Taylor Slit

Taylor Slit




👉🏻👉🏻👉🏻 ALL INFORMATION CLICK HERE 👈🏻👈🏻👈🏻




















































From Wikipedia, the free encyclopedia
"Slit experiment" redirects here. For other uses, see Diffraction .
Photons or particles of matter (like an electron) produce a wave pattern when two slits are used
Light from a green laser passing through two slits 0.4mm wide and 0.1mm apart
Simulation of a particle wave function: double slit experiment. The white blur represents the wave. The whiter the pixel, the greater the probability of finding a particle in that place if measured.
Trajectories of particles under De Broglie–Bohm theory in the double-slit experiment.
100 trajectories guided by the wave function. In De Broglie-Bohm's theory, a particle is represented, at any time, by a wave function and a position (center of mass). This is a kind of augmented reality compared to the standard interpretation.
Numerical simulation of the double-slit experiment with electrons. Figure on the left: evolution (from left to right) of the intensity of the electron beam at the exit of the slits (left) up to the detection screen located 10cm after the slits (right). The higher the intensity, the more the color is light blue - Figure in the center: impacts of the electrons observed on the screen - Figure on the right: intensity of the electrons in the far field approximation (on the screen). Numerical data from Claus Jönsson's experiment (1961). Photons, atoms and molecules follow a similar evolution.


^ Young, Thomas (1804). "The Bakerian lecture. Experiments and calculation relative to physical optics" . Philosophical Transactions of the Royal Society of London . 94 : 1–16. doi : 10.1098/rstl.1804.0001 . S2CID 110408369 . Retrieved 14 July 2021 .

^ Jump up to: a b " Physicists Smash Record For Wave-Particle Duality "

^ Jump up to: a b Eibenberger, Sandra; et al. (2013). "Matter-wave interference with particles selected from a molecular library with masses exceeding 10000 amu". Physical Chemistry Chemical Physics . 15 (35): 14696–14700. arXiv : 1310.8343 . Bibcode : 2013PCCP...1514696E . doi : 10.1039/C3CP51500A . PMID 23900710 . S2CID 3944699 .

^ While there is no doubt that Young's demonstration of optical interference, using sunlight, pinholes and cards, played a vital part in the acceptance of the wave theory of light, there is some question as to whether he ever actually performed a double-slit interference experiment.

Robinson, Andrew (2006). The Last Man Who Knew Everything . New York, NY: Pi Press. pp. 123–124 . ISBN 978-0-13-134304-7 .

^ Jump up to: a b Lederman, Leon M.; Christopher T. Hill (2011). Quantum Physics for Poets . US: Prometheus Books. pp. 102–111. ISBN 978-1616142810 .

^ Jump up to: a b c d e f Feynman, Richard P.; Robert B. Leighton; Matthew Sands (1965). The Feynman Lectures on Physics, Vol. 3 . Addison-Wesley. pp. 1.1–1.8. ISBN 978-0201021189 .

^ Feynman, 1965, p. 1.5

^ Darling, David (2007). "Wave–Particle Duality" . The Internet Encyclopedia of Science . The Worlds of David Darling . Retrieved 18 October 2008 .

^ Feynman, 1965, p. 1.7

^ Leon Lederman; Christopher T. Hill (27 September 2011). Quantum Physics for Poets . Prometheus Books, Publishers. p. 109. ISBN 978-1-61614-281-0 .

^ " ...if in a double-slit experiment, the detectors which register outcoming photons are placed immediately behind the diaphragm with two slits: A photon is registered in one detector, not in both... " Müller-Kirsten, H. J. W. (2006). Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral . US: World Scientific. p. 14. ISBN 978-981-2566911 .

^ Plotnitsky, Arkady (2012). Niels Bohr and Complementarity: An Introduction . US: Springer. pp. 75–76. ISBN 978-1461445173 .

^ " It seems that light passes through one slit or the other in the form of photons if we set up an experiment to detect which slit the photon passes, but passes through both slits in the form of a wave if we perform an interference experiment. " Rae, Alastair I.M. (2004). Quantum Physics: Illusion Or Reality? . UK: Cambridge University Press. pp. 9–10. ISBN 978-1139455275 .

