологические основы работы осциллографа С1-65А
2.3 Неисправность и ремонт осциллографа С1-65А
Глава 3. Техника безопасности при работе слесаря КИПа
3.2 Требования безопасности перед началом работы
3.3 Требования безопасности во время работы
3.4 Требования безопасности по окончании работ
Электронный осциллограф предназначен для визуального наблюдения на экране быстро меняющегося напряжения периодических и одиночных сигналов в радиотехнических и электротехнических цепях. С помощью осциллографа можно не только видеть процесс изменения их со временем, но и измерять амплитуду, длительность коротких импульсных сигналов, частоту периодических процессов и т.п. Кроме того, осциллограф дает возможность измерять силу тока, сопротивление, а также с помощью соответствующих преобразователей исследовать изменение неэлектрических величин (давление, упругое напряжение, температуру и др.).
Актуальность дипломной работы проявляется в следующем: в настоящее время осциллограф является обязательным атрибутом любой современной лаборатории. В то же время, современная осциллография представлена очень широким набором приборов с различными характеристиками. Поэтому при оснащении новой лаборатории или переоборудовании старой встаёт задача выбора правильного осциллографа. При этом простое сравнение характеристик и возможностей осциллографов различных производителей не всегда может дать ответ на вопрос, какой прибор лучше подходит для решения тех или иных задач.
Цель выпускной работы: более подробно описать осциллографы, рассмотреть их классификацию и разъяснить технику безопасности при работе слесаря Контрольно-Измерительных приборов и автоматики
Задачами выпускной работы являются:
1. Дать описание осциллографам и их характеристикам
3. Разъяснить технику безопасности при работе слесаря КипА
Глава 1. Общие сведения об осциллографах
1.1 Понятие осциллографа и его значение
Осцилломграф (лат. oscillo -- качаюсь + греч. гсбцщ -- пишу) -- прибор, предназначенный для исследования (наблюдения, записи; измерения) амплитудных и временнымх параметров электрического сигнала, подаваемого на его вход, либо непосредственно на экране, либо записываемого на фотоленте.
Современные осциллографы позволяют исследовать сигнал гигагерцовых частот. Для исследования более высокочастотных сигналов можно использовать электронно-оптические камеры.
Наряду с мультиметрами, осциллографы можно считать наиболее распространенными контрольно-измерительными приборами во многих технических отраслях производства и научных исследований, или же при решении разных задач поставленных перед пользователем.
История этого прибора началась еще в 1947 году, когда американская фирма Tektronix запустила производство первой модели аналоговых осциллографов Tektronix Model 511, на основе применения катодно-лучевой трубки. А уже в 1980 годах начался принципиально новый этап развития осциллографов: американская фирма LeCroy Corporation выпускает первые цифровые запоминающие осциллографы.
А широкое распространение и прогресс в развитии современных цифровых технологий привели к серьезному изменению характеристик и расширению возможностей осциллографов этого типа. По способу обработки входного сигнала осциллографы можно разделить на аналоговые и цифровые, а также по количеству лучей на однолучевые, двулучевые и т.д. N-лучевой осциллограф имеет N сигнальных входов и может одновременно отображать на экране N графиков. Цифровые осциллографы в свою очередь делятся на запоминающие, люминофорные и стробоскопические. Для лучшего понимания различий и особенностей отдельных типов осциллографов, ниже представлены их краткие описания.
Приборы этого типа считаются классическими представителями общего понятия об осциллографе, как контрольно-измерительном приборе (см. рис. 1).
В целом, любой аналоговый осциллограф состоит из следующих составляющих: входной делитель, усилитель вертикального отклонения, схема синхронизации и горизонтального отклонения, источник питания и электронно-лучевая трубка.
В осциллографах применяют электронно-лучевые трубки с электростатическим отклонением, в отличие от телевизоров и мониторов, где используется магнитное отклонение. Электронно-лучевые трубки с электростатическим отклонением, хотя и более сложны в изготовлении, имеют гораздо больший частотный диапазон. В каждый конкретный момент отклонение электронного луча и светового пятна на экране, которое он образует, пропорционально напряжению, приложенному к пластинам вертикального отклонения.
Напряжение на пластинах горизонтального отклонения изменяется линейно, обеспечивая горизонтальную развертку. Нижняя частота, при которой картинка еще читается, составляет в среднем 10 Гц, хотя при применении специальных электронно-лучевых трубок с большим временем послесвечения она может быть значительно ниже. Верхняя рабочая частота определяется в основном характеристиками усилителя вертикального отклонения и емкостью между отклоняющими пластинами.
