Строение микромира - Биология и естествознание реферат

Строение микромира - Биология и естествознание реферат



































Идея о существовании атомов, опыты Резерфорда. Создание физических теорий, описывающих поведение и внутреннюю структуру элементарных частиц. Основные положения квантовой механики: частицы и кванты. Ядерная энергия, ее мирное и военное применение.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1.2 Основные положения квантовой механики: частицы и кванты
1.3 Ядерная энергия, ее мирное и военное применение
Идея о существовании атомов берет свое начало со времен греческих философов, которые еще две с половиной тысячи лет назад заложили основы нашего понимания природы материи, попытавшись упростить картину окружающего нас мира и свести его к ограниченному количеству первичных, мельчайших и неделимых элементов. Анаксагором (500-428 гг до н.э.) было введено понятие бесконечной Вселенной, заполненной множеством частиц - "атомов". Более того, Анаксагор предположил, что небесные тела состоят из таких же веществ, что и Земля.
Свои вклады в развитие атомистического учения внесли Левкипп и Демокрит. Атомистическая теория отвергалась Аристотелем, Платоном и Сократом. Более поздние идеи атомизма развивались Эпикуром (341-270 гг. до н.э.).
Основа учения атомистов заключалась в следующей идее: мир состоит только из двух вещей - неуничтожимых атомов и пустоты. Атомы способны соединяться друг с другом, образуя разные комбинации на причинно-следственной основе.
С развитием современной химии атомистическое учение перестало быть лишь уделом философии, умозрительных заключений и получило научную основу. Так, британский химик Джон Дальтон (1766-1844) экспериментально обнаружил, что атомы имеют различную массу; они могут образовывать друг с другом различные комбинации и соединения. Однако, вплоть до конца XIX в. прямые доказательства существования атомов отсутствовали.
В настоящее время уже ни кто не подвергает сомнению вопрос о существовании атомов. В учебниках дается такое определение атома: "Атом - это частица вещества, наименьшая часть химического элемента, являющаяся носителем его химических свойств". Каждому элементу в таблице Менделеева соответствует свой атом. Атомы могут объединяться в молекулы. Молекула - это наименьшая устойчивая частица вещества, обладающая его химическими свойствами. Если число различных типов атомов в природе ограничено, то разновидностей молекул неограниченно много. Кроме того, некоторые молекулы могут содержать тысячи атомов и, соответственно, во столько же раз большие размеры. Однако даже в этом случаи они настолько малы, что непосредственное их наблюдение очень затруднено. В качестве косвенных доказательств атомного строения вещества можно привести такие явления как диффузия, состоящее во взаимном проникновении через границу раздела атомов одного вещества в пространство между атомами другого вещества; Броуновское движение, состоящее в непрерывном хаотическом движении микроскопических частиц (например, пыльцы растений) под воздействием ударов молекул жидкости. Современное развитие технических средств науки позволяет непосредственно наблюдать некоторые молекулы с помощью электронного микроскопа.
Если первые исследования в области молекулярной физики позволили получить очень важные результаты, рассматривая молекулы и атомы как упругие шарики, не имеющие внутреннего строения, то исследования в области электричества и оптики однозначно указывали на сложное внутренне строение самих атомов.
К первым доказательствам сложности внутреннего строения атомов можно причислить открытие электрона. Опыты однозначно указывали на то, что в каждом атоме находятся электроны. Каждый тип атома содержит строго определенное количество электронов.
Однако известно было и то, что в целом атом электрически нейтрален, то есть в нем должно содержаться некоторое вещество, имеющее положительный заряд равный суммарному заряду всех электронов атома. Кроме этого, масса электрона ничтожно мала. Поэтому вся масса атома должна содержаться в этом положительном веществе.
На сложность внутреннего строения атомов указывает сложность оптических спектров, излучаемых атомами. Свет в природе могут излучать только атомы, и каждый тип атома излучает строго определенный набор световых волн (как отпечаток пальцев). Чем сложнее атом - тем сложнее его спектр. Следовательно, оптические исследования также указывают на сложное внутреннее строение атомов.
