Статистическая обработка полной и многократно-усечённой информации по показателям надежности. Контрольная работа. Математика.

Статистическая обработка полной и многократно-усечённой информации по показателям надежности. Контрольная работа. Математика.




🛑 👉🏻👉🏻👉🏻 ИНФОРМАЦИЯ ДОСТУПНА ЗДЕСЬ ЖМИТЕ 👈🏻👈🏻👈🏻



























































Вы можете узнать стоимость помощи в написании студенческой работы.


Помощь в написании работы, которую точно примут!

Похожие работы на - Статистическая обработка полной и многократно-усечённой информации по показателям надежности
Нужна качественная работа без плагиата?

Не нашел материал для своей работы?


Поможем написать качественную работу Без плагиата!

Статистическая
обработка полной и многократно-усечённой информации по показателям надежности







Сбор и обработку информации о
надежности объектов выполняют с целью усовершенствования конструкции,
технологии изготовления, сборки и испытании объектов, обеспечивающих повышение
надежности; разработки мероприятий по совершенствованию диагностирования,
технического обслуживания и текущих ремонтов, их проведение, оптимизации норм
расхода запасных частей.


Основные задачи системы сбора и обработки
информации:


определение показателей надёжности
объектов;


выявление конструктивных и
технологических недостатков объектов, приводящих к снижению их надёжности;


выявление деталей и сборочных
единиц, лимитирующих надёжность машины в целом;


изучение закономерностей
возникновения неисправностей и отказов;


установление влияния условий и
режимов эксплуатации на надёжность объектов;


корректировка нормируемых
показателей надёжности;


определение эффективности
мероприятий по повышению надёжности объектов.


Сбор, обработка и анализ информации
о надежности объектов связаны с необходимостью исследования случайных событий и
величин, которые рассчитывают методами теории вероятностей и математической
статистики.







1. Статистическая
обработка полной информации




1.1 Построение
статистического ряда исходной информации




Статистический ряд составляют при
объеме выборки N ≥ 25 для упрощения дальнейших
расчетов (без потерь точности).


По исходным данным объем выборки N = 50 > 25, следовательно,
целесообразно составить статистический ряд.


Количество интервалов
статистического ряда n определяют по условию n = 6…10. Число интервалов статистического ряда




Длина интервала статистического ряда




где t max и t min - наибольшее и
наименьшее значения показателя надежности.


Полученные данные вносят
в таблицу 1.




Таблица 1 - Информация
об интервалах исходного статистического ряда




Опытная вероятность i-го
интервала, Pi

где m i - опытная частота
в i-м
интервале статистического ряда.
Среднее значение - важная
характеристика показателя надежности. По среднему значению планируют работу
машин, составляют потребность в запасных частях, определяют объемы ремонтных
работ и т.д. При наличии статистического ряда среднее значение показателя
надежности




где n - число интервалов в статистическом ряду;


t ср i - значение середины i-го
интервала;


p i - опытная вероятность i-го
интервала.


Характеристика
рассеивания показателя надежности - дисперсия или среднеквадратическое
отклонение, которое определяют при наличии статистического ряда по уравнению





1.3 Проверка информации
на выпадающие точки




Информацию на выпадающие
точки проверяют по критерию Ирвина λ,
теоретическое значение λ т которого приведено в приложении 1 справочного материала /1/.


где t i и t i -1
- смежные точки информации.


По приложению 1 справочного
материала /1/ находим, что при повторности информации N
= 50 и доверительной вероятности α
= 0,95 λ т = 1,1


Первую и последнюю точку
информации следует признать достоверной, так как λ оп1
= 0,051 < λ т = 1,1; λ оп50 = 0,161 < λ т
= 1,1.







1.4 Выполнение
графического изображения опытного распределения показателя надежности




По данным
статистического ряда строим гистограмму, полигон и кривую накопленных опытных
вероятностей, которые дают наглядное представление об опытном распределении
показателя надежности.