В последнее время цифровые осциллографы, которые имеют большой ряд преимуществ, вытесняют аналоговые приборы из мирового рынка, но все-таки традиционные аналоговые осциллографы реального времени не исчезают полностью, в первую очередь из-за низкой стоимости в сравнении с цифровыми осциллографами. Плюс к этому с развитием элементной базы аналоговые осциллографы приобрели ряд важных дополнительных функций и возможностей, например, чрезвычайно облегчающие работу курсоры с цифровым отсчетом величин (напряжения и времени) и очень удобное цифровое управление. С помощью входного мультиплексора для нескольких каналов можно достаточно просто организовать единую развертку на однолучевой трубке с отображением нескольких сигналов.
Цифровые запоминающие осциллографы:
По сравнению с аналоговыми предшественниками они имеют более широкие возможности, а благодаря снижению стоимости цифровых схем с каждым годом они становятся более доступными потенциальным покупателям. В общем виде цифровой осциллограф состоит из входного делителя, нормализующего усилителя, аналого-цифрового преобразователя, блока памяти, устройства управления и устройства отображения. Устройство отображения обычно выполняется на основе жидкокристаллической панели (см. рис. 2).
Цифровые осциллографы владеют значительными возможностями за счет самого принципа работы. Входной сигнал после нормализации преобразуется в цифровую форму и записывается в память. Скорость записи (количество выборок в секунду) задается устройством управления, и ее верхний предел определяется быстродействием аналого-цифрового преобразователя, а нижний предел теоретически не ограничен, в отличие от аналоговых осциллографов.
Полная оцифровка сигнала позволяет избежать отображения сигнала в реальном масштабе времени и повысить устойчивость изображения, организовать сохранение результатов, упростить масштабирование и растяжку, ввести метки.
Рисунок 3: Вывод на экран и перемещение осциллограмм в цифровом осциллографе смешанных сигналов RIGOL
Более дорогие приборы имеют цветной дисплей (см. рис. 3), благодаря чему они позволяют легко различать сигналы различных каналов, метки времени и амплитуды, курсоры, могут накапливать отображаемый в течение большого числа разверток сигнал, а также выделять цветом места с наибольшей повторяемостью сигнала.
Характеристики современных цифровых осциллографов впечатляющие: высокая чувствительность (от 1 мВ/дел) и разрешение (от 8 до 14 бит); широкий диапазон коэффициентов разверток (от 2 нс до 50 с); растяжка сигнала по времени или по амплитуде в широких пределах; развитая логика синхронизации с любыми задержками запуска развертки. Кроме обычных схем запуска синхронизации запуск может производиться, например, при наступлении определенного события или при его отсутствии, а также при достижении определенного значения параметра сигнала. Сигнал, по которому осуществляется синхронизация, и основной сигнал можно наблюдать в момент непосредственно перед запуском развертки.
Используемые в осциллографах процессоры цифровой обработки сигнала предоставляют возможность исследования спектра сигнала посредством анализа с применением быстрого преобразования Фурье (см. рис. 4). Цифровое представление информации обеспечивает сохранение экрана с результатами измерения в памяти компьютера или вывод непосредственно на принтер. Некоторые осциллографы имеют накопитель для сохранения изображения в виде файлов для последующего архивирования или дальнейшей обработки.
Цифровые люминофорные осциллографы:
Рисунок 5: Осциллограмма на экране люминофорного осциллографа
Этот класс цифровых осциллографов использует новую архитектуру построения, которая базируется на технологии «цифрового люминофора» (см. рис. 5). Эта технология в цифровой форме имитирует присущее аналоговым осциллографам реального времени изменение интенсивности изображения. Иными словами, цифровые люминофорные осциллографы позволяют разработчикам видеть на экране, например, модулированные сигналы и все их тонкие детали, как и аналоговые осциллографы реального времени, обеспечивая при этом их хранение, измерение и анализ, как цифровые запоминающие осциллографы. Как и другие современные цифровые осциллографы, люминофорные осциллографы имеют память, в которой, в частности, хранятся значения разницы времен задержек между различными пробниками.