На первом снимке фотография молекулы гексаметилбензола, полученная с помощью электронного микроскопа. На втором снимке - химическая формула гексаметилбензола. Объяснить внутреннее строение атомов можно только в том случае, если выяснить, как распределено в нем положительное вещество, определяющее массу атома. Ответить на этот вопрос можно получить только экспериментально. К таким экспериментам относятся известные исследования Эрнеста Резерфорда (1909). Для решения поставленной задачи Резерфорд исследовал движение тяжелых положительно заряженных частиц через тонкий стой атомов. В результате электрического отталкивания между положительным веществом атома положительно заряженной частицы, траектория последней должна искривиться. В этом случае говорят, что происходит ее рассеяние. В качестве такой положительно заряженной частицы Резерфорд использовал альфа-частицы, выделяемые радиоактивными элементами. Исследуя закон рассеяния альфа-частиц можно было выяснить как расположено положительное вещество в атомах. Проведенные тщательные измерения дали совершенно неожиданный результат. Облучая тонкий лист фольги альфа-частицами, он обнаружил, что большая их часть свободно "прошивает" лист, практически не меняя направления движения. Но в то же время, некоторые частицы могли резко поменять траекторию и даже направляться в обратную сторону. По словам Резерфорда, это было не менее удивительно, чем если бы Вы выстрелили пушечным ядром в лист бумаги, и оно при этом отскочило бы назад! Проанализировав вероятность попадания альфа-частицы (которая тоже заряжена положительно) в ядро, Резерфорд рассчитал размер области атома, которой должно быть сосредоточено положительно заряженное вещество. Оказалось, что этот размер в 100000 раз меньше самого атома, но в нем сосредоточена вся его масса! В силу малости размера положительно заряженное вещество было названо ядром. Остальной объем атома должен быть занят электронами. По аналогии со строением Солнечной системы, Резерфорд предложил модель атома, в которой электроны, подобно планетам вращаются вокруг ядра. Поэтому модель Резерфорда называют также планетарной. В дальнейшем оказалось, что она скорее очень красива, чем правильна. Электроны в атоме не являются частицами, ведут себя как волны…. Но это будет потом. Мир устроен чрезвычайно сложно и сложность эта привлекательна в высшей степени! Если захотеть представить себе степень такого различия размеров атом и ядра, то можно предложить следующий аналог. Известно, что у металла атомы плотно прилегают друг к другу (плотнейшая упаковка), но вся масса атома сосредоточена в ядре. Если условно заменить ядро некоторым шариком радиусом 1 см, то при моделировании металла шарики надо расположить на расстоянии 2 километра (!) один от другого.
Получается, что даже металл мало отличается от вакуума!
Такая, неимоверно малая, частица вещества как ядро сама имеет очень сложное внутреннее строение. На это указывало открытие на рубеже XIX XX веков явления радиоактивности.
Строение ядра оставалось неясным вплоть до 30-х годов XX в. Впоследствии оказалось, что оно состоит из положительно заряженных частиц - протонов, и нейтральных частиц - нейтронов. Принадлежность атома к тому или иному химическому элементу определяется числом протонов в ядре. Разновидности атомов одного и того же химического элемента, отличающиеся количеством нейтронов в ядре, называются изотопами. Изотопы бывают стабильными и радиоактивными. Последние могут распадаться с образованием других изотопов, излучая при этом различные частицы и гамма-кванты.
Разнообразие элементарных частиц не ограничивается только протоном, нейтроном и электроном. В экспериментах с использованием специальных ускорителей элементарных частиц удается получить сотни различных частиц. Большинство из них нестабильно и распадается с образованием протонов, нейтронов и электронов, а также соответствующих античастиц.
Существование античастиц представляет собой свидетельство удивительных качеств симметрии, присущей Вселенной. Античастицы являются своего рода зеркальным отражением частиц; они обладают противоположными зарядом и спином (вращательным моментом). В физических лабораториях удалось получить несколько атомов антивещества - это атомы антигелия, ядро которого состоит из двух антипротонов, двух антинейтронов, а на внешней оболочке вместо электронов находится пара позитронов (антиэлектронов). Атом антигелия практически ничем не отличается от атома обычного гелия. Однако антивещество мгновенно взаимодействует с обычным веществом и выделяет при этом огромное количество энергии в виде тепла и квантов электромагнитного излучения. Можно сказать, что энергия здесь выделяется в соответствии со знаменитой формулой Эйнштейна - E = mc 2 , где m - масса вещества, а с - скорость света в вакууме. Такой процесс взаимодействия вещества и антивещества получил название аннигиляции; частица реагирует с античастицей, вещество - с антивеществом. Аннигиляция нескольких десятков граммов антивещества потенциально может привести к уничтожению целого города. Способность антивещества к аннигиляции делает невозможным его сколько-нибудь значительное накопление в нашем мире, состоящем из обычного вещества.
