Создание и тренировка Нейронной Сети с нуля в Python 1 часть

Создание и тренировка Нейронной Сети с нуля в Python 1 часть


Создание нейронных блоков

Для начала необходимо определиться с тем, что из себя представляют базовые компоненты нейронной сети – нейроны. Нейрон принимает вводные данные, выполняет с ними определенные математические операции, а затем выводит результат. Нейрон с двумя входными данными выглядит следующим образом:

Создание нейронных блоков


Здесь происходят три вещи. Во-первых, каждый вход умножается на вес (на схеме обозначен красным):

Создание нейронных блоков


Затем все взвешенные входы складываются вместе со смещением b (на схеме обозначен зеленым):

neural-networks-3


Наконец, сумма передается через функцию активации (на схеме обозначена желтым):

Нейроны функция активации


Функция активации используется для подключения несвязанных входных данных с выводом, у которого простая и предсказуемая форма. Как правило, в качестве используемой функцией активации берется функция сигмоида:

Функция сигмоида


Функция сигмоида выводит только числа в диапазоне (0, 1). Вы можете воспринимать это как компрессию от (−∞, +∞) до (0, 1). Крупные отрицательные числа становятся ~0, а крупные положительные числа становятся ~1.

Простой пример работы с нейронами в Python

Предположим, у нас есть нейрон с двумя входами, который использует функцию активации сигмоида и имеет следующие параметры:

формулы функции сигмоида


w = [0,1] — это просто один из способов написания w1 = 0, w2 = 1 в векторной форме. Присвоим нейрону вход со значением x = [2, 3]. Для более компактного представления будет использовано скалярное произведение.

Формула скалярного произведения


С учетом, что вход был x = [2, 3], вывод будет равен 0.999. Вот и все. Такой процесс передачи входных данных для получения вывода называется прямым распространением, или feedforward.

Создание нейрона с нуля в Python

Приступим к имплементации нейрона. Для этого потребуется использовать NumPy. Это мощная вычислительная библиотека Python, которая задействует математические операции:



import numpy as np

 

 

def sigmoid(x):

    # Наша функция активации: f(x) = 1 / (1 + e^(-x))

    return 1 / (1 + np.exp(-x))

 

 

class Neuron:

    def __init__(self, weights, bias):

        self.weights = weights

        self.bias = bias

 

    def feedforward(self, inputs):

        # Вводные данные о весе, добавление смещения

        # и последующее использование функции активации

 

        total = np.dot(self.weights, inputs) + self.bias

        return sigmoid(total)

 

 

weights = np.array([0, 1])  # w1 = 0, w2 = 1

bias = 4  # b = 4

n = Neuron(weights, bias)

 

x = np.array([2, 3])  # x1 = 2, x2 = 3

print(n.feedforward(x))  # 0.9990889488055994

Узнаете числа? Это тот же пример, который рассматривался ранее. Ответ полученный на этот раз также равен 0.999.

Пример сбор нейронов в нейросеть

Нейронная сеть по сути представляет собой группу связанных между собой нейронов. Простая нейронная сеть выглядит следующим образом:

Схема нейронной сети


На вводном слое сети два входа – x1 и x2. На скрытом слое два нейтрона — h1 и h2. На слое вывода находится один нейрон – о1. Обратите внимание на то, что входные данные для о1 являются результатами вывода h1 и h2. Таким образом и строится нейросеть.

Скрытым слоем называется любой слой между вводным слоем и слоем вывода, что являются первым и последним слоями соответственно. Скрытых слоев может быть несколько.

Пример прямого распространения FeedForward

Давайте используем продемонстрированную выше сеть и представим, что все нейроны имеют одинаковый вес w = [0, 1], одинаковое смещение b = 0 и ту же самую функцию активации сигмоида. Пусть h1h2 и o1 сами отметят результаты вывода представленных ими нейронов.

Что случится, если в качестве ввода будет использовано значение х = [2, 3]?

Пример прямого распространения feedforward


Результат вывода нейронной сети для входного значения х = [2, 3] составляет 0.7216. Все очень просто.

Нейронная сеть может иметь любое количество слоев с любым количеством нейронов в этих слоях.

Суть остается той же: нужно направить входные данные через нейроны в сеть для получения в итоге выходных данных. Для простоты далее в данной статье будет создан код сети, упомянутая выше.

Создание нейронной сети прямое распространение FeedForward

Далее будет показано, как реализовать прямое распространение feedforward в отношении нейронной сети. В качестве опорной точки будет использована следующая схема нейронной сети:

Схема нейронной сети

 

# ... Здесь код из предыдущего раздела

 

 

class OurNeuralNetwork:

    """

    Нейронная сеть, у которой:

        - 2 входа

        - 1 скрытый слой с двумя нейронами (h1, h2)

        - слой вывода с одним нейроном (o1)

    У каждого нейрона одинаковые вес и смещение:

        - w = [0, 1]

        - b = 0

    """

    def __init__(self):

        weights = np.array([0, 1])

        bias = 0

 

        # Класс Neuron из предыдущего раздела

        self.h1 = Neuron(weights, bias)

        self.h2 = Neuron(weights, bias)

        self.o1 = Neuron(weights, bias)

 

    def feedforward(self, x):

        out_h1 = self.h1.feedforward(x)

        out_h2 = self.h2.feedforward(x)

 

        # Вводы для о1 являются выводами h1 и h2

        out_o1 = self.o1.feedforward(np.array([out_h1, out_h2]))

 

        return out_o1

 

 

network = OurNeuralNetwork()

x = np.array([2, 3])

print(network.feedforward(x))  # 0.7216325609518421

Мы вновь получили 0.7216. Похоже, все работает.

Источник: https://python-scripts.com/intro-to-neural-networks

Report Page