^ Feynman, The Feynman Lectures on Physics , 3 :Quantum Mechanics p.1-1 "There is one lucky break, however— electrons behave just like light.".

^ See: Davisson–Germer experiment Davisson, C. J (1928). "The diffraction of electrons by a crystal of nickel". Bell System Technical Journal . 7 : 90–105. doi : 10.1002/j.1538-7305.1928.tb00342.x .

^ Yaakov Y. Fein; Philipp Geyer; Patrick Zwick; Filip Kiałka; Sebastian Pedalino; Marcel Mayor; Stefan Gerlich; Markus Arndt (September 2019). "Quantum superposition of molecules beyond 25 kDa". Nature Physics . 15 (12): 1242–1245. Bibcode : 2019NatPh..15.1242F . doi : 10.1038/s41567-019-0663-9 . S2CID 203638258 .

^ Charles Sanders Peirce first proposed the use of this effect as an artifact-independent reference standard for length
C.S. Peirce (July 1879). "Note on the Progress of Experiments for Comparing a Wave-length with a Meter". American Journal of Science , as referenced by Crease, Robert P. (2011). World in the Balance: The historic quest for an absolute system of measurement . New York: W.W. Norton. p. 317. ISBN 978-0-393-07298-3 . p. 203.

^ Greene, Brian (1999). The Elegant Universe: Super Strings, Hidden Dimensions, and the Quest for the Ultimate Theory . New York: W.W. Norton. pp. 97–109 . ISBN 978-0-393-04688-5 .

^ Feynman, 1965, chapter 3

^ Sir Geoffrey, Ingram Taylor (1909). "Interference Fringes with Feeble Light". Prof. Cam. Phil. Soc . 15 : 114.

^ Jönsson, Claus (1 August 1961). "Elektroneninterferenzen an mehreren künstlich hergestellten Feinspalten". Zeitschrift für Physik (in German). 161 (4): 454–474. Bibcode : 1961ZPhy..161..454J . doi : 10.1007/BF01342460 . ISSN 0044-3328 . S2CID 121659705 .

^ Jönsson, Claus (1 January 1974). "Electron Diffraction at Multiple Slits". American Journal of Physics . 42 (1): 4–11. Bibcode : 1974AmJPh..42....4J . doi : 10.1119/1.1987592 . ISSN 0002-9505 .

^ Merli, P G; Missiroli, G F; Pozzi, G (1976). "On the statistical aspect of electron interference phenomena". American Journal of Physics . 44 (3): 306–307. Bibcode : 1976AmJPh..44..306M . doi : 10.1119/1.10184 .

^ Rosa, R (2012). "The Merli–Missiroli–Pozzi Two-Slit Electron-Interference Experiment" . Physics in Perspective . 14 (2): 178–194. Bibcode : 2012PhP....14..178R . doi : 10.1007/s00016-011-0079-0 . PMC 4617474 . PMID 26525832 .

^ "The most beautiful experiment" . Physics World 2002 | link is dead.

^ Frabboni, Stefano; Gabrielli, Alessandro; Carlo Gazzadi, Gian; Giorgi, Filippo; Matteucci, Giorgio; Pozzi, Giulio; Cesari, Nicola Semprini; Villa, Mauro; Zoccoli, Antonio (May 2012). "The Young-Feynman two-slits experiment with single electrons: Build-up of the interference pattern and arrival-time distribution using a fast-readout pixel detector". Ultramicroscopy . 116 : 73–76. doi : 10.1016/j.ultramic.2012.03.017 . ISSN 0304-3991 .

^
Sala, S.; Ariga, A.; Ereditato, A.; Ferragut, R.; Giammarchi, M.; Leone, M.; Pistillo, C.; Scampoli, P. (2019). "First demonstration of antimatter wave interferometry" . Science Advances . 5 (5): eaav7610. Bibcode : 2019SciA....5.7610S . doi : 10.1126/sciadv.aav7610 . PMC 6499593 . PMID 31058223 .

^ Greene, Brian (2007). The Fabric of the Cosmos: Space, Time, and the Texture of Reality . Random House LLC. p. 90. ISBN 978-0-307-42853-0 .