До настоящего времени остается загадкой, существуют ли во Вселенной объекты (звезды, галактики), целиком состоящие из антивещества? В самом деле, если мы считаем, что Вселенная симметрична, то Большой взрыв должен был привести к образованию равных количеств вещества и антивещества. Сейчас предпринимаются интенсивные попытки решить этот вопрос, однако достоверных результатов по данной проблеме еще не получено.
Результаты научных исследований последних 20-30 лет свидетельствуют о том, что элементарные частицы, в свою очередь, не столь элементарны, как это казалось вначале, а представляют собой составные объекты, образованные еще более мелкими частицами, получившими название кварков. Кварки должны иметь не встречающийся ни у одной частицы дробный электрический заряд, т.е. меньший заряда электрона - кратный одной его трети. Предполагается, что существует шесть типов кварков, каждый из которых может находиться в трех состояниях, итого - 18. Некоторые физики считают это число слишком большим и хотели бы разложить кварки на еще более элементарные части.
По-видимому, внутри элементарных частиц, между кварками действуют огромные силы - до нескольких тонн-силы на пару кварков! Эти силы не убывают с расстоянием и возникают благодаря существованию других частиц - глюонов, которыми обмениваются кварки друг с другом по очень сложной пространственно-временной схеме.
Взаимодействие между кварками может быть разорвано только в процессах с чрезвычайно высокой энергией. Отдельные эксперименты по столкновению ускоренных электронов и позитронов (ускоритель PETRA в Гамбурге) показали образование пар кварк-антикварк. Еще одно подтверждение существования кварков основано на наблюдаемом распределении заряда внутри протонов, которые, судя по всему, состоят из "кусков" с электрическими зарядами, равными дробному заряду - заряду кварка.
При создании физических теорий, описывающих поведение и внутреннюю структуру элементарных частиц, исключительное значение имеет масса частиц. Существует так называемая масса покоя, которая не зависит от скорости движения частицы. Однако, если мы будем разгонять частицу, то ее масса будет увеличиваться в соответствии с формулой E = mc 2 ; т.е., чем большую энергию приобретает частица, тем большую массу она будет иметь. Частицу, имеющую массу покоя, невозможно разогнать до скорости света - на это потребовалось бы бесконечно большая энергия, а масса такой частицы должна была бы также стать бесконечно большой. Скорость частиц, имеющих массу покоя, может лишь приближаться к скорости света. Следовательно, если существуют частицы, двигающиеся строго со скоростью света, то они не должны иметь массу покоя.
Фотография ускорителя элементарных частиц, сделанная с высоты птичьего полета
К числу таких частиц относится фотон и нейтрино. Свойства фотона мы рассмотрим чуть позже. Сейчас лишь заметим, что фотон - это квант электромагнитного излучения. В соответствии с квантовой теорией электромагнитные волны обладают свойствами частиц, и когда физики хотят подчеркнуть это обстоятельство, они применяют термин "фотон".
Нейтрино рождается вместе с электроном и протоном в процессе распада нейтрона - свободного или в составе атомного ядра радиоактивного изотопа. Это явление (бета-распад) было непонятно вплоть до начала 30-х годов и обладало странной особенностью. Казалось, что здесь нарушается закон сохранения энергии. Суммарная энергия протона и электрона оказывалась меньше, чем энергия исходного нейтрона. Для "спасения" закона сохранения энергии Вольфганг Паули предположил, что вместе с электроном при бета-распаде вылетает еще одна частица - нейтральная и обладающая чрезвычайно высокой проникающей способностью, из-за чего ее не удается наблюдать. Она получила название "нейтрино".
