Smeared Cracking

Smeared Cracking

Karim 카림

The smeared crack concrete model in Abaqus/Standard:

  • provides a general capability for modeling concrete in all types of structures, including beams, trusses, shells, and solids;
  • can be used for plain concrete, even though it is intended primarily for the analysis of reinforced concrete structures;
  • can be used with rebar to model concrete reinforcement;
  • is designed for applications in which the concrete is subjected to essentially monotonic straining at low confining pressures;
  • consists of an isotropically hardening yield surface that is active when the stress is dominantly compressive and an independent “crack detection surface” that determines if a point fails by cracking;
  • uses oriented damaged elasticity concepts (smeared cracking) to describe the reversible part of the material's response after cracking failure;
  • requires that the linear elastic material model (see “Linear elastic behavior,” Section 19.2.1) be used to define elastic properties; and
  • cannot be used with local orientations (see “Orientations,” Section 2.2.5).

Reinforcement

Reinforcement in concrete structures is typically provided by means of rebars, which are one-dimensional strain theory elements (rods) that can be defined singly or embedded in oriented surfaces. Rebars are typically used with metal plasticity models to describe the behavior of the rebar material and are superposed on a mesh of standard element types used to model the concrete.

With this modeling approach, the concrete behavior is considered independently of the rebar. Effects associated with the rebar/concrete interface, such as bond slip and dowel action, are modeled approximately by introducing some “tension stiffening” into the concrete modeling to simulate load transfer across cracks through the rebar. Details regarding tension stiffening are provided below.

Defining the rebar can be tedious in complex problems, but it is important that this be done accurately since it may cause an analysis to fail due to lack of reinforcement in key regions of a model. See “Defining reinforcement,” Section 2.2.3, for more information regarding rebars.

Reinforcement

Reinforcement in concrete structures is typically provided by means of rebars, which are one-dimensional strain theory elements (rods) that can be defined singly or embedded in oriented surfaces. Rebars are typically used with metal plasticity models to describe the behavior of the rebar material and are superposed on a mesh of standard element types used to model the concrete.

With this modeling approach, the concrete behavior is considered independently of the rebar. Effects associated with the rebar/concrete interface, such as bond slip and dowel action, are modeled approximately by introducing some “tension stiffening” into the concrete modeling to simulate load transfer across cracks through the rebar. Details regarding tension stiffening are provided below.

Defining the rebar can be tedious in complex problems, but it is important that this be done accurately since it may cause an analysis to fail due to lack of reinforcement in key regions of a model. See “Defining reinforcement,” Section 2.2.3, for more information regarding rebars.

Cracking


The model is intended as a model of concrete behavior for relatively monotonic loadings under fairly low confining pressures (less than four to five times the magnitude of the largest stress that can be carried by the concrete in uniaxial compression).

Crack detection

Cracking is assumed to be the most important aspect of the behavior, and representation of cracking and of postcracking behavior dominates the modeling. Cracking is assumed to occur when the stress reaches a failure surface that is called the “crack detection surface.” This failure surface is a linear relationship between the equivalent pressure stress, p, and the Mises equivalent deviatoric stress, q, and is illustrated in Figure 20.6.1–5. When a crack has been detected, its orientation is stored for subsequent calculations. Subsequent cracking at the same point is restricted to being orthogonal to this direction since stress components associated with an open crack are not included in the definition of the failure surface used for detecting the additional cracks.

Cracks are irrecoverable: they remain for the rest of the calculation (but may open and close). No more than three cracks can occur at any point (two in a plane stress case, one in a uniaxial stress case). Following crack detection, the crack affects the calculations because a damaged elasticity model is used. Oriented, damaged elasticity is discussed in more detail in “An inelastic constitutive model for concrete,” Section 4.5.1 of the Abaqus Theory Manual.

Smeared cracking

The concrete model is a smeared crack model in the sense that it does not track individual “macro” cracks. Constitutive calculations are performed independently at each integration point of the finite element model. The presence of cracks enters into these calculations by the way in which the cracks affect the stress and material stiffness associated with the integration point.

Tension stiffening


The postfailure behavior for direct straining across cracks is modeled with tension stiffening, which allows you to define the strain-softening behavior for cracked concrete. This behavior also allows for the effects of the reinforcement interaction with concrete to be simulated in a simple manner. Tension stiffening is required in the concrete smeared cracking model. You can specify tension stiffening by means of a postfailure stress-strain relation or by applying a fracture energy cracking criterion.

Postfailure stress-strain relation

Specification of strain softening behavior in reinforced concrete generally means specifying the postfailure stress as a function of strain across the crack. In cases with little or no reinforcement this specification often introduces mesh sensitivity in the analysis results in the sense that the finite element predictions do not converge to a unique solution as the mesh is refined because mesh refinement leads to narrower crack bands. This problem typically occurs if only a few discrete cracks form in the structure, and mesh refinement does not result in formation of additional cracks. If cracks are evenly distributed (either due to the effect of rebar or due to the presence of stabilizing elastic material, as in the case of plate bending), mesh sensitivity is less of a concern.

In practical calculations for reinforced concrete, the mesh is usually such that each element contains rebars. The interaction between the rebars and the concrete tends to reduce the mesh sensitivity, provided that a reasonable amount of tension stiffening is introduced in the concrete model to simulate this interaction (Figure 20.6.1–1).


Report Page