^ Donati, O; Missiroli, G F; Pozzi, G (1973). "An Experiment on Electron Interference". American Journal of Physics . 41 (5): 639–644. Bibcode : 1973AmJPh..41..639D . doi : 10.1119/1.1987321 .

^ Jump up to: a b New Scientist: Quantum wonders: Corpuscles and buckyballs, 2010 (Introduction, subscription needed for full text, quoted in full in [1] Archived 25 September 2017 at the Wayback Machine )

^ Wave Particle Duality of C60 Archived 31 March 2012 at the Wayback Machine

^ lNairz, Olaf; Brezger, Björn; Arndt, Markus; Anton Zeilinger, Abstract (2001). "Diffraction of Complex Molecules by Structures Made of Light". Phys. Rev. Lett . 87 (16): 160401. arXiv : quant-ph/0110012 . Bibcode : 2001PhRvL..87p0401N . doi : 10.1103/physrevlett.87.160401 . PMID 11690188 . S2CID 21547361 .

^ Nairz, O; Arndt, M; Zeilinger, A (2003). "Quantum interference experiments with large molecules" (PDF) . American Journal of Physics . 71 (4): 319–325. Bibcode : 2003AmJPh..71..319N . doi : 10.1119/1.1531580 . Archived from the original (PDF) on 8 August 2017 . Retrieved 4 June 2015 .

^ Stefan Gerlich; et al. (5 April 2011). "Quantum interference of large organic molecules" . Nature Communications . 2 : 263. doi : 10.1038/ncomms1263 . PMC 3104521 . PMID 21468015 .

^ Yaakov Fein; et al. (December 2019). "Quantum superposition of molecules beyond 25kDa" . Nature Physics . 15 (12): 1242–1245. doi : 10.1038/s41567-019-0663-9 . S2CID 203638258 .

^ Greene, Brian (2004). The Fabric of the Cosmos: Space, Time, and the Texture of Reality . Knopf. pp. 204–213 . Bibcode : 2004fcst.book.....G . ISBN 978-0-375-41288-2 .

^ Vedral, Vlatko (2006). Introduction to Quantum Information Science . Oxford University Press. ISBN 9780199215706 . OCLC 442351498 .

^ Harrison, David (2002). "Complementarity and the Copenhagen Interpretation of Quantum Mechanics" . UPSCALE . Dept. of Physics, U. of Toronto . Retrieved 21 June 2008 .

^ Cassidy, David (2008). "Quantum Mechanics 1925–1927: Triumph of the Copenhagen Interpretation" . Werner Heisenberg . American Institute of Physics.

^ Boscá Díaz-Pintado, María C. (29–31 March 2007). "Updating the wave-particle duality" . 15th UK and European Meeting on the Foundations of Physics . Leeds, UK . Retrieved 21 June 2008 .

^ Bartell, L. (1980). "Complementarity in the double-slit experiment: On simple realizable systems for observing intermediate particle-wave behavior". Physical Review D . 21 (6): 1698–1699. Bibcode : 1980PhRvD..21.1698B . doi : 10.1103/PhysRevD.21.1698 .

^ Zeilinger, A. (1999). "Experiment and the foundations of quantum physics". Reviews of Modern Physics . 71 (2): S288–S297. Bibcode : 1999RvMPS..71..288Z . doi : 10.1103/RevModPhys.71.S288 .

^ P. Mittelstaedt; A. Prieur; R. Schieder (1987). "Unsharp particle-wave duality in a photon split-beam experiment". Foundations of Physics . 17 (9): 891–903. Bibcode : 1987FoPh...17..891M . doi : 10.1007/BF00734319 . S2CID 122856271 .

^ D.M. Greenberger and A. Yasin, "Simultaneous wave and particle knowledge in a neutron interferometer", Physics Letters A 128 , 391–4 (1988).

^ Wootters, W. K.; Zurek, W. H. (1979). "Complementarity in the double-slit experiment: Quantum nonseparability and a quantitative statement of Bohr's principle" (PDF) . Phys. Rev. D . 19 (2): 473–484. Bibcode : 1979PhRvD..19..473W . doi : 10.1103/PhysRevD.19.473 . Retrieved 5 February 2014 .