Только в 70-е годы, с созданием мощных ускорителей, удалось, наконец, обнаружить и изучить свойства этой частицы. Не имея массы покоя и электрического заряда, нейтрино движется со скоростью света, легко преодолевая такие препятствия, как наша планета. И все же, несмотря на очень малую вероятность взаимодействия с веществом, нейтрино можно обнаружить благодаря тому, что количество нейтрино, пролетающих даже через небольшие тела, может быть колоссальным - миллиарды миллиардов частиц в секунду. Для регистрации нейтрино используют особые баки, содержащие несколько тонн специальной жидкости. В течение суток происходит всего несколько событий взаимодействия нейтрино с жидкостью - образуются считанные атомы характерных изотопов, но этого вполне достаточно для ее обнаружения. Особый интерес представляет регистрация потоков нейтрино от Солнца. Измеряя параметры этого потока, астрофизики пытаются изучать особенности протекания солнечных термоядерных реакций, в ходе которых излучается не только тепловая энергия и электромагнитные волны различных диапазонов, но также и интенсивный поток нейтрино. Этот поток можно рассчитать теоретически, исходя из того, что нам известно, какое количество тепла выделяется в результате синтеза одного атомного ядра, интенсивность выделения тепла Солнцем; следовательно, можно рассчитать количество единичных актов синтеза, происходящих на Солнце за единицу времени, а отсюда и соответствующее количество образующихся нейтрино. Полученные результаты должны соответствовать их наблюдаемому потоку.
И все же, в экспериментах по солнечной нейтринной астрономии, проведенных в различных лабораториях России, США и Японии в 80-х - 90-х гг XX в. удалось зарегистрировать только около одной трети потока нейтрино от ожидаемого. Неясно, с чем это связано. Отдельные ученые допускают, что наши представления о характере солнечных термоядерных реакций, как источника энергии Солнца, неточны. Однако большинство физиков считают возможным превращение испускаемых Солнцем нейтрино за время полета к Земле в другие их виды, которые обнаружить гораздо труднее.
Не смотря на то, что планетарная модель строения атома, предложенная Резерфордом, необычайно красива, она создала ряд серьезных проблем. Уже в 20-х 30-х гг XX в стало совершенно ясно, что электроны, вращающиеся вокруг атомных ядер, нельзя представить просто как некие заряженные шарики. Согласно законам электродинамики, если заряженная частица движется по искривленной траектории, т.е. с ускорением, то она должна излучать электромагнитные волны. Именно таким образом, согласно планетарной модели, атом должен излучать свет. Но, в соответствии с законом сохранения энергии энергия электронов должна уменьшаться. Таким образом, электрон, вращаясь вокруг атома, довольно быстро упадет на ядро. Согласно расчетам это должно произойти через одну миллионную долю секунды после образования атома. Но мы знаем - реальные атомы стабильны! По какой же причине стабильны орбиты электронов в планетарной модели? Как связать стабильность атома с планетарной моделью его строения?
Эта проблема была решена молодым английским физиком Нильсом Бором. Важнейшей его заслугой явилось сохранение планетарной модели (красота осталась). Способ, с помощью которого Н. Бор застабилизировал модель атома ни каким образом не следовала из законов классической физики. То, что сделал Н. Бор, явилось фактически гениальной догадкой, счастливым образом подтвердившейся на примере атома водорода и оказавшейся бессильной для всех других атомов. Но она открыла "дверь" в физику микромира, где законы Природы отличаются от привычной для нас формы.
В связи с тем, что идеи Н. Бора нельзя было обосновать на основе известных к тому времени законов физики, но они великолепнейшим образом объясняли все свойства атома водорода в рамках планетарной модели, они были названы постулатами . Суть этих постулатов можно пояснить чрезвычайно просто.
Первый постулат основывается на том, что реальный атом устойчив и постановляет, что, двигаясь по круговой орбите вокруг ядра, электрон не излучает энергии. Почему так происходит, не объясняется, т.к. это постулат. Поскольку электрон не излучает энергии, то он может находиться на орбите сколько угодно долго. В связи с этим такие орбиты названы стационарными. Каждой стационарной орбите соответствует своя определенная энергия. Стационарная орбита с минимальной энергией была названа основной, а все остальные - возбужденными. Стационарной может быть не любая орбита, а имеющая строго определенный радиус.
Второй постулат определяет условие для нахождения радиуса стационарного состояния. Это условие угадано благодаря гениальности ученого, и его доказательством служит правильность объяснения атома водорода. Обычно второй постулат выражается формулой и, в силу ее чрезвычайной важности, приведем ее
В этой формуле - масса электрона, - скорость электрона на стационарной орбите, - радиус стационарной орбиты, - величина, называемая постоянной Планка, - номер стационарного состояния. Номер стационарного состояния определяет его энергию и играет очень важную роль в теории. Поэтому он получил специальное название: - названо квантовым числом.
