Схема разложения воды

Схема разложения воды

Схема разложения воды




Скачать файл - Схема разложения воды

















Глава 15 Вода и водород в энергетике О сколько нам открытий чудных. Перейдем к рассмотрению технологий автономного энергоснабжения, в которых главную роль играет вода или водород. Мир создан разумно, и в нашем распоряжении на планете есть возобновляемое топливо в большом количестве. Итак, вода — это жидкое топливо, состоящее из связанных газов, кислорода и водорода, в безопасной и компактной упаковке. Мы уже рассматривали применение центробежной силы для эффективного получения водорода из воды. В этой главе мы рассмотрим другие примеры конструирования источников энергии, использующих воду или водород. Отметим, что электролизный метод получения водорода в России был запатентован в году Профессором Лачиновым. В его экспериментах с электролизерами высокого давления, было показано, что, при определенных условиях, расход электроэнергии не зависит от создаваемого давления, поэтому получаемые газы могут совершать большую работу, чем затрачивается на разложение воды. Избыточная энергия, при высвобождении газа, поглощается из окружающей среды. Лачинов отмечал факты замерзания и образования инея на стенках его электролизеров. Впрочем, это может быть и результатом охлаждения газа при его резком расширении. Ранее, мы рассмотрели резонансные метода Кили, который получал газ из воды методом вибраций, и затем использовал газ высокого давления в своей машине для совершения полезной работы. Эти и другие методы имеют одинаковую особенность: Этот фактор обеспечивается при понимании строения молекул воды и их внутренних связей с окружающим эфиром. Интересный подход к данному вопросу предложил И. Это приводит к метастабильному состоянию молекулы и ее самопроизвольному распаду. Обычно, такая активация воды происходит при наличии в воде катализатора, который не расходуется, но создает вокруг себя пространственную структуру в эфире, влияющую на стабильность молекул воды. При электролизе, способ бестоковой активации заключается в том, что один из электродов изолируется от воды, но электрическое поле создается. Электролиз при этом происходит, хотя тока проводимости через раствор нет. Известно, что в сильном электрическом поле происходит поляризация среды, а при выполнении определенных условий, произойдет и диссоциация молекул воды. По моему практическому опыту, могут быть изолированы оба электрода, при условии импульсного воздействия на воду и соответствующей высокой разности потенциалов. Вода поляризуется в области градиента потенциала, а ток проводимости и затраты мощности от источника — это косвенный фактор, которого можно избежать, если не допускать электрического пробоя между электродами. Остроконечный электрод создает сильный градиент поля в области острия. Назовем эту величину плотности частиц эфира M. Общее число частиц эфира в объеме пространства назовем N. Возникает интересная аналогия с формулой Н. Выводы из данного наблюдения следующие: Из истории развития значительных российских изобретений в области высокоэффективного электролиза, рассмотрим работы Ивана Степановича Филимоненко. Этим новым разработкам содействовали С. Применение установки Филимоненко нашли на некоторых советских спутниках, как высокоэффективные источники кислорода и водорода. Позже, в году, много шума наделало заявление Понса и Флейшмана, Pons and Fleishman которые также, как и Филимоненко, использовали в своем электролизере дейтерий, хотя применили дорогостоящие палладиевые электроды. Этот процесс происходит без затрат энергии внешнего источника. Высвобождение водорода происходит с выделением большого количества тепловой энергии. Отметим еще одно изобретение, в котором используется тяжелая вода. Схема его эксперимента показана на рис. Колдомасов показал, что при прокачивании тяжелой воды под давлением 50—70 атмосфер через отверстие в диэлектрическим материале длинна 20 мм, диаметр отверстия 2 мм , на выходе из отверстия создается плазма, то есть электроны и высокое напряжение около кВ. Радиоактивного излучения, в данной конструкции, нет. Колдомасов подсчитал, что для всего города Волгодонска, на один год энергоснабжения, при внедрении его технологии, хватит литров тяжелой воды. Цена одного литра дейтериевой воды сегодня составляет сегодня около 10 тысяч рублей. Недорого, но не бесплатно. Другая технология получения избыточного тепла, предложена Рэндэллом Миллзом R. Исследования показали многократное превышение выходной мощности над входной мощностью. По теории Миллза, атомы водорода в молекуле воды могут находиться на разных энергетических подуровнях. В январе года появились сообщения по данной теме из Италии. Профессор Фокарди и Андрей Росси Sergio Focardi and Andrea A. Rossi , University of Bologna, продемонстрировали прототип реактора, вырабатывающего 12 кВт