Система контроля движения для пациентов - Коммуникации, связь, цифровые приборы и радиоэлектроника дипломная работа
Понятие и функциональное назначение акселерометров, принцип их действия и сферы применения. Системы связи: GPS, ГЛОНАСС для обнаружения местонахождения. ГЛОНАСС и GPS-мониторинг. Разработка системы контроля движения для пациентов, ее основные функции.
посмотреть текст работы
скачать работу можно здесь
полная информация о работе
весь список подобных работ
Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
· проанализировать рынок акселерометров, GPS-маячков и микроконтроллеров;
· выбрать вышеперечисленные элементы с нужными для реализации нашей цели техническими характеристиками;
· разработать способ объединить все элементы и интегрировать в носимое устройство.
Акселерометр - прибор, измеряющий проекцию кажущегося ускорения (разности между истинным ускорением объекта и гравитационным ускорением). Акселерометр представляет собой чувствительную массу, закреплённую в упругом подвесе. Отклонение массы от её первоначального положения при наличии кажущегося ускорения несёт информацию о величине этого ускорения.
По конструктивному выполнению акселерометры разделяются на однокомпонентные, двухкомпонентные, трёхкомпонентные. В соответствии с этим, они позволяют измерять ускорение вдоль одной, двух и трёх осей.
Некоторые акселерометры еще имеют интегрированные системы сбора и обработки данных. Это позволяет создавать завершённые системы для измерения ускорения и вибрации со всеми необходимыми элементами.
Основными параметрами акселерометра считаются:
· Масштабный коэффициент-коэффициентпропорциональности между измеряемым кажущимся ускорением и выходным сигналом (электрическим сигналом, частотой колебаний (для струнного акселерометра) или цифровым кодом);
· Пороговая чувствительность(разрешение) - величина минимального изменения кажущегося ускорения, которое способен определить прибор;
· Смещение нулевой отметки - показания прибора при нулевом кажущемся ускорении;
· Случайное блуждание - среднеквадратичное отклонение от смещения нуля;
· Нелинейность - изменения зависимости между выходным сигналом и кажущимся ускорением при изменении кажущегося ускорения[1].
Считается многоцелевым вибродатчиком, в настоящее время используемый практически почти во всех областях измерения и анализа механических колебаний. Эксплуатационная характеристика пьезоэлектрических акселерометров в общем лучше характеристики любого другого вибродатчика. Пьезоэлектрические акселерометры различными широкими рабочими частотным и динамическим диапазонами, линейными характеристиками в этих широких диапазонах, прочной конструкцией, надежностью и долговременной стабильностью его характеристик.
Так как пьезоэлектрические акселерометры считаются активными датчиками, генерирующими пропорциональный механическим колебаниям электрический сигнал, при их эксплуатации не нужен источник питания. Отсутствие движущихся элементов конструкции исключает возможность износа и гарантирует исключительную долговечность пьезоэлектрических акселерометров. Отметим, что отдаваемый акселерометром сигнал, пропорциональный ускорению, можно интегрировать с целью измерения и анализа скорости и смещения механических колебаний.
Главным составляющим пьезоэлектрического акселерометра считается диск из пьезоэлектрического материала, в качестве которого очень хорошо используется искусственно поляризованная ферроэлектрическая керамика. Подвергаемый действию силы (при растяжении, сжатии или же сдвиге) пьезоэлектрический материал генерирует на собственных поверхностях, к которым прикреплены электроды, электрический заряд, пропорциональный воздействующей силе.
Конструкция пьезоэлектрических акселерометров.
Пьезоэлемент практических пьезоэлектрических акселерометров сконструирован так, что при возбуждении механическими колебаниями предусмотренная в корпусе акселерометра масса воздействует на него силой, пропорциональной ускорению механических колебаний. Это соответствует закону, согласно которому сила равна произведению массы и ускорения (рис. 1.1).