Для построения
гистограммы по оси абсцисс откладывают в определенном масштабе показатель
надежности t, а по оси ординат - опытную частоту m i
или опытную вероятность p i .


При построении полигона
распределения по осям абсцисс и ординат


откладываем те же
значения, что и при построении гистограммы. Точки полигона распределения
образуются пересечением ординаты, равной опытной вероятности интервала, и
абсциссы, равной середине этого интервала. Начальную и конечную точки полигона
распределения приравниваем к абсциссам начала первого и конца последнего
интервалов статистического ряда.


Для построения кривой
накопленных опытных вероятностей по оси абсцисс откладываем в масштабе значение
показателя надежности t,
а по оси ординат - накопленную опытную вероятность .
Точки кривой накопленных опытных вероятностей образуются пересечением ординаты,
равной сумме вероятностей ,
и абсциссы конца данного интервала. Полученные точки соединяем прямыми линиями.
Первую точку соединяем с началом первого интервала.







1.5 Определение
коэффициента вариации




Коэффициента вариации
представляет собой относительную безразмерную величину, характеризующую
рассеивание показателя надежности. Коэффициент вариации




где с - смещение
рассеивания показателя надежности - расстояние от начала координат до начала
рассеивания случайной величины.


Смещение рассеивания при
наличии статистического ряда рассчитывают по уравнению:




где t 1 и t 2
- значения первой и третьей точек информации в порядке их возрастания.


1.6 Выбор теоретического
закона распределения для выравнивания опытной вероятности




Полученное значение
коэффициента вариации v
= 0,478 находится в интервале 0,30…0,50, следовательно, выбираем тот закон
распределения, который лучше совпадает с распределением опытной информации.


Проверку совпадения
опытных и теоретических законов распределения показателя надежности производят
по критериям соответствия Пирсона, Колмогорова или Стьюдента.


Критерий согласия
Пирсона χ 2 представляет собой сумму квадратов отклонений опытных и
теоретических частот в каждом интервале укрупненного статистического ряда информации.




где n y
- число интервалов в укрупненном статистическом ряду;


m i
- опытная частота в i-ом интервале
укрупненного статистического ряда;


m т i - теоретическая частота в i-ом
интервале укрупненного статистического ряда.


m т i = N [F(t i ) -
F(t i-1 )], (10)




F(t i ) и F(t i -1 )]
- интегральные функции i-го
и (i-1) - го интервалов статистического ряда.


Интегральную функцию
закона нормального распределения (ЗНР) определяют по равенству




где -
центрированная и нормированная интегральная функция, определяемая по приложению
4 справочного материала /1/;


Значение интегральной
функции для каждого интервала при ЗНР


Интегральную функцию
закона распределения Вейбулла (ЗРВ) определяют из приложения 4 справочного
материала /1/, по величине параметра ЗРВ - b
и отношению (t i к
- t см ) / а, где а - параметр ЗРВ, используя уравнение




где t ki - значение конца i-го интервала.


Параметр b определяют по приложению 5 справочного материала /1/по найденному
значению коэффициента вариации v
= 0,478. При этом получим, что параметр b
= 2,2, коэффициенты К В = 0,89, С В = 0,43.


Параметр а рассчитывают
по уравнению




Значение теоретической
частоты при ЗНР


Значение теоретической
частоты при ЗРВ


Для дальнейших расчетов
принимаем тот закон распределения, у которого меньше критерий Пирсона χ 2 .
Судя по значениям критериев согласия ЗНР и ЗРВ приемлем закон распределения
Вейбулла.


Определяем вероятность
совпадения опытных и теоретических данных распределений, пользуясь критерием
согласия χ 2 . Для входа в таблицу определяем номер строки




где n y - число интервалов в укрупненном
статистическом ряду;


Для ЗНР число
обязательных связей равно трем: , σ, .