Так как, в соответствии с первым постулатом, на стационарной орбите электрон не излучает и не поглощает энергии, а реальный атом ее излучает, то для наделения модели этим свойством Бор сформулировал третий постулат.
Третий постулат (правило частот) гласит: "Атом излучает (или поглощает) свет при переходе электрона из одного стационарного состояния в другое". Этот постулат позволил исключительно точно объяснить излучение света атомом водорода, т.е. можно было теоретически рассчитать длину волны любой линии спектра атома водорода. Если из модели Резерфорда перемещение электрона с орбиты на орбиту представляет собой непрерывный процесс, напоминающий спиральное движение, то, согласно Бору, электроны могут находиться только на некоторых, определенных орбитах из их бесконечного числа. Переходя с одной орбиты на другую, электрон меняет свою энергию скачкообразно на вполне конкретную величину, измерение которой дает результат, в точности совпадающий с расчетным.
Слабость теории Бора состояла в том, что она была половинчатой: частично классической (электроны рассматривались как материальные точки), а частично - квантовой (энергия электрона могла изменяться только порциями - квантами). Оказалось, что истина на пути познания законов Микромира лежит в одном из важнейших концептуальных принципов, который называется корпускулярно-волновым дуализмом свойств. Он проявляется только в микромире и состоит в том, что микрообъекты (кванты света, электроны и т.п.) могут проявлять как свойства частиц, так и свойства волн одновременно. Мы довольно легко можем представить себе как движущуюся частицу, так и распространяющуюся волну. Но представить себе, что-то объединяющее их - это проблема. Оказывается этого и не нужно делать. Суть корпускулярно-волнового дуализма состоит в том, что микрообъект в одних ситуациях проявляет свойства частицы, а в других - свойства волны. Одновременно эти свойства он не проявляет. Причиной такого разделения можно считать ограниченность концепций физики в плане применения исходных базовых моделей. Дело в том, что для описания движения объекта физика использует всего два языка: язык частиц и язык волн. Обыкновенная механика, использующая язык частиц, для материальных объектов, движущихся со скоростями много меньшими скорости света в вакууме, является классической механикой и основывается на постулатах Галилея. Если язык частиц используется для описания движения материальных объектов в случае, когда их скорость сопоставима со скоростью света, то мы имеем дело с релятивистской механикой, основанной на постулатах Эйнштейна. Если для описания движения материального объекта используется язык волн, то мы имеем дело с волновой механикой, называемой также квантовой механикой. Ясно, что самой Природе совершенно безразлично, какой язык использует физика для объяснения наблюдаемого явления. А физика использует тот язык, на котором объяснить наблюдаемое явление и предсказать его поведение при еще не исследованных условиях оказывается проще.
Для пояснения сказанного на примере из окружающего нас макромира проведем следующий мысленный эксперимент. Представим себе, что два студента решили изучать корпускулярно-волновой дуализм у такого физического явления как распространение упругих деформаций в среде. В качестве среды ими выбран длинный резиновый шнур (длина примерно 10 метров, а толщина - 1 сантиметр). Шнур натягивают. Первый студент держит конец шнура в руке, а второй - в зубах. Студенту, держащему конец шнура в зубах завязывают глаза. Первый студент приводит свободный конец шнура в движение. По шнуру распространяется возмущение и достигает через некоторое время второго студента. В этот момент он должен определить, какой к нему прибыл объект: волновой или корпускулярной природы?
Известно классическое определение упругой волны: "Упругой волной называется процесс распространения упругих деформаций в среде". Совершенно ясно, что в случае рассматриваемого мысленного эксперимента мы как раз сталкиваемся с волновыми процессами. Но, если длина волны, характеризующая процесс, соизмерима с длиной шнура, все наблюдаемые явления достаточно просто можно описать, используя развитый для волн математический аппарат. Студент В также четко будет воспринимать движение зажатого зубами конца шнура, как соответствующее волновому процессу. Но чем быстрее будет двигать свободный конец студент А, тем более короткие волны будут распространятся вдоль шнура. Естественно, для коротких волн человек не может двигать свободный конец. Его сил хватит только на возбуждения однократного колебания - импульса, размер которого в шнуре также можно характеризовать некоторой длиной волны, но теперь она значительно меньше, чем длина шнура. Одиночный волновой импульс, по-прежнему, представляет собой распространение упругих деформаций в шнуре, но восприниматься другим студентом будет как удар некоторого тела. При определенных условиях волновой импульс может даже оторвать голову (эксперимент ведь мысленный!). Рассчитать действие волнового импульса значительно проще на "языке частиц". Можно принять за материальную точку область шнура, занятого импульсом. Умножив массу этой области на скорость распространения импульса, найдем количество движения. Дальше как в школьных задачах об ударе мячика о стенку.