Рис. 1.1 Конструкция пьезоэлектрических акселерометров
На частотах, значительно меньших резонансной частоты совместной системы масса - пружина ускорения массы акселерометра идентично ускорению его основания и, отсюда следует, что отдаваемый акселерометром электрический сигнал пропорционален ускорению воздействующих на него механических колебаний.
Основные варианты конструкции пьезоэлектрических акселерометров:
§ Вариант сжатия, в котором масса воздействует силой сжатия на пьезоэлектрический элемент;
§ Вариант сдвига, характерным для которого является работа пьезоэлемента под действием срезывающего усилия, обусловленного внутренней массой акселерометра.
Пьезоэлектрические акселерометры с интегральными предусилителями, которые выдают в линии питания выходной сигнал в виде модуляции напряжения. IEPE-акселерометры специально предусмотрены для измерения вибраций в небольших структурах (например, малогабаритных). Их высочайшая выходная чувствительность, высочайшее отношение сигнал/шум и широкая полоса пропускания дают возможность применить их и как прибора общего назначения, и для измерения высокочастотных вибраций. Эти дешевые и легкие акселерометры считаются инструментами с довольно хорошими рабочими характеристиками, имеющими наиболее высокую выходную чувствительность, чем стандартные пьезоэлектрические акселерометры. Они герметизированы для защиты от загрязнений окружающей вокруг среды, имеют невысокую восприимчивость к электромагнитному излучению на радиочастотах и невысокое выходное абсолютное сопротивление благодаря наружному источнику постоянного тока. Низко импедансный выход разрешает применить дешевые коаксиальные кабели. IEPE-акселерометры считаются недемпфированными высокочастотными акселерометрами. При измерениях следует принимать меры, чтобы избежать «звона» акселерометра и появлений критерий перегрузки.
Датчики деформации пьезорезистивных акселерометров изменяют электрическое сопротивление пропорционально приложенному механическому напряжению. Целый датчик акселерометра хранит в себе встроенные механические ограничители и обладает довольно высокой прочностью при очень высоком соотношении сигнал/шум. Акселерометры этого типа безупречно подходят для измерения перемещения, низкочастотной вибрации и ударного воздействия и предусмотрены для тестирования на столкновение с препятствием, на флаттер, а еще и для биодинамических измерений и аналогичных приложений, требующих небольшой нагрузки массы и широкой частотной характеристики. Их возможно также применить для ударных испытаний легких систем или конструкций.
Имея частотную характеристику, которая распространяется до постоянного тока, т.е. до установившегося ускорения, эти акселерометры безупречно подходят для измерений длительных переходных процессов, а еще и кратковременных ударных воздействий. Во множествах случаях чувствительность как оказалась достаточно высокой и усиления выходного сигнала не требуется (рис. 1.2).
Рис. 1.2 Строение пьезорезистивных акселерометров
Пьезорезистивные акселерометры имеют малое демпфирование, в следствии этого, не создают фазового сдвига на низких частотах.
Впрочем им присущи сложности при измерениях на низких частотах, и для преодоления этих дефектов требуется принимать специальные меры [6].
В акселерометрах переменной емкости уникальный микродатчик переменной емкости создает емкостный прибор с параллельным расположением пластин. В итоге получается датчик с реакцией на входные ускорения постоянного тока, со стабильной характеристикой демпфирования, которая максимизирует частотную характеристику, и с необходимой прочностью, чтобы противостоять очень высоким ударным и ускорительным нагрузкам. Эти low-g акселерометры безупречно подходят для измерения движения и низкочастотных вибраций и предназначены для как мониторинга траектории.
Газовое демпфирование и интегрированные ограничители на выход за пределы диапазона дают возможность микродатчикам акселерометра противостоять ударным и ускорительным нагрузкам, присущим обычно всем highg - приложениям.
Акселерометры представляют собой датчики линейного ускорения и в данном качестве широко применяются для измерения углов наклона тел, сил инерции, ударных нагрузок и вибрации. Они находят обширное применения в транспорте, в медицине, в промышленных системах измерения и управления, в инерциальных системах навигации. Промышленность изготавливает много разновидностей акселерометров, имеющих различные принципы действия, диапазоны измерения ускорений, массу, габариты и цены.