Следовательно, значения
критериев χ 2 находим во второй строке таблицы, а вероятность совпадения Р - в
заглавной строке. Вероятность совпадения ЗРВ составляет менее 10%.


Критической вероятностью
совпадения принято считать Р = 10%. Полученная вероятность совпадения Р ˂
10%, следовательно, выбранный для выравнивания опытного распределения
теоретический закон следует считать пригодным.


Рассчитываем значение
дифференциальной функции ЗРВ в серединах интервалов исходного статистического
ряда по уравнению







По полученным данным
строим график дифференциальной и интегральной функции.




1.7 Определение
доверительных границ при законе распределения Вейбулла




Доверительные границы
рассеивания одиночного значения показателя надежности при ЗРВ определяют по
уравнениям:




Где -
квантиль закона распределения Вейбулла; а - параметр закона Вейбулла; С -
смещение начала рассеивания.


Для данной работы
принимаем доверительную вероятность: β=0,95




Доверительные границы
рассеивания среднего значения показателя надежности при ЗРВ определяют по
уравнениям:




где R3 и R1 - коэффициенты распределения Вейбулла, зависящие от
доверительной вероятности β и повторности
информации N; b - параметр закона
распределения Вейбулла.


Для данного задания
R3=0,77; R1=1,35;


1.8 Определение
абсолютной и относительной предельных ошибок переноса характеристик показателя
надежности




Наибольшая абсолютная
ошибка переноса опытных характеристик показателя надежности при заданной
доверительной вероятности равна по значению е β
в обе стороны от среднего значения показателя надежности.
2. Определение
параметров ТЗР графическими методами




2.1 Выбор точек для
нанесения на вероятностную бумагу при полной, усеченной и многократно-усеченной
информации




Составляем сводную
таблицу ресурсов Т др отказавших тракторов в порядке их возрастания
(таблица 3).




Таблица 3 - Многократно
усеченная информация по межремонтным ресурсам 15 двигателей тракторов МТЗ-80




1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 Приостановлен 2 3 4 5 Приостановлен 6 7 8 Приостановлен 9 10
Приостановлен 11

3672 3723 3746 3808 3837 3853 3884 3896 3955 3965 4037 4164 4180
4191 4260

3672 - 3746 3808 3837 3853 - 3896 3955 3965 - 4164 4180 - 4260

При N > 10 выбираем 5 - 7 точек,
равномерно расположенных в общем объеме.


В ходе наблюдений некоторые объекты
могут быть приостановлены не достигнув предельного состояния (например, в связи
с производственной необходимостью часть наблюдаемых тракторов передали в другое
хозяйство). В этом случае информация является многократно усеченной.


При многократно-усеченной информации
порядковые номера координатных точек с учетом приостановленных объектов
(расчетные номера № i p ) определяются по уравнению




где № i p и № i' p - расчетные номера i-ой
и предыдущей отказавших объектов;


N 0
и N п p
- соответственно количество отказавших и приостановленных объектов до № i p .


Накопленную вероятность
координатных точек определяют по формуле




где № i - порядковый номер i
- ой точки в таблице исходной информации.


.2 Построение
функциональной сетки вероятностной бумаги




Функциональную сетку
вероятностной бумаги составляют так, чтобы нанесенная на эту бумагу
интегральная функция распределения была представлена прямой. Для выпрямления
интегральной функции на ось ординат наносят накопленные вероятности
координатных точек ∑P i .
При этом расстояния отметок от начала оси ординат берут равными значениям
соответствующих квантилей. Значения квантилей приведены в таблицах 10 и 11
справочного материала /1/.




Примем масштаб М х =10
мм и определим координаты точек. Значения У i
ординаты в зависимости от ∑ P i
принимаем из таблиц справочного материала /1/ и умножаем на 2.