Для примера, способность цифровых люминофорных осциллографов отображать информацию с переменной интенсивностью существенным образом облегчает поиск неисправностей в импульсных блоках питания, особенно определение избыточной глубины модуляции сигнала в цепях регулировки выходного напряжения, которая, как известно, приводит к нестабильности работы этих блоков. Таким образом, цифровые люминофорные осциллографы не только объединяют лучшие качества аналоговых и цифровых приборов, но и превосходят их. Они имеют все достоинства цифровых запоминающих осциллографов (от хранения данных до сложных видов синхронизации), обеспечивая в то же время особые возможности аналоговых осциллографов реального времени (мгновенную реакцию на изменение сигнала и отображение сигнала с переменной яркостью, которая есть возможной за счет цифровой эмуляции флюоресценции)
Цифровые стробоскопические осциллографы:
В этом классе приборов используется принцип последовательного стробирования мгновенных значений сигнала для преобразования (сжатия) его спектра; при каждом повторении сигнала определяется (отбирается) мгновенное значение сигнала в одной точке (см. рис. 6).
К приходу следующего сигнала точка отбора перемещается по сигналу, и так до тех пор, пока он не будет весь простробирован. Преобразованный сигнал, представляющий собой огибающую мгновенных значений входного сигнала, повторяет его форму. Длительность преобразованного сигнала во много раз превышает длительность исследуемого и, следовательно, имеет место сжатие спектра, что эквивалентно соответствующему расширению полосы пропускания. Стробоскопические осциллографы наиболее широкополосные (значение полосы пропускания может становить 100ГГц) и позволяют исследовать периодические сигналы с минимальной длительностью.
Рисунок 6: Цифровой стробоскопический осциллограф
Новый класс осциллографов, который может быть как внешним прибором с USB или параллельным портом ввода-вывода данных, или же внутренним дополнительным прибором на основе PCI или ISA карт (см. рис. 7). Программное обеспечение любого виртуального осциллографа дает возможность полного управления прибором, а также предоставляет ряд сервисных возможностей, например, экспорт/импорт данных, математическая обработка сигналов, расширенные измерения, цифровая фильтрация и т. д.
Различные серии осциллографов на базе ПК могут использоваться для очень широкого спектра измерений, в частности при разработке и обслуживании радиоэлектронной аппаратуры, в сферах телекоммуникаций и связи, при производстве компьютерной техники, при диагностике автотранспортных средств на станциях техобслуживания и многих других, в которых необходимо тестировать и оценивать происходящие переходные, неустойчивые процессы. Учитывая ключевые преимущества - высокое быстродействие, малые габариты, легкость в использовании и невысокую стоимость, можно утверждать, что данные приборы - достойная альтернатива традиционным цифровым запоминающим осциллографам Недостатком прибора является невозможность увидеть и измерить постоянную составляющую сигналов.
Прогресс в развитии цифровых технологий позволил обычные стационарные цифровые осциллографы преобразовать в портативные осциллографы с отличными массогабаритными показателями и с малым энергопотреблением (см. рис. 8).
Причем портативные приборы с питанием от батареек не уступают стационарным осциллографам по функциональности и имеют широкие возможности применения в различных отраслях производства, обслуживания, исследований.
1.1.2 Принцип действия осциллографов
«Сердцем» прибора является электронно-лучевая трубка (ЭЛТ) (см. рис. 9)
Рисунок 9: Устройство электронно-лучевой трубки с электростатическим управлением.
ЭЛТ является электронной лампой, и, как и все лампы, она «заполнена» вакуумом. Катод излучает электроны, а система фокусировки формирует из них тонкий луч. Этот электронный луч попадает на экран, покрытый люминофором, который под воздействием электронной бомбардировки светится, и в центре экрана возникает светящаяся точка. Две пары пластин ЭЛТ отклоняют электронный луч в двух взаимно перпендикулярных направлениях, которые можно рассматривать как координатные оси. Поэтому для наблюдения на экране ЭЛТ исследуемого напряжения необходимо, чтобы луч отклонялся по горизонтальной оси пропорционально времени, а по вертикальной оси - пропорционально исследуемому напряжению.
На пластины горизонтального отклонения луча (расположенные вертикально) подается напряжение развертки. Оно имеет пилообразную форму: постепенно линейно нарастает и быстро спадает (см. рис. 10).