^ Jump up to: a b Hillmer, R.; Kwiat, P. (2007). "A do-it-yourself quantum eraser" . Scientific American . Vol. 296 no. 5. pp. 90–95. Bibcode : 2007SciAm.296e..90H . doi : 10.1038/scientificamerican0507-90 . Retrieved 11 January 2016 .

^ Jump up to: a b Chiao, R. Y.; P. G. Kwiat; Steinberg, A. M. (1995). "Quantum non-locality in two-photon experiments at Berkeley". Quantum and Semiclassical Optics: Journal of the European Optical Society Part B . 7 (3): 259–278. arXiv : quant-ph/9501016 . Bibcode : 1995QuSOp...7..259C . doi : 10.1088/1355-5111/7/3/006 . S2CID 118987962 .

^ Francis, Matthew (21 May 2012). "Disentangling the wave-particle duality in the double-slit experiment" . Ars Technica .

^ Jump up to: a b Svensson, Bengt E. Y. (2013). "Pedagogical Review of Quantum Measurement Theory with an Emphasis on Weak Measurements". Quanta . 2 (1): 18–49. arXiv : 1202.5148 . doi : 10.12743/quanta.v2i1.12 .

^ Pfleegor, R. L.; Mandel, L. (July 1967). "Interference of Independent Photon Beams". Physical Review . 159 (5): 1084–1088. Bibcode : 1967PhRv..159.1084P . doi : 10.1103/PhysRev.159.1084 .

^ "Interference of Independent Photon Beams: The Pfleegor-Mandel Experiment" . Archived from the original on 3 January 2011 . Retrieved 16 June 2011 . >

^ Sillitto, R.M.; Wykes, Catherine (1972). "An interference experiment with light beams modulated in anti-phase by an electro-optic shutter". Physics Letters A . 39 (4): 333–334. Bibcode : 1972PhLA...39..333S . doi : 10.1016/0375-9601(72)91015-8 .

^ "To a light particle"

^ Arndt, Markus; Nairz, Olaf; Vos-Andreae, Julian; Keller, Claudia; Van Der Zouw, Gerbrand; Zeilinger, Anton (1999). "Wave–particle duality of C60 molecules". Nature . 401 (6754): 680–682. Bibcode : 1999Natur.401..680A . doi : 10.1038/44348 . PMID 18494170 . S2CID 4424892 .

^ Schouten, H.F.; Kuzmin, N.; Dubois, G.; Visser, T.D.; Gbur, G. ; Alkemade, P.F.A.; Blok, H.; Hooft, G.W.; Lenstra, D.; Eliel, E.R. (7 February 2005). "Plasmon-Assisted Two-Slit Transmission: Young's Experiment Revisited" . Phys. Rev. Lett . 94 (5): 053901. Bibcode : 2005PhRvL..94e3901S . doi : 10.1103/physrevlett.94.053901 . PMID 15783641 .

^ Bach, Roger; et al. (March 2013). "Controlled double-slit electron diffraction". New Journal of Physics . 15 (3): 033018. arXiv : 1210.6243 . Bibcode : 2013NJPh...15c3018B . doi : 10.1088/1367-2630/15/3/033018 . S2CID 832961 .

^ Yaakov Y. Fein; Philipp Geyer; Patrick Zwick; Filip Kiałka; Sebastian Pedalino; Marcel Mayor; Stefan Gerlich; Markus Arndt (September 2019). "Quantum superposition of molecules beyond 25 kDa". Nature Physics . 15 (12): 1242–1245. Bibcode : 2019NatPh..15.1242F . doi : 10.1038/s41567-019-0663-9 . S2CID 203638258 .

^ Jump up to: a b Bush, John WM (2015). "Pilot-wave hydrodynamics" (PDF) . Annual Review of Fluid Mechanics . 47 (1): 269–292. Bibcode : 2015AnRFM..47..269B . doi : 10.1146/annurev-fluid-010814-014506 . hdl : 1721.1/89790 . Retrieved 21 June 2015 .

^ Bush, John W. M. (2010). "Quantum mechanics writ large" . PNAS . 107 (41): 17455–17456. Bibcode : 2010PNAS..10717455B . doi : 10.1073/pnas.1012399107 . PMC 2955131 .