№1 р = 1,14; Х 1,14
= 3764/13 = 288 мм; ∑ P 1,14 = 0,07; У 1,14 = 85 мм;


№2 р = 2,38; Х 2,38
= 13837/13 = 295 мм; ∑ P 2,38 = 0,15; У 2,38 = 129
мм;


№3 р = 3,89; Х 3,89
= 3896/13 = 300 мм; ∑ P 3,89 = 0,24; У 3,89 = 162 мм;


№4 р = 5,4; Х 5,4
= 3955/13 = 304 мм; ∑ P 5,4 = 0,34; У 5,4 = 191 мм;


№5 р = 7,52; Х 7,52
= 4164/13 = 320 мм; ∑ P 7,52 = 0,47; У 7,52 =
225 мм;


№6 р = 9,64; Х 9,64
= 4180/13 = 322 мм; ∑ P 9,64 = 0,6; У 9,64 = 258 мм.


Интегральную прямую
проводим так, чтобы количество точек с обеих сторон было примерно одинаковым, а
отклонения от прямой минимальные.


При ЗНР среднему
значению показателя надежности соответствует ∑P = 0,5. Поэтому пересечение горизонтали ∑P = 0,5, соответственно У = 233 мм, с интегральной прямой дает
абсциссу А = 317 мм. Разделив абсциссу А на масштабный коэффициент М х
получаем среднее значение показателя надежности .




 = А ×
М х = 317×13 = 4121 мото-ч (29)




Среднее квадратичное
отклонение определяем
графическим способом на основе уравнения = ( -
t i ) / Н к (F i ). При значении квантиля Н к
(F i ) = 1 получим =
-
t i . Из таблицы справочного материала
/1/ получаем, что квантилю Н к (F i )
= 1 соответствует ∑P i
= 0,16. Следовательно среднему квадратичному отклонению на
графике будет соответствовать отрезок Б, представляющий разность абсцисс и
t ∑ P
= 0,16 .




Для построения
вероятностной бумаги ЗРВ по оси абсцисс отмечают логарифмы текущих значений t i в масштабе. Один порядок логарифмов
(10…100 или 10…100) принимают равным 100 мм. Абсциссу (в мм) координатной точки
с учетом смещения t i см
определяют по формуле




Ординату (в мм)
координатной точки с учетом масштабного фактора М = 100 определяют по формуле




У i = 100 {2,37 + [lglg
1/ (1 - ∑P i )]}
(32)




или по значению ∑P i в таблице справочного материала.


Смещение рассеивания
ресурса находим по уравнению




t см
= 3672 - (3746 - 3672)/2 = 3635 мото-ч.


Определяем координаты
точек, приняв размерность ресурса в сотнях мото-ч:


№1 р = 1,14; Х 1,14
= 100 lg (3746-3635) =205 мм; ∑P 1,14
= 0,07; У 1,14 = 87 мм;


№2 р = 2,38; Х 2,38
= 100 lg (3837-3635) = 231 мм;


№3 р = 3,89; Х 3,89
=100 lg (3896-3635)= 242 мм;


№4 р = 5,4; Х 5,4 =
100 lg (3955-3635) = 251 мм;


№5 р = 7,52; Х 7,52
= 100 lg (4164-3635) = 272 мм;
№6 р = 9,64; Х 9,64
= 100 lg (4180-3635) = 274 мм;


Определяем параметры а и
b по интегральной прямой ЗРВ.


Параметр а определяют
как антилогарифм абсциссы точки пересечения интегральной прямой с горизонталью ΣР = 0,63, проведенной на расстоянии 200,6 мм от оси абсцисс:





А = 285 мм; а = антиlg (285/100) = 708 мото-ч


Параметр b определяют как тангенс угла наклона
интегральной прямой к оси абсцисс, с учетом выбранного масштаба




Определяем среднее
значение показателя надежности и среднее квадратичное
отклонение при
ЗРВ


По величине параметра b, из таблицы справочного материала, определяем вспомогательные
коэффициенты К в = 0,92 и С в = 0,72.


