Системы линейных алгебраических уравнений слау основные понятия
Системы линейных алгебраических уравнений слау основные понятияСкачать файл - Системы линейных алгебраических уравнений слау основные понятия
Решение систем линейных алгебраических уравнений СЛАУ , несомненно, является важнейшей темой курса линейной алгебры. Огромное количество задач из всех разделов математики сводится к решению систем линейных уравнений. Этими факторами объясняется причина создания данной статьи. Материал статьи подобран и структурирован так, что с его помощью Вы сможете. Далее рассмотрим методы решения систем линейных алгебраических уравнений, в которых число уравнений равно числу неизвестных переменных и которые имеют единственное решение. Во-первых, остановимся на методе Крамера, во-вторых, покажем матричный метод решения таких систем уравнений, в-третьих, разберем метод Гаусса метод последовательного исключения неизвестных переменных. Для закрепления теории обязательно решим несколько СЛАУ различными способами. После этого перейдем к решению систем линейных алгебраических уравнений общего вида, в которых число уравнений не совпадает с числом неизвестных переменных или основная матрица системы является вырожденной. Сформулируем теорему Кронекера - Капелли, которая позволяет установить совместность СЛАУ. Разберем решение систем в случае их совместности с помощью понятия базисного минора матрицы. Также рассмотрим метод Гаусса и подробно опишем решения примеров. Обязательно остановимся на структуре общего решения однородных и неоднородных систем линейных алгебраических уравнений. Дадим понятие фундаментальной системы решений и покажем, как записывается общее решение СЛАУ с помощью векторов фундаментальной системы решений. Для лучшего понимания разберем несколько примеров. В заключении рассмотрим системы уравнений, сводящиеся к линейным, а также различные задачи, при решении которых возникают СЛАУ. Будем рассматривать системы из p линейных алгебраических уравнений с n неизвестными переменными p может быть равно n вида. В матричной форме записи эта система уравнений имеет вид , где - основная матрица системы, - матрица-столбец неизвестных переменных, - матрица-столбец свободных членов. Обычно расширенную матрицу обозначают буквой Т , а столбец свободных членов отделяют вертикальной линией от остальных столбцов, то есть,. Решением системы линейных алгебраических уравнений называют набор значений неизвестных переменных , обращающий все уравнения системы в тождества. Матричное уравнение при данных значениях неизвестных переменных также обращается в тождество. Если СЛАУ имеет единственное решение, то ее называют определенной ; если решений больше одного, то — неопределенной. Если свободные члены всех уравнений системы равны нулю , то система называется однородной , в противном случае — неоднородной. Если число уравнений системы равно числу неизвестных переменных и определитель ее основной матрицы не равен нулю, то такие СЛАУ будем называть элементарными. Такие системы уравнений имеют единственное решение, причем в случае однородной системы все неизвестные переменные равны нулю. Такие СЛАУ мы начинали изучать в средней школе. При их решении мы брали какое-нибудь одно уравнение, выражали одну неизвестную переменную через другие и подставляли ее в оставшиеся уравнения, следом брали следующее уравнение, выражали следующую неизвестную переменную и подставляли в другие уравнения и так далее. Или пользовались методом сложения, то есть, складывали два или более уравнений, чтобы исключить некоторые неизвестные переменные. Не будем подробно останавливаться на этих методах, так как они по сути являются модификациями метода Гаусса. Основными методами решения элементарных систем линейных уравнений являются метод Крамера, матричный метод и метод Гаусса. Пусть нам требуется решить систему линейных алгебраических уравнений в которой число уравнений равно числу неизвестных переменных и определитель основной матрицы системы отличен от нуля, то есть,. Пусть - определитель основной матрицы системы, а - определители матриц, которые получаются из А заменой 1-ого, 2-ого, …, n-ого столбца соответственно на столбец свободных членов: При таких обозначениях неизвестные переменные вычисляются по формулам метода Крамера как. Так находится решение системы линейных алгебраических уравнений методом Крамера. Решите систему линейных уравнений методом Крамера. Основная матрица системы имеет вид. Вычислим ее определитель при необходимости смотрите статью определитель матрицы: Так как определитель основной матрицы системы отличен от нуля, то система имеет единственное решение, которое может быть найдено методом Крамера. Составим и вычислим необходимые определители определитель получаем, заменив в матрице А первый столбец на столбец свободных членов , определитель - заменив второй столбец на столбец свободных членов, - заменив третий столбец матрицы А на столбец