Рисунок 10: Форма напряжения развертки
Отрицательное напряжение отклоняет луч влево, а положительное - вправо (если смотреть со стороны экрана). В результате луч движется по экрану слева направо с определенной постоянной скоростью, после чего очень быстро возвращается к левой границе экрана и повторяет свое движение. Расстояние, которое проходит луч вдоль горизонтальной оси, пропорционально времени. Этот процесс называется разверткой, а горизонтальная линия, которую луч прочерчивает по экрану, называется линией развертки (иногда при измерениях ее называют нулевой линией). Она играет роль оси времени t графика. Частота повторения пилообразных импульсов называется частотой развертки, но она для измерений не используется. Для измерений нужно знать скорость развертки, про которую будет сказано ниже.
Если при этом на пластины вертикального отклонения (расположенные горизонтально) подать исследуемое напряжение, то луч начнет отклоняться и по вертикали: при положительном напряжении вверх, а при отрицательном - вниз. Движения по вертикали и по горизонтали происходят одновременно и в результате исследуемый сигнал «разворачивается» во времени. Получившееся изображение называется осциллограммой. На самом деле кроме линейной существует еще круговая и спиральная развертки, а также фигуры Лиссажу, когда один из сигналов является разверткой для второго.
Важным моментом является соотношение частот развертки и сигнала. Если эти частоты в точности равны, то на экране отображается ровно один период исследуемого сигнала. Если частота сигнала вдвое больше частоты развертки, то мы увидим два периода, если втрое - то три. Если частота сигнала вдвое меньше частоты развертки, то мы увидим только половину периода сигнала. Частоту (скорость) развертки можно регулировать в широких пределах. Но изображение будет стабильным только в том случае, если частоты развертки и сигнала точь-в-точь совпадают. При малейшем несовпадении частот, каждое начало движения луча по экрану будет соответствовать новой точке функции входного сигнала, и ее график каждый раз будет рисоваться в новом положении. При небольшом несовпадении частот (доли герца) это будет выглядеть как график, «плывущий» влево или вправо. При несовпадении частот в несколько герц и более, осциллограмма становится нечитаемой (см. рис. 11).
Рисунок 11: Осциллограмма при отсутствии синхронизации.
1.1.3 Структурная схема осциллографа
Рисунок 12: Структурная схема осциллографа А
Теперь, когда вы имеете представление о назначении и работе электронно-лучевой трубки, можно познакомиться со структурной схемой (см. рис. 12, рис. 13) и комплектом узлов, питающих электроды трубки.
Рисунок 13: Структурная схема осциллографа Б
Во-первых, это генератор развертки, выдающий пилообразное напряжение, частоту которого можно изменять кнопочными переключателями (кнопки 3--6 на лицевой панели осциллографа). Диапазон частот генератора весьма широк -- oт единиц герц до единиц мегагерц. Правда, около кнопок переключателей диапазонов проставлены значения длительности (продолжительности) пилообразных колебаний, а не их частоты. Поэтому нужно уметь переводить эту единицу измерений в частоту, и наоборот. Делают это по формулам: F= 1/Т и Т -- 1 /F, где Р--частота колебаний, а Т -- длительность (или период) одного колебания. Если частота выражена в герцах, то длительность получается в секундах; частота--в килогерцах (1 кГц=1000 Гц), длительность-- в миллисекундах (1 мс = -- 0.001 с); частота -- в мегагерцах (1 МГц--10 6 Гц), длительность -- в микросекундах (1 мкс=10-6с) (см. рис. 13).
К примеру, длительности 50 мс соответствует частота 1/0,05 = 20 Гц, а длительности 0,1 мкс--частота 1/10 = 107 =10 МГц. В обоих примерах даны крайние диапазоны длительностей, которые можно устанавливать кнопочными переключателями осциллографа. Эти значения приведены по отношению к одному делению масштабной сетки -- она прикреплена к экрану и содержит 8 делений по горизонтали и по вертикали (цена деления равна 5 мм).
Иначе говоря, максимальной длине развертки (8 делений) соответствует длительность пилообразных колебаний генератора развертки -- 50 мсХ8 --400 мс для первого примера и 0.1 мкс х 8 = 0,8 мкс -- для второго. В первом случае на экране осциллографа можно наблюдать один период колебаний сигнала частотой 1:0,4 с = 2,5 Гц, во втором -- 1:0,8 мкс = 1,25 МГц.
Подобный подсчет справедлив для синусоидальных колебаний или импульсных сигналов при равных длительностях импульса н паузы (см. рис. 14). Если же длительность импульсов и пауз между ними различны, в формулу следует подставлять значение периода следования импульсов (период выражают теми же единицами, что и длительность).