Современные технологии микрообработки дают возможность изготовить интегральные акселерометры, имеющие малые габариты и невысокую цену. В данное время изготавливаются ИМС акселерометров трех типов: пьезопленочные, объемные и поверхностные.
Пленочные пьезоэлектрические акселерометры
Пленочные пьезоэлектрические датчики ускорения производятся на основе многослойной пьезоэлектрической полимерной пленки. Многослойная пленка зафиксирована на подложке из окиси алюминия, и к ней присоединена инерционная масса из порошкового металла. При изменении скорости движения датчика в результате действия инерционных сил происходит деформация пленки. Благодаря пьезоэффекту возникает разность потенциалов на границах слоев пленки, зависящая от ускорения. Чувствительный элемент датчика обладает чрезвычайно высочайшим выходным сопротивлением, вследствии этого на подложке датчика ACH-01 компании Atochem Sensors также имеется полевой транзистор с малым током затвора, который представляет собой подобие усилителя напряжения. Это позволяет измерять переменные ускорения со сравнительно низкой частотой. Датчики этого типа имеют плохую повторяемость характеристик в серийном производстве, высокую чувствительность к изменению температуры и давления. Они не могут контролировать постоянные ускорения и гравитационные силы [9].
Объемные интегральные акселерометры.
Микросхема датчика не имеет схемы обработки сигнала измерительного моста. Варианты датчика выделяются тем, что NAC-203 имеет интегрированные толстопленочные схемы, позволяющие произвести лазерную настройку чувствительности и температурной коррекции в процессе изготовления, а в NAC-201 реализация этих функций предоставляется пользователю. Входное и выходное сопротивления измерительного моста модели NAC-201 равны 2 кОм. Полоса пропускания по уровню 3 дБ составляет 500 Гц. Резонансная частота устройств, смонтированных в полном согласии с рекомендациями изготовителя - не менее 10 кГц.
Интегральные датчики ускорения объемной системной конструкции имеют ряд недостатков. Во-первых, они сложны в производстве, потому что операции формирования довольно больших структур не очень просто сочетаются со стандартными поверхностными интегральными технологиями. Во-вторых, желательно использовать датчик как можно минимально возможных размеров на схемном кристалле также минимально возможных размеров. Уменьшение размеров кристалла дает повышение его механической прочности и снижение стоимости. В то же время в датчике объемной конструкции только на размещение чувствительного элемента потребуется от 6,5 до 16 мм площади кристалла. Размещение на кристалле схем формирования сигнала возможно увеличить эту площадь еще в два раза. Вследствии этого, в частности, один из датчиков ускорения компании Motorola содержит двухкристаллическую конструкцию. На одном кристалле выполнен объемный чувствительный элемент, а на другом - схема обработки сигнала.
Поверхностные интегральные акселерометры.
Целый кристалл акселерометра размером 3,05 3,05 мм занят ключевым образом схемами формирования сигнала, которые находятся вокруг миниатюрного датчика ускорения размером 1Ч1 мм, находящийся в его центре. Датчик представляет собой дифференциальную конденсаторную структуру с воздушным диэлектриком, обкладки которого вырезаны (вытравлены) из плоского кусочка поликремниевой пленки толщиной 2 мкм. Недвижные обкладки данного конденсатора представляют собой обычные консольные стержни, находящихся на высоте 1 мкм от поверхности кристалла в воздухе на поликремниевых столбиках-анкерах, приваренных к кристаллу на молекулярном уровне
На рис. 1.3 показан главный конструктивный блок элементарной ячейки датчика. практически датчик содержит 54 элементарных ячейки для измерения ускорения, но для простоты рисунок демонстрирует только одну ячейку. Инерционная масса датчика ускорения при изменении скорости перемещения кристалла смещается относительно остальной части кристалла. Ее пальцеобразные выступы образуют подвижную обкладку конденсатора переменной емкости [2].