В обоих ситуациях мы имеем один и тот же процесс: распространение упругих деформаций в резиновом шнуре. Описать его можно с помощью двух подходов, в зависимости от соотношения длины волны и размеров пространства, охваченного процессом.
Рассмотренный выше пример должен был помочь понять суть корпускулярно-волнового дуализма. В микромире альтернативность применения "языка частиц" и "языка волн" значительно круче. Так при объяснении выбивания светом электронов с поверхности тел (фотоэффект) волновой подход вообще не позволяет получить правильный результат.
В 1924 г молодой французский физик Луи де-Бройль высказал предположение, что если такой известный "волновой объект" как свет в случае фотоэффекта обладает корпускулярными свойствами, то почему бы, такому "корпускулярному объекту" как электрону при определенных ситуациях не проявлять волновые свойства? При этом для расчета длины волны, соответствующей электрону он предложил использовать формулу Планка, заменив скорость света на скорость электрона. Ясно, что волна, соответствующая электрону должна представлять собой какую-то особую волну и была названа по этому "волной де-Бройля". В принципе этот подход применим для любой микрочастицы. Путем не сложных преобразований получается формула для нахождения длины волны де-Бройля
здесь - масса микрочастицы, - ее скорость, h - постоянная Планка.
Если по этой формуле подсчитать длину волны де-Бройля для материального тела или же для свободно движущегося электрона, то получим величину в миллионы раз меньшую, чем их размер. Следовательно, как мы уже представляем на примере мысленного опыта со шнуром, эти движения надо рассматривать на "языке частиц". Это значит, что классической механике гипотеза де-Бройля ни какого вреда не наносит.
Если рассмотреть электрон в атоме, то оказывается, что длина волны де-Бройля соизмерима с размером атома. Поэтому для атома, поведение электрона необходимо рассматривать на "языке волн".
Что дает описание электрона на языке волн, для объяснения свойств атома? Оказывается очень много. Действительно, среди всех волновых процессов выделяются волны, которые называются стоячими. Важнейшим их свойством является отсутствие переноса энергии. Если волны де-Бройля на орбите в атоме являются стоячими, то излучения энергии не будет. Это соответствует стационарным орбитам в модели Н.Бора. Если Н. Бор угадал условие нахождения радиуса стационарных орбит (формула 1), в подходе де-Бройля оно легко поучается само. Чтобы волна де-Бройля была стоячей необходимо, чтобы на орбите укладывалось целое число n волн (см. рис.).
Если сравнить формулы (1) и (3), то не трудно увидеть, что они одинаковы. Но именно формула (1) позволила объяснить атом водорода, но была лишь счастливой догадкой. Формула (3) не является догадкой, а получается путем расчета. Остается доказать правильность гипотезы де-Бройля экспериментально. И эти доказательства были получены в большом числе опытов. Один из них опыт по интерференции, позволяющий продемонстрировать волновые свойства электрона.
Напомним, что явление интерференции характерно исключительно для волновых процессов. Впервые эксперимент по интерференции света был поставлен английским физиком Томасом Юнгом. Он рассуждал следующим образом: если гребни одной волны в какой-то точке пространства совпадают с гребнями другой волны, то происходит их усиление. Если же гребни одной волны приходятся на впадины другой, то волны гасят друг друга.
В эксперименте Юнга (см. рис.) свет от источника падает на две близко расположенные щели в непрозрачной ширме. Изображения щелей проецируются на экран. Достигая экрана, световые волны накладываются друг на друга в пространстве, взаимно ослабляя и усиливая друг друга, т.е. интерферируют. Результат интерференции зависит от того, как приходят к экрану волны - "в ногу" или "не в ногу". Это, в свою очередь зависит от угла падения волн на экран, следовательно, результат меняется от точки к точке. В итоге мы наблюдаем последовательность серых и темных полос, образующихся в результате взаимного ослабления и усиления волн.