Рисунок 14: Подсчёт импульсных сигналов или синусоидальных колебаний
С генератора развертки сигнал подается на усилитель канала горизонтального отклонения (канала X), необходимый для получения такой амплитуды пилообразного напряжения, при которой электронный луч отклоняется на весь экран. В усилителе расположены регулятор (11) длины линии развертки (иначе говоря, регулятор амплитуды выходного пилообразного напряжения) и регулятор (15) смещения линии развертки по горизонтали.
Канал вертикальной развертки состоит из входного аттенюатора (делителя входного сигнала), позволяющего выбирать нужную высоту рассматриваемого изображения в зависимости от амплитуды исследуемых колебаний, и из двух усилителей -- предварительного и оконечного.
С помощью кнопки 2 входного аттенюатора амплитуду сигнала можно уменьшить в 100 раз. Более плавные изменения уровня сигнала, поступающего на оконечный усилитель, а значит, размера изображения на экране, получают с помощью кнопок 1 калиброванного переключателя диапазона напряжений. В итоге при максимальной чувствительности осциллографа в одном делении масштабной сетки «уместится» входной сигнал амплитудой 0,01 В (10 мВ). А максимальная амплитуда сигнала, которую можно наблюдать на экране трубки, составляет 300 В.
В оконечном усилителе этою канала, как и канала горизонтального отклонения, есть регулировка смещения луча (17), а значит, и изображения по вертикали. Зачем это бывает нужно (помимо установки луча на среднюю линию), станет ясно позже (см. рис. 15).
Кроме того, на входе канала вертикального отклонения стоит переключатель 13, с помощью которого можно либо подавать на усилитель (конечно, через аттенюатор) постоянную составляющую исследуемого сигнала, либо избавляться от нее включением разделительного конденсатора. Это, в свою очередь, позволяет пользоваться осциллографом как вольтметром постоянного тока, способным измерять постоянные напряжения примерно от 10 мВ до 300 В. Причем входное сопротивление «вольтметра» достаточно высокое -- 1 МОм.
Когда выводы разделительного конденсатора замкнуты контактами переключателя, говорят, что вход осциллографа открытый, а когда они разомкнуты -- закрытый.
Рисунок 15: Осциллограф и обозначение его регулировок
1.1.4 Виды регулировок осциллографа
Рассмотрим переднюю панель двухканального осциллографа С1-83 (см. рис. 16).
Рисунок 16: Передняя панель осциллографа С1-83.
Б - управление отображением каналов.
Г - регулировка яркости луча, фокусировки и подсветки экрана.
Хорошо видно, что экран осциллографа разбит на клетки. Эти клетки называются делениями, и используются при измерениях: к ним привязываются все масштабы по вертикали и горизонтали. Масштаб по вертикали - вольты на деление (В/дел или V/дел), масштаб по горизонтали секунды (милли- и микросекунды) на деление. Обычно осциллограф имеет 6…10 делений по горизонтали и 4…8 делений по вертикали. Центральные вертикальная и горизонтальная линии имеют дополнительные риски, делящие деление на 5 или 10 частей (см. рис. 17). Риски служат для более точных измерений, они являются долями деления.
Рисунок 17: Деления экрана осциллографа
Управление обоими каналами одинаковое. Рассмотрим его на примере канала I (см. рис. 18)
Рисунок 18: Органы управления канала I.
1. Переключатель режима входа. В верхнем положении « » на вход поступает и постоянное и переменное напряжение. Это называется «открытый вход» - то есть открытый для постоянного тока. В нижнем положении «~» на вход проходит только переменное напряжение, это позволяет измерять маленькое переменное напряжение на фоне большого постоянного, например в усилителях. Реализуется это очень просто: вход усилителя подключается через конденсатор. Это называется «закрытый вход». Нужно учесть, что при закрытом входе очень низкие частоты (ниже 1...5 Гц) сильно ослабляются, поэтому измерять их можно только при открытом входе. В среднем положении переключателя 1 вход усилителя осциллографа отключается от входного разъема и замыкается на землю. Это позволяет при помощи ручки 7 выставить линию развертки в нужное место.