Рис. 1. 3 Основной конструктивный блок элементарной ячейки датчика ускорения
С каждого конца данная структура опирается на столбики-анкеры, подобные по конструкции держателям неподвижных обкладок. Растяжки по концам инерционной массы, удерживающие ее на весу, считаются как бы механическими пружинами неизменной упругости, ограничивающими перемещение пробной массы и ее возврат в изначальное положение. Говоря иными словами, сила инерции при воздействии ускорения
уравновешивается силой упругости пружины
Где m - масса, a - ускорение, k - жесткость пружины, x - перемещение массы относительно исходного состояния. Отсюда следует, что a = x (k / m), причем k/m - конструктивный параметр датчика.
Так как перемещение инерционной массы обязано происходить именно в плоскости поли кремниевой пленки, ось чувствительности датчика лежит в данной плоскости, и, значит, она параллельна плоскости печатной платы, к которой припаивается датчик (рис. 1.4).
Рис. 1.4 Использование акселерометра для измерения наклона
Любой из наборов неподвижных обкладок конденсатора (Y и Z) электрически объединен параллельно внутри схемного кристалла. В итоге получается пара независимых конденсаторов X-Y и X-Z, подвижная обкладка которых образована всей совокупностью пальцеобразных выступов инерционной массы. Внутри кристалла эти три обкладки подключены к интегрированным схемам формирования сигнала акселерометра. В состоянии покоя (движение с постоянной скоростью) все «пальцы» подвижной обкладки Х благодаря растяжкам находятся на одном и том же расстоянии от пар пальцев неподвижных обкладок. При любом ускорении подвижные пальцы приближаются к одному из наборов неподвижных пальцев и удаляются от другого набора. В итоге, относительного перемещения соответствующие расстояния становятся неодинаковыми, и емкости между подвижной обкладкой и каждой из неподвижных обкладок меняются.
Емкости CS1 и CS2 между неподвижными и подвижной обкладками при полном отсутствии ускорения схожи, вследствии этого на подвижную обкладку передаются сигналы одинаковой амплитуды. Разностный сигнал, передающихся на вход повторителя, равен нулю. При ускорении датчика разностный сигнал не равен нулю, при этом его амплитуда зависит от величины смещения подвижной обкладки, а фаза определяется знаком ускорения.
Фазочувствительный демодулятор конвертирует этот сигнал в низкочастотный (полосой от 0 до 1000 Гц), характеризующий величину и знак ускорения. Это напряжение поступает на предусилитель, с выхода которого сигнал идет на наружный вывод ИМС.
Для того чтобы убавить влияние температуры окружающей среды, кратковременные изменения параметров, уменьшить нелинейность переходной характеристики акселерометра, разработчики разработали отрицательную обратную связь по положению инерционной массы. Для данного напряжение с выхода предусилителя через резистор 3 МОм переходит в подвижные обкладки датчика. Это напряжение дает электростатические силы между подвижной и неподвижной обкладками, которые стремятся установить инерционную массу в начальное состояние. Так как мы имеем в данном случае следящую систему с высокой добротностью, инерционная масса никак не будет отклоняться от собственного исходного положения более чем на 0,01 мкм. В отсутствии ускорения выходное напряжение предусилителя будет равно VO = 1,8 В, при полном ускорении ±50 g VO = 1,8±1,5 В.
В более поздних моделях ИМС акселерометров инженеры компании Analog Devices категорически отказались от обратной связи по положению инерционной массы. С одной стороны, это позволило почти в два раза уменьшить площадь кристалла датчика, увеличить его экономичность, повысило размах выходного напряжения, практически исключить внешние компоненты, уменьшить стоимость, но с другой стороны, увеличилось смещение инерционной массы, что привело к небольшому но реальному ухудшению линейности [4].