^ Natalie Wolchover (30 June 2014). "Have We Been Interpreting Quantum Mechanics Wrong This Whole Time?" . Wired .

^ Couder, Y.; Fort, E. (2012). "Probabilities and trajectories in a classical wave-particle duality" . Journal of Physics: Conference Series . 361 (1): 012001. Bibcode : 2012JPhCS.361a2001C . doi : 10.1088/1742-6596/361/1/012001 .

^ Baggott, Jim (2011). The Quantum Story: A History in 40 Moments . New York: Oxford University Press. pp. 76. ("The wavefunction of a system containing N particles depends on 3 N position coordinates and is a function in a 3 N -dimensional configuration space or 'phase space'. It is difficult to visualize a reality comprising imaginary functions in an abstract, multi-dimensional space. No difficulty arises, however, if the imaginary functions are not to be given a real interpretation.")

^ Li, Pengyun; Sun, Yifan; Yang, Zhenwei; Song, Xinbing; Zhang, Xiangdong (2016). "Classical hypercorrelation and wave-optics analogy of quantum superdense coding" . Scientific Reports . 5 : 18574. Bibcode : 2015NatSR...518574L . doi : 10.1038/srep18574 . PMC 4686973 . PMID 26689679 .

^ Jenkins FA and White HE, Fundamentals of Optics, 1967, McGraw Hill, New York

^ Longhurst RS, Physical and Geometrical Optics, 1967, 2nd Edition, Longmans

^ Rovelli, Carlo (1996). "Relational Quantum Mechanics". International Journal of Theoretical Physics . 35 (8): 1637–1678. arXiv : quant-ph/9609002 . Bibcode : 1996IJTP...35.1637R . doi : 10.1007/BF02302261 . S2CID 16325959 .

^ Philippidis, C.; Dewdney, C.; Hiley, B. J. (1979). "Quantum interference and the quantum potential". Il Nuovo Cimento B . 52 (1): 15–28. Bibcode : 1979NCimB..52...15P . doi : 10.1007/bf02743566 . ISSN 1826-9877 . S2CID 53575967 .

^ "Bohmian Mechanics" . The Stanford Encyclopedia of Philosophy . Metaphysics Research Lab, Stanford University. 2017.



Wiki Loves Monuments: your chance to support Russian cultural heritage!
Photograph a monument and win!


In modern physics , the double-slit experiment is a demonstration that light and matter can display characteristics of both classically defined waves and particles; moreover, it displays the fundamentally probabilistic nature of quantum mechanical phenomena. This type of experiment was first performed, using light, by Thomas Young in 1801, as a demonstration of the wave behavior of light. [1] At that time it was thought that light consisted of either waves or particles. With the beginning of modern physics, about a hundred years later, it was realized that light could in fact show behavior characteristic of both waves and particles. In 1927, Davisson and Germer demonstrated that electrons show the same behavior, which was later extended to atoms and molecules. [2] [3] Thomas Young's experiment with light was part of classical physics long before the development of quantum mechanics and the concept of wave-particle duality . He believed it demonstrated that the wave theory of light was correct, and his experiment is sometimes referred to as Young's experiment [4] or Young's slits.


The experiment belongs to a general class of "double path" experiments, in which a wave is split into two separate waves that later combine into a single wave. Changes in the path-lengths of both waves result in a phase shift , creating an interference pattern . Another version is the Mach–Zehnder interferometer , which splits the beam with a beam splitter .
In the basic version of this experiment, a coherent light source , such as a laser beam, illuminates a plate pierced by two parallel slits, and the light passing through the slits is observed on a screen behind the plate. [5] [6] The wave nature of light causes the light waves passing through the two slits to interfere , producing bright and dark bands on the screen – a result that would not be expected if light consisted of classical particles. [5] [7] However, the light is always found to be absorbed at the screen at discrete points, as individual particles (not waves); the interference pattern appears via the varying density of these particle hits on the screen. [8] Furthermore,
https://en.wikipedia.org/wiki/Double_slit
https://www.imdb.com/name/nm7601262/
Rachel Storms
Www Xvideos Com Squirt
Olivia I Erotic
Double-slit experiment - Wikipedia
Taylor Slit - IMDb
Taylor Slit - YouTube
Taylor Slit


Report Page