свободных членов: Находим неизвестные переменные по формулам: Основным недостатком метода Крамера если это можно назвать недостатком является трудоемкость вычисления определителей, когда число уравнений системы больше трех. Для более детальной информации смотрите раздел метод Крамера: Пусть система линейных алгебраических уравнений задана в матричной форме , где матрица A имеет размерность n на n и ее определитель отличен от нуля. Так как , то матрица А — обратима, то есть, существует обратная матрица. Если умножить обе части равенства на слева, то получим формулу для нахождения матрицы-столбца неизвестных переменных. Так мы получили решение системы линейных алгебраических уравнений матричным методом. Решите систему линейных уравнений матричным методом. Перепишем систему уравнений в матричной форме: Так как то СЛАУ можно решать матричным методом. С помощью обратной матрицы решение этой системы может быть найдено как. Построим обратную матрицу с помощью матрицы из алгебраических дополнений элементов матрицы А при необходимости смотрите статью методы нахождения обратной матрицы: Осталось вычислить - матрицу неизвестных переменных, умножив обратную матрицу на матрицу-столбец свободных членов при необходимости смотрите статью операции над матрицами: Основная проблема при нахождении решения систем линейных алгебраических уравнений матричным методом заключается в трудоемкости нахождения обратной матрицы, особенно для квадратных матриц порядка выше третьего. Более подробное описание теории и дополнительные примеры смотрите в статье матричный метод решения систем линейных уравнений. Пусть нам требуется найти решение системы из n линейных уравнений с n неизвестными переменными определитель основной матрицы которой отличен от нуля. Суть метода Гаусса состоит в последовательном исключении неизвестных переменных: Такой процесс преобразования уравнений системы для последовательного исключения неизвестных переменных называется прямым ходом метода Гаусса. После завершения прямого хода метода Гаусса из последнего уравнения находится x n , с помощью этого значения из предпоследнего уравнения вычисляется x n-1 , и так далее, из первого уравнения находится x 1. Процесс вычисления неизвестных переменных при движении от последнего уравнения системы к первому называется обратным ходом метода Гаусса. Будем считать, что , так как мы всегда можем этого добиться перестановкой местами уравнений системы. Исключим неизвестную переменную x 1 из всех уравнений системы, начиная со второго. Для этого ко второму уравнению системы прибавим первое, умноженное на , к третьему уравнению прибавим первое, умноженное на , и так далее, к n-ому уравнению прибавим первое, умноженное на. Система уравнений после таких преобразований примет вид где , а. К такому же результату мы бы пришли, если бы выразили x 1 через другие неизвестные переменные в первом уравнении системы и полученное выражение подставили во все остальные уравнения. Таким образом, переменная x 1 исключена из всех уравнений, начиная со второго. Далее действуем аналогично, но лишь с частью полученной системы, которая отмечена на рисунке. Будем считать, что в противном случае мы переставим местами вторую строку с k-ой , где. Приступаем к исключению неизвестной переменной x 2 из всех уравнений, начиная с третьего. Для этого к третьему уравнению системы прибавим второе, умноженное на , к четвертому уравнению прибавим второе, умноженное на , и так далее, к n-ому уравнению прибавим второе, умноженное на. Таким образом, переменная x 2 исключена из всех уравнений, начиная с третьего. Далее приступаем к исключению неизвестной x 3 , при этом действуем аналогично с отмеченной на рисунке частью системы. Так продолжаем прямой ход метода Гаусса пока система не примет вид. С этого момента начинаем обратный ход метода Гаусса: Решите систему линейных уравнений методом Гаусса. Исключим неизвестную переменную x 1 из второго и третьего уравнения системы. Для этого к обеим частям второго и третьего уравнений прибавим соответствующие части первого уравнения, умноженные на и на соответственно: Теперь из третьего уравнения исключим x 2 , прибавив к его левой и правой частям левую и правую части второго уравнения, умноженные на: На этом прямой ход метода Гаусса закончен, начинаем обратный ход. Из последнего уравнения полученной системы уравнений находим x 3: Из второго уравнения получаем. Из первого уравнения находим оставшуюся неизвестную переменную и этим завершаем обратный ход метода Гаусса. Более детальную информацию и дополнительные примеры смотрите в разделе решение элементарных систем линейных алгебраических уравнений методом Гаусса. В общем случае число уравнений системы p не совпадает с числом неизвестных переменных n: Такие СЛАУ могут не иметь решений, иметь единственное решение или иметь бесконечно много решений. Это утверждение относится также к системам уравнений, основная матрица которых