Акселерометры семейства ADXL также снабжены системой самотестирования. Это вызывает колебания инерционной массы, подобны тем, которые вызываются действием инерционных сил. Выходное напряжение исправного датчика также будет меняться с той же самой частотой.
В моделях без обратной связи по положению лишь только 42 ячейки датчика применяются в схеме измерения ускорения. Другие 12 входят в схему самотестирования. Самотестирование исполняются подачей высокого логического уровня на вывод «SELF-TEST» микросхемы. При этом на подвижную часть датчика воздействует электростатическая сила, соответствующая около 20% ускорения полной шкалы. Выходное напряжение ИМС исправного датчика пропорционально значительно уменьшится. Благодаря этому и проверяется функциональность полной механической структуры и электрической схемы акселерометра.
Именно для того чтобы понизить уровень требования к стабильности источника питания и сделать возможным питание акселерометров напрямую от батарей, их выходное напряжение делают пропорциональным произведению ускорения на напряжение питания. В этом случае его следует включать по логометрической схеме. В данной схеме следует применить АЦП, который будет использовать питающее напряжение в качестве опорного. Стоит заметить, что между выходом акселерометра и входом УВХ АЦП обязан быть буферный усилитель, из за того что выходной ток акселерометра изменяется в диапазоне ±100 мкА, и при достаточно высокой частоте выборок конденсатор УВХ никак не будет успевать заряжаться до напряжения на выходе акселерометра.
В настоящее время Analog Devices выпускает некоторое количества моделей интегральных акселерометров: одноосные ADXL105, ADXL150, ADXL190 на наибольшее ускорение ±5 g, ±50 g, ±100 g следовательно, и двухосные ADXL202, ADXL210 и ADXL250 на наибольшее ускорение по обеим осям ±2 g, ±10 g и ±50 g соответственно. Датчики производятся в основном в плоских керамических корпусах QC-14 с планарными выводами, при этом оси, по которым измеряется ускорение, направлены параллельно плоскости выводов (параллельно плоскости печатной платы). Вариант ADXL202Е производится в миниатюрном без выводном кристаллоносителе LCC-8 размером 5ґ5ґ2 мм. Для удобства сопряжения с микроконтроллерами выходные сигналы ИМС ADXL202 и ADXL210 представляют собой прямоугольные импульсы постоянной частоты. Информация об ускорении отображается относительной длительностью импульсов g [7].
Интересное применение акселерометров с малым значением максимального измеряемого ускорения (и, соответственно, высокой чувствительностью) - определение угла наклона относительно горизонта (рис. 1.5).
Рис. 1.5 График зависимости разности емкостей конденсаторов из ячейки датчика ускорения от перемещения подвижной пластины
Выходное напряжение акселерометра пропорционально синусу угла наклона оси его чувствительности относительно горизонта. Для того чтобы определить этот угол однозначно, необходимо использовать двухосный акселерометр. Для этой цели почти идеально подходит ADXL202. Зависимости выходных сигналов этого датчика, приведенных к 1 g, от угла его наклона (рис. 1.6).
Рис. 1.6 Блок-схема двухосного акселерометра ADXL202
Рисунок 6 демонстрирует упрощенную блок-схему двухосного акселерометра ADXL202. Его выходными сигналами считаются импульсы, относительная длительность которых пропорциональна ускорению. Подобный тип выхода гарантирует повышенную помехоустойчивость, передачу сигнала лишь по одной линии и прием его любым микроконтроллером, имеющим таймер (необходимость в АЦП отсутствует). Сигнал на выходе каждого канала датчика содержит форму ускорение в единицах g рассчитывается по формуле:
Стоит обратить внимание, на то что относительная длительность = 0,5 соответствует нулевому ускорению. Период импульсов Т2 не надо измерять на каждом импульсе. Его нужно уточнять лишь только при изменении температуры. Так как частота выходных импульсов одинакова для обоих каналов, период Т2 достаточно измерить только на одном канале. Данная величина устанавливается в пределе от 0,5 до 10 мс внешним резистором RSET.