Самое интересное заключается в том, что если заменить источник света источником электронов, а эксперимент проводить в вакууме (электроны сильно поглощаются воздухом) и использовать светящийся под воздействием электронов экран, то мы тоже увидим похожую интерференционную картину. Если бы электроны представляли собой просто маленькие шарики, то можно было бы ожидать, что на экране будут наблюдаться две полоски.
Более того, интерференция электронов будет иметь место, даже если они будут покидать источник по одному. Это значит, что электрон проникает сразу две щели и в принципе невозможно определить, где он находится в данный момент! В квантовой физике само понятие местоположения в пространстве лишено смысла. Источник этой "неприятности" связан с одним фундаментальным правилом квантовой механики, получившим название принципа неопределенности Гейзенберга - в честь одного из создателей квантовой механики, немецкого физика Вернера Гейзенберга. Согласно этому принципу, невозможно одновременно точно определить месторасположение и скорость частицы. Каким бы способом мы не определяли месторасположение электрона, в процессе наблюдения мы неизбежно повлияем на его скорость. И наоборот, измеряя скорость (импульс), мы повлияем на месторасположение.
Однако, невозможность одномоментно определить сразу скорость и месторасположение не является следствием несовершенства измерительной техники. Здесь мы имеем дело с фундаментальным принципом, действующим в природе. Электрон оказывается как бы "размазан" по пространству и скорее можно говорить не о его месторасположении, а о вероятности обнаружения в той или иной точке пространства. Причиной этого является наличие у электронов волновых свойств.
С принципом неопределенности тесно связан т.н. туннельный эффект. Представьте себе муху, летящую прямо на толстое оконное стекло. При всем своем желании муха не способна оказаться по ту сторону стекла, поскольку молекулярные силы, придающие листу прочность, гораздо сильнее, чем "мускулы" мухи. Но электрон в аналогичной ситуации проникает через барьер, созданный силами (полями), которые намного превышают возможности электрона. Когда электрон находится вблизи барьера, уже существует небольшая вероятность того, что он оказался по другую его сторону! Иначе говоря, электрон делокализован в пространстве (или нелокален)! И в основе туннельного эффекта лежат волновые свойства: муха не может проникнуть сквозь стекло, а звук может. Для того, чтобы электрон мог пройти сквозь потенциальный барьер, тот должен пространственно быть достаточно тонким. Основой для применения категорий "толстый" и "тонкий" служит длина волны де-Бройля. Если толщина барьера и длина волны соизмеримы, то значит электрон проявляет свойства волны (вспомним мысленный опыт со шнуром) и
Строение микромира реферат. Биология и естествознание.
Курсовая работа: Проектирование системы управления
Сочинение На Тему Базар
Эссе Как Я Провела Летние Каникулы
Сочинение Портрет Милы Хабаров 7
Доклад по теме Лечение больных хроническим периодонтитом
Контрольная работа по теме Проектирование и обслуживание кабельной канализации связи
Реферат по теме Шиповник - Rosa
Курсовая работа по теме Проектирование трудового процесса
Курсовая работа по теме Особливості банківського кредитування фармацевтичних організацій
Реферат по теме Кое-что о цвето-звуковых ассоциациях (WinWord 2.0)
Реферат: Измерения проблемы жизни, смерти и бессмертия. Скачать бесплатно и без регистрации
Планируемые Результаты Контрольной Работы
Делать Рефераты За Деньги
Реферат по теме От зависимости - к духовной свободе
Дипломная работа по теме Технология ремонта буксового узла
Дипломная работа по теме Управление предприятиями в условиях кризиса
Отчет О Прохождении Преддипломной Практики Юристу Рб
Дипломная работа по теме Исследование возможности применения наноразмерных углеродных материалов в электродах твердотельных конденсаторов с двойным электрическим слоем (ионисторов)
Реферат: Общее и различное между героями двух разных романов Печорин и Онегин
Реферат Архитектура Москвы
Водно-болотные угодья Благовещенского района - Биология и естествознание курсовая работа
Изучение видового состава и консортивных связей насекомых - Биология и естествознание презентация
Развитие жизни в Мезозойскую эру - Биология и естествознание презентация


Report Page