квадратная и вырожденная. Далее нам потребуется понятие минора матрицы и ранга матрицы, которые даны в статье ранг матрицы: Прежде чем находить решение системы линейных уравнений необходимо установить ее совместность. Ответ на вопрос когда СЛАУ совместна, а когда несовместна, дает теорема Кронекера — Капелли: Рассмотрим на примере применение теоремы Кронекера — Капелли для определения совместности системы линейных уравнений. Выясните, имеет ли система линейных уравнений решения. Найдем ранг основной матрицы системы. Воспользуемся методом окаймляющих миноров. Минор второго порядка отличен от нуля. Переберем окаймляющие его миноры третьего порядка: Так как все окаймляющие миноры третьего порядка равны нулю, то ранг основной матрицы равен двум. В свою очередь ранг расширенной матрицы равен трем, так как минор третьего порядка отличен от нуля. Таким образом, Rang A , следовательно, по теореме Кронекера — Капелли можно сделать вывод, что исходная система линейных уравнений несовместна. Итак, мы научились устанавливать несовместность системы с помощью теоремы Кронекера — Капелли. Минор наивысшего порядка матрицы А , отличный от нуля, называется базисным. Из определения базисного минора следует, что его порядок равен рангу матрицы. Для ненулевой матрицы А базисных миноров может быть несколько, один базисный минор есть всегда. Для примера рассмотрим матрицу. Все миноры третьего порядка этой матрицы равны нулю, так как элементы третьей строки этой матрицы представляют собой сумму соответствующих элементов первой и второй строк. Базисными являются следующие миноры второго порядка, так как они отличны от нуля. Миноры базисными не являются, так как равны нулю. Если ранг матрицы порядка p на n равен r , то все элементы строк и столбцов матрицы, не образующие выбранный базисный минор, линейно выражаются через соответствующие элементы строк и столбцов , образующих базисный минор. Если по теореме Кронекера — Капелли мы установили совместность системы, то выбираем любой базисный минор основной матрицы системы его порядок равен r , и исключаем из системы все уравнения, которые не образуют выбранный базисный минор. Полученная таким образом СЛАУ будет эквивалентна исходной, так как отброшенные уравнения все равно излишни они согласно теореме о ранге матрицы являются линейной комбинацией оставшихся уравнений. Если число уравнений r в полученной системе будет равно числу неизвестных переменных, то она будет определенной и единственное решение можно будет найти методом Крамера, матричным методом или методом Гаусса. Решите систему линейных алгебраических уравнений. Ранг основной матрицы системы равен двум, так как минор второго порядка отличен от нуля. Ранг расширенной матрицы также равен двум, так как единственный минор третьего порядка равен нулю а рассмотренный выше минор второго порядка отличен от нуля. В качестве базисного минора возьмем. Его образуют коэффициенты первого и второго уравнений: Третье уравнение системы не участвует в образовании базисного минора, поэтому исключим его из системы на основании теоремы о ранге матрицы: Так мы получили элементарную систему линейных алгебраических уравнений. Решим ее методом Крамера: Если число уравнений r в полученной СЛАУ меньше числа неизвестных переменных n , то в левых частях уравнений оставляем слагаемые, образующие базисный минор, остальные слагаемые переносим в правые части уравнений системы с противоположным знаком. Неизвестные переменные их r штук , оставшиеся в левых частях уравнений, называются основными. Неизвестные переменные их n - r штук , которые оказались в правых частях, называются свободными. Теперь считаем, что свободные неизвестные переменные могут принимать произвольные значения, при этом r основных неизвестных переменных будут выражаться через свободные неизвестные переменные единственным образом. Их выражение можно найти решая полученную СЛАУ методом Крамера, матричным методом или методом Гаусса. Найдем ранг основной матрицы системы методом окаймляющих миноров. Начнем поиск ненулевого минора второго порядка, окаймляющего данный минор: Так мы нашли ненулевой минор второго порядка. Начнем поиск ненулевого окаймляющего минора третьего порядка: Таким образом, ранг основной матрицы равен трем. Ранг расширенной матрицы также равен трем, то есть, система совместна. Найденный ненулевой минор третьего порядка возьмем в качестве базисного. Для наглядности покажем элементы, образующие базисный минор: Оставляем в левой части уравнений системы слагаемые, участвующие в базисном миноре, остальные переносим с противоположными знаками в правые части: Придадим свободным неизвестным переменным x 2 и x 5 произвольные значения, то есть, примем , где - произвольные числа. При этом СЛАУ примет вид. Полученную элементарную систему линейных алгебраических уравнений решим методом Крамера: В ответе не забываем указать свободные неизвестные переменные. Чтобы решить систему