Недоработкой акселерометров с ШИМ - выходом считается необходимость применения весьма быстродействующих микроконтроллеров для получения высочайшей разрешающей возможности при широкой полосе пропускания. [2]
Завершая описание акселерометров компании Analog Devices, приведем несколько интересных цифр, характеризующих конструкцию и уровень технологии производства этих микросхем.
· Масса инерционного грузика -0,1 мкг.
· Емкость каждой части дифференциального конденсатора -0,1 пФ.
· Минимальное обнаруживаемое отклонение емкости -20 aФ (10-18 Ф);
· Изменение емкости, соответствующее ускорению полной шкалы - 0,01 пФ;
· Расстояние между обкладками конденсатора -1,3 мкм.
· Минимальное обнаруживаемое отклонение подвижных обкладок конденсатора -0,2 ангстрема (пятая часть диаметра атома) [7].
Акселерометры семейства XMMA компании Motorola.
Акселерометры рода XMMA компании Motorola состоят из планарной емкостной ячейки датчика ускорения и КМОП - схемы нормализации сигнала, произведенных в отличие от более ранних моделей, на одном кристалле. Чувствительный элемент (G-ячейка) занимает значительно большую площадь части кристалла. Он сформирован из поликристаллического кремния при помощи поверхностной микрообработки и состоящих из двух неподвижных пластин, между которыми размещена пластина, зафиксированная на упругом подвесе и способная передвигаться под действием инерционных сил (рис. 1.7).
Рис. 1.7 Упрощенная конструкция датчика ускорения микросхемы семейства XMMA
Когда центральная пластинка отклоняется от среднего положения из за выполненного ускорения, расстояние от нее до одной из неподвижных пластинок возрастет на ту же самую величину, на которую расстояние до другой пластины снизится. Изменение расстояний охарактеризует ускорение. Ось чувствительности к ускорению ориентирована перпендикулярно поверхности пластинки кремния (чипа), из-за этого датчики, производимые в DIP-корпусе, измеряют ускорение, направленное нормально к печатной плате. Для того чтобы сделать возможным измерение ускорений, направленных параллельно печатной плате, фирма выпускает эти датчики еще и в корпусах SIP, в которых чип расположен перпендикулярно печатной плате.
Пластинки G-ячейки создают два противоположно включенных конденсатора. При перемещении датчика с ускорением, направленным перпендикулярно плоскости пластинок, подвижная пластинка отклонится по направлению, противоположном ускорению, и произойдет перераспределение расстояний между пластинками. Емкости обоих конденсаторов изменятся в соответствии с формулой
где S - площадь пластин, e - диэлектрическая постоянная и x - расстояние между пластинами. Как видно, эта зависимость не линейна. На рис. 7 приведен график зависимости разности емкостей этих конденсаторов (С1-С2) от перемещения подвижной пластины.
Схемы определения рассогласования емкостей конденсаторов G-ячейки измеряют изменение напряжения на подвижной пластине (MMAS40G, MMAS250G, MMAS500G) или заряда на ней (XMMA1000, XMMA2000). Напряжение измеряется электрометрическим усилителем, а заряд - усилителем заряда. Судя по техническим описаниям этих микросхем, представленным фирмой-изготовителем, постоянное ускорение они не воспринимают. На рис. 1.8 приведена блок-схема акселерометра XMMAS500G, имеющего диапазон измеряемых ускорений 500 g. Сигнал с выхода электрометрического усилителя поступает на фильтр нижних частот 4-го порядка, а с него - на схему температурной компенсации [9].
Рис. 1. 8. Блок-схема акселерометра MMAS500G
Точность интегральных акселерометров.