3, 4, 5, 6. Регулятор чувствительности канала вертикального отклонения (масштаба по вертикали). Переключатель 4 задает масштаб ступенчато. Задаваемые им значения нанесены рядом с ним. На выбранное значение указывает риска 5 на переключателе. На рисунке она указывает на значение 0,2 вольта/деление. Ручка 3, расположенная соответственно с переключателем, позволяет плавно уменьшать масштаб в 2…3 раза. В крайнем правом положении (на рис. 18 ручка «плавно» находится именно в нем) эта ручка имеет фиксацию, тогда масштаб по вертикали в точности равен заданному переключателем 4. Значения масштабов, выделенные скобкой 6, указаны в милливольтах на деление - об этом говорит надпись «mV» внутри скобки.
7. Ручка выполняет две функции. При вращении она перемещает график канала по вертикали вверх или вниз. При «вытягивании» задает множитель масштаба по вертикали: вытянутая ручка (см. рис. 19) задает множитель х1, а утопленная множитель х10. Утопленное и вытянутое положения символически показаны над и под ручкой.
Рисунок 19: Ручка множителя масштаба по вертикали вытянута в положение «х1»
Канал II (см. рис. 20) аналогичен каналу I:
Рисунок 20: Органы управления канала II
Но второй канал имеет дополнительный переключатель 6, позволяющий инвертировать его входной сигнал. В нажатом положении канал работает как обычно, а в вытянутом - инвертируется, то есть при отрицательном входном сигнале луч движется вверх, а при положительном - вниз. Это необходимо при измерении, например, сдвига фаз.
На рис. 21 показано управление отображением каналов, которое определяется нажатием на одну из кнопок.
Рисунок 21: Управление отображением каналов
1 - Работает только канал I, канал II отключен.
2 - Оба канала отображаются одновременно (луч очень быстро переключается между каналами) и взаимное положение осциллограмм обоих каналов верное. В этом режиме можно измерять сдвиг фаз.
3 - Осциллограф показывает сумму или разность сигналов в каналах (знак второго канала определяется положением ручки 6 на рис. 20).
4 - Отображаются сигналы обоих каналов, но они независимы во времени, поэтому никакое сравнение сигналов относительно времени и сдвига фаз производить нельзя.
5 - Работает только канал II, канал I отключен.
Рисунок 22: Органы управления развёрткой
Панель управления разверткой (см. рис. 22) похожа на панель управления каналом вертикального отклонения луча. Она содержит ручку 4, позволяющую сдвигать изображение влево-вправо и комбинированный регулятор (1 - ступенчато, 3 - плавно) скорости развертки (масштаба по горизонтали). Риска 2 на переключателе показывает установленное значение. Как и в каналах вертикального отклонения, переключатель скорости развертки имеет разные единицы измерения: секунды s, миллисекунды ms, микросекунды µs. Вытянутая/утопленная ручка 4 задает множитель скорости развертки х0,2 и х1 соответственно.
Рисунок 23: Органы управления синхронизацией
На панели управления синхронизацией (см. рис. 23) задается:
1 - Источник внутренней синхронизации: напряжением какого канала синхронизируется движение луча. Эта синхронизация производится входным сигналом, поэтому называется внутренней. Такой режим используется для большинства измерений. Варианты здесь такие: либо синхронизация только сигналом канала I. Либо попытка синхронизации от канала I, а если не получается, то синхронизация производится сигналом канала II. Первый вариант иногда работает немного лучше, поэтому надо стараться, чтобы сигнал первого канала был достаточно большой для стабильной синхронизации. В подавляющем большинстве случаев для нормальной работы следует выбирать именно этот режим синхронизации, включив кнопку «I».
2 - Внешняя синхронизация. Движение луча синхронизируется импульсами, подаваемыми со специального внешнего источника на вход синхронизации осциллографа. Такой режим иногда требуется для исследования специфических сигналов.
Если внешнего источника синхронизации нет, то получить устойчивое изображение невозможно. Кнопки «0,5-5» и «5-50» задают диапазон входных напряжений от внешнего источника синхронизации. Кнопка «X-Y» совместно с кнопкой «II X-Y» управления отображением каналов (см. рис. 21) подает сигнал канала II на пластины горизонтальной развертки. В этом режиме можно наблюдать фигуры Лиссажу.
3 - Ручка «Уровень синхронизации». Задает напряжение синхронизации. В нажатом положении этой ручки развертка автоматическая. При этом движение луча будет происходить даже если синхронизации не произойдет. Луч задерживается в начале движения на некоторое время до момента синхронизации, но через некоторое время все равно начинает движение. Это «мягкий» режим, более удобный для работы, так как луч всегда остается видимым. В вытянутом положении ручки включается ждущая развертка. В этом режиме луч не начнет движения до тех пор, пока не произойдет синхронизации. Если синхронизации не происходит, луч не движется. Такой режим хорошо подходит для наблюдения непериодических сигналов.