линейных алгебраических уравнений общего вида, сначала выясняем ее совместность, используя теорему Кронекера — Капелли. Если ранг основной матрицы не равен рангу расширенной матрицы, то делаем вывод о несовместности системы. Если ранг основной матрицы равен рангу расширенной матрицы, то выбираем базисный минор и отбрасываем уравнения системы, которые не участвуют в образовании выбранного базисного минора. Если порядок базисного минора равен числу неизвестных переменных, то СЛАУ имеет единственное решение, которое находим любым известным нам методом. Если порядок базисного минора меньше числа неизвестных переменных, то в левой части уравнений системы оставляем слагаемые с основными неизвестными переменными, остальные слагаемые переносим в правые части и придаем свободным неизвестным переменным произвольные значения. Из полученной системы линейных уравнений находим основные неизвестные переменные методом Крамера, матричным методом или методом Гаусса. Методом Гаусса можно решать системы линейных алгебраических уравнений любого вида без предварительного их исследования на совместность. Процесс последовательного исключения неизвестных переменных позволяет сделать вывод как о совместности, так и о несовместности СЛАУ, а в случае существования решения дает возможность отыскать его. Смотрите его подробное описание и разобранные примеры в статье метод Гаусса для решения систем линейных алгебраических уравнений общего вида. В этом разделе речь пойдет о совместных однородных и неоднородных системах линейных алгебраических уравнений, имеющих бесконечное множество решений. Фундаментальной системой решений однородной системы из p линейных алгебраических уравнений с n неизвестными переменными называют совокупность n — r линейно независимых решений этой системы, где r — порядок базисного минора основной матрицы системы. Если обозначить линейно независимые решения однородной СЛАУ как X 1 , X 2 , …, X n-r X 1 , X 2 , …, X n-r — это матрицы столбцы размерности n на 1 , то общее решение этой однородной системы представляется в виде линейной комбинации векторов фундаментальной системы решений с произвольными постоянными коэффициентами С 1 , С 2 , …, С n-r , то есть,. Что обозначает термин общее решение однородной системы линейных алгебраических уравнений орослау? Таким образом, если мы найдем фундаментальную систему решений, то мы сможем задать все решения этой однородной СЛАУ как. Выбираем базисный минор исходной системы линейных уравнений, исключаем все остальные уравнения из системы и переносим в правые части уравнений системы с противоположными знаками все слагаемые, содержащие свободные неизвестные переменные. Придадим свободным неизвестным переменным значения 1,0,0,…,0 и вычислим основные неизвестные, решив полученную элементарную систему линейных уравнений любым способом, например, методом Крамера. Так будет получено X 1 - первое решение фундаментальной системы. Если придать свободным неизвестным значения 0,1,0,0,…,0 и вычислить при этом основные неизвестные, то получим X 2. Если свободным неизвестным переменным придадим значения 0,0,…,0,1 и вычислим основные неизвестные, то получим X n-r. Так будет построена фундаментальная система решений однородной СЛАУ и может быть записано ее общее решение в виде. Для неоднородных систем линейных алгебраических уравнений общее решение представляется в виде , где - общее решение соответствующей однородной системы, а - частное решение исходной неоднородной СЛАУ, которое мы получаем, придав свободным неизвестным значения 0,0,…,0 и вычислив значения основных неизвестных. Найдите фундаментальную систему решений и общее решение однородной системы линейных алгебраических уравнений. Ранг основной матрицы однородных систем линейных уравнений всегда равен рангу расширенной матрицы. Найдем ранг основной матрицы методом окаймляющих миноров. Найдем окаймляющий ненулевой минор второго порядка: Минор второго порядка, отличный от нуля, найден. Переберем окаймляющие его миноры третьего порядка в поисках ненулевого: Все окаймляющие миноры третьего порядка равны нулю, следовательно, ранг основной и расширенной матрицы равен двум. Отметим для наглядности элементы системы, которые его образуют: Третье уравнение исходной СЛАУ не участвует в образовании базисного минора, поэтому, может быть исключено: Оставляем в правых частях уравнений слагаемые, содержащие основные неизвестные, а в правые части переносим слагаемые со свободными неизвестными: Построим фундаментальную систему решений исходной однородной системы линейных уравнений. Фундаментальная система решений данной СЛАУ состоит из двух решений, так как исходная СЛАУ содержит четыре неизвестных переменных, а порядок ее базисного минора равен двум. Теперь построим X 2. Опять воспользуемся методом Крамера: Так мы получили два вектора фундаментальной системы решений и , теперь мы можем записать общее решение однородной системы линейных алгебраических