Точность преобразования ускорения в электрический сигнал акселерометрами например, как и точность датчиков другого типа, измеряются величинами смещения нуля, погрешностью полной шкалы (или чувствительности), а еще и температурным и временным дрейфом этих параметров. Актуальными элементами погрешности считаются также погрешности линейности (нелинейность) и поперечная чувствительность. Смещение нулевой отметки и чувствительность акселерометров при нормальных условиях корректируются при изготовлении. Остаточная погрешность возможна быть уменьшена путем калибровки и записи калибровочных констант в памяти микроконтроллера. Калибровка акселерометра возможна двумя способами: на вибростенде с образцовым датчиком ускорения и с помощью силы тяжести. (рис1.9)
Рис. 1.9 Графики ускорения и скорости интегрального акселерометра
Использование вибростенда имеет следующие преимущества:
· возможность калибровки, в том числе и датчиков, восприимчивых только к переменному ускорению;
· возможность калибровки датчиков с ускорениями, многократно превышающими g;
· требуется дорогостоящий вибростенд;
· проблема закрепления датчика при калибровке на высоких g.
Преимущества применения силы тяжести для калибровки:
· не требуется дорогостоящее оборудование;
· метод мало чувствителен к погрешности установки датчика;
o можно применить только для датчиков, восприимчивых к постоянному ускорению;
o нельзя калибровать полную шкалу датчиков, способных преобразовывать большие ускорения.
Температурный дрейф смещения нуля и чувствительности еще возможно скомпенсирован. Для данной цели некоторые модели (например, XMMA1000, ADXL105) снабжаются встроенными датчиками температуры.
Одной из причин нелинейности характеристики преобразования интегральных акселерометров с датчиками емкостного типа является нелинейная зависимость емкости конденсатора от расстояния между обкладками. При использовании усилителя заряда, как это сделано в XMMA1000, потенциал подвижной пластины постоянен и равен половине напряжения питания, которое мы будем считать равным 2V.В этом случае из формулы q = CV с учетом (1) следует, что приращение заряда подвижной обкладки при ее перемещении на расстояние x составит
Как видно, зависимость приращения заряда от изменения расстояния между пластинами не линейна. Если в акселерометре применяется усилитель напряжения (электрометрический), то заряд конденсаторов датчика меняться не будет. Тогда приращение напряжения на подвижной пластине будет линейно зависеть от изменения расстояния между пластинами:
По указанным причинам акселерометр XMMA1000 (усилитель заряда) име
ет типичную погрешность линейности 1% от полной шкалы против 0,5% у MMAS40G (усилитель напряжения). Акселерометры семейства ADXL имеют емкостный датчик дифференциального типа, неподвижные пластины которого питаются равными, но противофазными напряжениями возбуждения V1 и V2 с частотой 1 МГц. Поэтому комплексное действующее значение напряжения на средней пластине, согласно методу двух узлов, определяется формулой:
где - круговая частота возбуждения. С учетом того, что V1 = - V2, а
Таким образом, зависимость напряжения на подвижных пластинах датчика от перемещения получается линейной. Акселерометры семейства ADXL имеют типовую погрешность линейности 0,2%.
В (4) в качестве еще одного источника погрешности указывается гистерезис (то есть неполная восстанавливаемость) при вибрациях и ударах. В фирменном описании микросхем практически никаких сведений о гистерезисе нет, но эксперименты по применению интегральных акселерометров семейства ADXL для определения скоростей и перемещений, показали, что при наличии вибраций большой амплитуды погрешность, обусловленная, по всей видимости, гистерезисом, возможно достигать совершенно недопустимых значений. Этот гистерезис обусловлен тем, что при значительных ускорениях деформация растяжек, играющих роль пружин, возможно неупругой и при снижении ускорения инерционная масса либо медленно возвращается в исходное состояние (вязкая не упругость), либо не возвращается вообще. Из за упругости стержня это перемещение сопровождается вибрацией довольно высокой амплитуды с частотой приблизительно 300 Гц. График ускорения получен именно непосредственным считыванием сигнала акселерометра 12-разрядным АЦП с частотой выборки 80 кГц. График скорости считается результатом численного интегрирования этих данных методом трапеций. В начале и в конце интервала наблюдения (0-0,9 с) скорость датчика равна нулю.