Среднее квадратичное
отклонение определяется
по уравнению




Среднее значение
показателя надежности определяют
по уравнению




Окончательный выбор ТЗР
производят визуально (по лучшему совпадению координатных точек с интегральной
прямой) или (при незначительной визуальной разнице) по критерию согласия
Пирсона 2 .
Анализируя полученные результаты, выбираем ЗНР.







2.3 Оценка качества
ремонта сельскохозяйственной техники




Для оценки качества
ремонта сельскохозяйственной техники используют коэффициенты качества по
среднему межремонтному мр
и 90-процентному межремонтному гамма-ресурсу К (90%) мр




К (90%) мр = Т
(90%) мр / (90%)
К з , (39)




где мр
и мр (90%)
- фактические средний межремонтный ресурс и 90% гамма-ресурс отремонтированных
машин на контролируемом ремонтном предприятии;


(90%) - нормированный по
Российской Федерации 90% гамма-ресурс;


Нормированный 90% гамма-ресурс
двигателей тракторов МТЗ-80 - 3500, а зональный коэффициент - 1.


При законе распределения Вейбулла 90
- процентному межремонтному гамма - ресурсу Т (90%) будет соответствовать
антилогарифм абсциссы точки пересечения интегральной прямой с горизонталью ΣР = 0,10, проведенной на
расстоянии 51,5 мм от оси абсцисс, суммированный с величиной смещения t см .


∑P = 0,10; У 0,10 = 51,5×2=103 (мм); Х 0,10 =
212 (мм).




 мр
(90%) = антиlg (0,01×В) + t см
= 10 0,01 В + t см ,
(40)


надежность
среднеквадратический вейбулл информация


 мр
(90%) = антиlg (0,01×212)
+ 3635 = 3767 мото-ч


Коэффициент качества
ремонта по среднему межремонтному ресурсу определяют по формуле (38)


Коэффициент качества ремонта по
90-процентному межремонтному гамма-ресурсу определяем по формуле (39)


К (90%) мр = 3767 /(3500∙
1) = 1,08.


Качество ремонта двигателя можно
считать хорошим.







1.  Надежность и ремонт машин. В.В. Курчаткин, Н.Ф. Тельнов, К.А.
Ачкасов, В.И. Савченко и др. / Под ред. В.В. Курчаткина. - М.: Колос, 2000.








Похожие работы на - Статистическая обработка полной и многократно-усечённой информации по показателям надежности Контрольная работа. Математика.
Реферат: Аналитическая геометрия 2
Сделай Себя Сам Сочинение По Л Серовой
Реферат: Проблема нравственности в современной литературе
Отчет По Летней Практике В Доу
Реферат по теме Організація бухгалтерського обліку в Австралії і Данії
Реферат: Этапы развития психологической науки, главные особенности психики
Реферат: Форфейтинг и факторинг как инновационные инструменты управления дебиторской задолженностью
Курсовая Работа На Тему Текущее Состояние Экономики России За 2008 И 2009 Гг
Типы памяти в персональных компьютерах
Реферат: Никон и возникновение раскола
Сочинение На Тему Образ Евгений Онегин
Контрольная работа по теме Особенности развития государства и права Ирана в условиях исламской республики
Сочинение Островский 10 Класс
Таможенная политика СССР в 80-е годы
Реферат: Гражданская оборона. Скачать бесплатно и без регистрации
Реферат На Тему Библиотека
Дипломная работа: Бухгалтерський баланс: економічний зміст, методика складання, аудит та аналіз основних показників
Контрольная Работа Номер 18
Реферат по теме Roman Catholic labor movement in Grodno province (last third of XIX - beginning of 20 century.)
Реферат по теме Лондонская фондовая биржа
Реферат: Критерии основных физиологических показателей
5.2.1
Реферат: Компьютерные вирусы и борьба с ними 4

Report Page