4 - «Полярность» синхронизации. На самом деле знаки «+» и «-» означают несколько другое. В положении «+» синхронизация происходит по фронту, т.е. в тот момент, когда входное напряжение достигает заданного (ручкой «Уровень синхронизации») значения при нарастании входного напряжения (изменении от «-» к «+»), рис. 24. В положении «-» синхронизация происходит по спаду - при убывании входного напряжения (изменении от «+» к «-»). В осциллографе в цепи синхронизации используются две различные схемы: одна определяет равно ли входное напряжение заданному и если равно - запускает движение луча. Это напряжение задается ручкой «Уровень синхронизации». Вторая схема определяет, как при этом изменяется входное напряжение - возрастает или убывает. И соответственно разрешает первой схеме сработать.
Рисунок 24: «Полярность» синхронизации.
5 - Режим входа синхронизации. Относится как к внешней, так и ко внутренней синхронизации. В положении «~» вход закрытый, и синхронизация происходит только от переменного напряжения. В положении вход открытый, и на срабатывание схемы синхронизации действует и переменное напряжение, и постоянное. Режим НЧ то же самое, но сигнал попадает на цепь синхронизации через фильтр низких частот, обрезающий высокочастотные помехи. Это режим есть не во всех осциллографах.
6 - Вход для подачи сигнала внешней синхронизации.
1.2 Сравнительная характеристика осциллографов С1-67 и С1-102М
Таблица 1: Сравнительные характеристики осциллографов
Диапазон измеряемых интервалов времени
Погрешность измерения амплитуды сигнала
Погрешность измерений интервалов времени
Рабочая площадь экрана по горизонтали
Длительность развёртки максимальная
Амплитуда сигналов внешней синхронизации
Диапазон частот внешней синхронизации
Входное сопротивление внешней синхронизации
На основании приведённых мной данных, я опишу и рассмотрю осциллограф С1-65А, поскольку он используется на Кольской Атомной Электростанции в цехе Тепловой Автоматики и Измерений.
ГЛАВА 2. ТЕХНОЛОГИЧЕСКИЕ ОСНОВЫ РАБОТЫ ОСЦИЛЛОГРАФА С1-65А
Рисунок 27: Схема осциллографа С1-65А
Минимальная частота следования развёртки, при которой обеспечивается наблюдение исследуемого сигнала на наиболее быстрой развёр
Техника безопасности при работе слесаря контрольно-измерительных приборов и автоматики дипломная работа. Безопасность жизнедеятельности и охрана труда.
Реферат: Преступление и наказание по Русской правде 3
Рефераты Ценность Жизни
Курсовая работа: Замена резьбовых соединений рычагов подвески автомобиля ГАЗ 24 на резинометаллические шарниры
Курсовая работа: Деятельность Пенсионного фонда Российской Федерации
Реферат На Тему Хирургическое Лечение Хронического Панкреатита
Реферат: Формирование физической готовности детей старшего дошкольного возраста
Реферат: Папоротеподібні Загальна характеристика 2
Понятия Минимальной Стандартной Единица В Биологии Реферат
Моделирование Системы Курсовая
Курсовая работа: Невербальные коммуникации
Первичная Перегонка Нефти Реферат
Реферат: Туризм в Республике Казахстан
Итоговое Сочинение На Тему Памятники Культуры
1 Контрольная Работа По Физике 7 Класс
Дипломная работа: Анализ ликвидности и платежеспособности. Скачать бесплатно и без регистрации
Доклад: Паулуччи, Филипп Осипович
Курсовая Разница Кредит
Отчет Учебной Практике Следственном Отделе
Контрольная Работа Тетрадь По Английскому 3 Класс
Меры По Профилактике Коррупции Реферат
Сигнал "Воздушная тревога" и действия населения при его объявлении - Безопасность жизнедеятельности и охрана труда реферат
Психология труда - Безопасность жизнедеятельности и охрана труда презентация
Разработка применения спасательного эвакуационного устройства "Самоспасатель" на примере высотного офисного здания - Безопасность жизнедеятельности и охрана труда дипломная работа


Report Page