Поперечная чувствительность характеризует непосредственно способность датчика преобразовывать в электрический сигнал ускорение, направленное под углом 90° к оси чувствительности датчика (поперечное). У безупречного акселерометра поперечная чувствительность равна нулю. В паспортных данных датчика указывается часть (в процентах) поперечного ускорения, которая проходит на выход.
Шум, содержащийся в выходном сигнале акселерометра, определяет разрешающую способность устройства, важную при определении незначительных ускорений. Максимальное разрешение в основном определяется уровнем шума измерения, который и включает внешний фоновый шум и шум собственно датчика. Уровень шума непосредственно связан с шириной полосы пропускания датчика. Уменьшение полосы пропускания путем включения ФНЧ на выходе датчика и приводит к снижению уровня шума. Это и улучшает отношение сигнал/шум и увеличивает разрешающую способность, так же вносит амплитудные и фазовые частотные искажения. Некоторые модели акселерометров содержат на кристалле ФНЧ (семейство XMMA -4-го порядка, ADXL190 -2-го). Двухосные датчики ADXL202/210 содержат выводы для подключения двух внешних конденсаторов, образующих с двумя внутренними резисторами по 32 кОм два ФНЧ первого порядка.
Пример: Микросхема ADXL150 содержит типичное значение спектральной плотности шума 1мg/ Гц в полосе 10-1000 Гц. При включении ФНЧ с частотой среза 100 Гц действующее значение шума на выходе фильтра составит 10 мg, а амплитудное, с вероятностью 0,997, - в пределах 30 мg. Так как полная шкала этого датчика составляет 50 g, динамический диапазон равен 20lg (50/0,03) = 64,4 дБ. Это вполне неплохо, но по этому показателю интегральные акселерометры очень сильно уступают пьезоэлектрическим. Например, пьезоэлектрический акселерометр типа 4371 компании Bruel & Kjaer имеет динамический диапазон 140 дБ [6].
Акселерометр ADXL345 - это небольшой и маломощный 3-х осевой акселерометр с высоким разрешением (13 бит) и с диапазоном измерения ускорения до ±16 g, диапазон измерений можно выбрать из ряда: ±2 g, ±4 g, ±8 g и ±16 g. Результат измерений возможно прочитать по интерфейсам SPI или I2C в виде 16-ти бит данных.
ADXL345 обладая узкой полосой пропускания (0,05…1600 Гц), и
Система контроля движения для пациентов дипломная работа. Коммуникации, связь, цифровые приборы и радиоэлектроника.
Реферат по теме Белки в медицине
Курсовая работа: Луганськ
Реферат: Использование корреляционного анализа в работе школьного психолога
Музыкальная Литература Сочинение
Сочинение На Тему Когда Можно Простить Измену
Реферат: Logic And Truth Essay Research Paper Logic
Написать Сочинение С Устаревшими Словами
Реферат На Тему Паралимпийский Спорт В России
Реферат: Английские и американские боевики и их влияние на формирование личности подростка
Заполнения Дневника По Практике Повар
Реферат: Ценообразование в условиях монополии
Нормативно Правовые Акты Курсовая Работа
Что Такое Щедрость Сочинение Рассуждение 9.3
Реферат На Тему Становлення Професійних Бухгалтерських Організацій
Реферат: Эффекты социально-психологических тренингов
Реферат По Праву Скачать Бесплатно
Военный Коммунизм Эссе
Мое Идеальное Правовое Государство Сочинение
Реферат по теме Друзская община Израиля
Реферат: Революция Мэйдзи исин в Японии как предпосылка к становлению капиталистической экономики
Формы и методы работы современной пресс-службы со средствами массовой информации, общественностью и политическими организациями - Журналистика, издательское дело и СМИ дипломная работа
Содержание предмета теории государства и права - Государство и право реферат
Изучение геологического строения Валявкинского месторождения - Геология, гидрология и геодезия дипломная работа