уравнений: Найдите общее решение неоднородной системы линейных алгебраических уравнений. Общее решение этой системы уравнений будем искать в виде. Исходной неоднородной СЛАУ соответствует однородная система общее решение которой мы нашли в предыдущем примере. Следовательно, нам осталось найти частное решение неоднородной системы линейных алгебраических уравнений. Ранг основной матрицы системы равен двум, ранг расширенной матрицы системы также равен двум, так как все миноры третьего порядка, окаймляющие минор , равны нулю. Также примем минор в качестве базисного, исключим третье уравнение из системы и перенесем слагаемые со свободными неизвестными в правые части уравнений системы: Имеем , следовательно, где C 1 и C 2 — произвольные числа. Следует заметить, что решения неопределенной однородной системы линейных алгебраических уравнений порождают линейное пространство размерности n — r , базисом которого является фундаментальная система решений. Некоторые системы уравнений с помощью замены переменных можно свести к линейным. Так как , то система примет вид. При такой замене исходная система уравнений сведется к системе линейных уравнений. Вычислим определитель основной матрицы системы: Так как он отличен от нуля и число неизвестных переменных равно числу уравнений системы, то эта система определена. Найдем ее решение методом Крамера: Выполнив обратную замену, приходим к системе уравнений , откуда находим ее решения. Найдите все решения системы уравнений. Заменой переменных исходная система сводится к СЛАУ. Он отличен от нуля. Найдем решение матричным методом. Чтобы показать большую практическую значимость решения систем линейных алгебраических уравнений, разберем несколько задач из различных разделов математики, которые сводятся к решению СЛАУ. Составьте каноническое уравнение эллипсоида , проходящего через три точки. Каноническое уравнение эллипсоида в прямоугольной декартовой системе координат имеет вид. Наша задача состоит в определении параметров a , b и с. Так как эллипсоид проходит через точки А , В и С , то при подстановке их координат в каноническое уравнение эллипсоида оно должно обращаться в тождество. Так мы получим систему из трех уравнений: Обозначим , тогда система станет системой линейных алгебраических уравнений. Так как он отличен от нуля, то решение мы можем найти методом Крамера: Следовательно, искомое каноническое уравнение эллипсоида имеет вид. Представьте дробно рациональное выражение в виде суммы простейших дробей. Очень подробно решение подобных примеров разобрано в разделе разложение дроби на простейшие. Разложим многочлен, находящийся в знаменателе, на множители при необходимости смотрите статью разложение многочлена на множители. Частным от деления на является. Таким образом, имеем разложение и исходное выражение примет вид. Воспользуемся методом неопределенных коэффициентов. Приравняв соответствующие коэффициенты числителей, приходим к системе линейных алгебраических уравнений. Ее решение даст нам искомые неопределенные коэффициенты А , В , С и D. Решим систему методом Гаусса: Охраняется законом об авторском праве. Ни одну часть сайта www. Системы, решение систем уравнений и неравенств Решение систем линейных алгебраических уравнений, методы решения, примеры. Материал статьи подобран и структурирован так, что с его помощью Вы сможете подобрать оптимальный метод решения Вашей системы линейных алгебраических уравнений, изучить теорию выбранного метода, решить Вашу систему линейных уравнений, рассмотрев подробно разобранные решения характерных примеров и задач. Краткое описание материала статьи. Сначала дадим все необходимые определения, понятия и введем обозначения. Решение элементарных систем линейных алгебраических уравнений. Решение систем линейных уравнений методом Крамера. Матричный метод решения систем линейных уравнений решение СЛАУ с помощью обратной матрицы. Решение систем линейных уравнений методом Гаусса. Решение систем линейных алгебраических уравнений общего вида. Теорема Кронекера — Капелли. Метод Гаусса для решения систем линейных алгебраических уравнений общего вида. Запись общего решения однородных и неоднородных систем линейных алгебраических с помощью векторов фундаментальной системы решений. Решение систем уравнений, сводящихся к СЛАУ. Примеры задач, сводящихся к решению систем линейных алгебраических уравнений. При этом СЛАУ примет вид Полученную элементарную систему линейных алгебраических уравнений решим методом Крамера: Проведем обратную замену Следовательно, искомое каноническое уравнение эллипсоида имеет вид.
Тематический план
Понятия и виды пособий курсовая
Стандартный размер кредитной карты
Система линейных алгебраических уравнений
Цвета волос таблица с названиями
Заявление о государственной регистрации образец
Как удалить аваст зоне браузер
Математический форум Math Help Planet
Физиологические характеристики крови
Этуаль в ростове на дону каталог