тепла при затратах ватт электроэнергии. Начато производство эффективных нагревателей волы для энергоснабжения домов. Ранее, в главе про использование центробежных сил, мы отметили несколько методов эффективного электролиза, а также резонансные методы Кили. Известное решение в области резонансного электролиза нашел американский изобретатель Стенли Мейер Stanley Meyer. Кстати, 22 сентября — день рождения Майкла Фарадея, первооткрывателя законов электролиза, которые не устарели, а развиваются. В развитие классического понимания электролиза, Мейер добавил роль импульсного резонансного режима. Действительно, два цилиндрических электрода и чистая вода между ними образуют конденсатор некоторой емкости. Чистая дистиллированная вода имеет диэлектрическую проницаемость около 81, наибольшая величина из жидкостей, поэтому емкость конденсатора может быть довольно большой. В схеме также есть резонансная катушка индуктивности, причем с регулировкой справа внизу. Таким образом, создаются все условия для работы колебательного контура в резонансном режиме, которые мы ранее рассмотрели в главе о резонансах. Конечно, при импульсном режиме работы первичного источника, классическим синусоидальным резонансом этот процесс назвать нельзя. Кратко, по тексту патента Мейера: Процесс заключается в следующем, пункты по описанию в патенте автора:. A Конденсатор, в котором вода заключена в качестве диэлектрической жидкости между обкладками, включенными в последовательную резонансную схему с дросселем. B К конденсатору прикладывается пульсирующее однополярное напряжение, в котором полярность никак не связана с внешним заземлением, благодаря чему молекулы воды в конденсаторе растягиваются под действием электрических поляризующих сил. C Подбирают частоту импульсов, поступающих на конденсатор, соответствующую собственной частоте резонанса молекулы. D Продолжительное действие импульсов в режиме резонанса приводит к тому, что уровень колебательной энергии молекул возрастает с каждым импульсом. E Комбинация пульсирующего и постоянного электрического поля приводит к тому, что в некоторый момент сила электрической связи в молекуле ослабляется настолько, что сила внешнего электрического поля превосходит энергию связи, и атомы кислорода и водорода освобождаются как самостоятельные газы. F Происходит сбор готовой к употреблению смеси кислорода, водорода и других растворенных в воде газов в качестве топлива. Итак, источник подает импульсы, до тех пор, пока не наступит диссоциация молекулы воды. Заметим, что до этого момента, между электродами нет тока проводимости, и нет затрат мощности от источника питания. Это про постоянное электрическое поле поляризации… Второй фактор: Собственно, эти условия не включают каких-либо затрат на токи проводимости, и мощность потребления от первичного источника может быть минимизирована. Далее, при появлении тока проводимости, схема измерения тока питания выявляет этот скачок тока, и запирает источник импульсов на несколько циклов, позволяя воде распадаться без затрат от источника питания. Длительность паузы регулируется вручную. Потенциал в импульсе для схемы Мейера достигал десятков тысяч вольт 20 Киловольт и более , но так как ток был мал, то мощность потребления от первичного источника небольшая. Важно отметить, что импульсы короткие, в некоторых экспериментах последователей Мейера, отмечалась длительность импульсов 0. Это частоты воздействия на воду в диапазоне около 3 Мегагерц. Современные эксперименты подтверждают эти заявления, хотя у разных авторов получаются разные результаты: Патент Мейера подвергался трехлетнему испытанию и проверкам экспертов, в том числе военных специалистов США. Это подняло предоставленные автором патенты до уровня независимого критического научного и инженерного подтверждения того, что устройства фактически работают, как описано. Обычно, авторы патентов излагают свою идею формально и весьма туманно. Стенли Мейер построил также электролизерный генератор газа, которого хватало для работы двигателя автомобиля, при питании от автомобильного аккумулятора, и демонстрировал его в поездках на тысячи миль. Сегодня сотни последователей развивают данную тему, начиная с добавки гремучего газа к топливно-воздушной смеси в целях экономии солярки, и заканчивая модернизацией двигателя автомобиля для работы только на водно-газовой смеси. Интересная особенность разработки Мейера: Возможно, воздействия фотонов, определенной частоты, на воду создает оптимальные условия для ее диссоциации. В сочетании с импульсами электрического поля, это дает повышение эффективности процесса. Надо отметить, что ранее, аналогичные исследования в США вел Генри Пухарич Andrija Henry K. Он нашел специальные резонансные частоты расщепления воды, в частности Гц, Гц, Гц и Гц. При зазоре 5 мм между электродами конденсатора пластины электролизера пробой наступал при напряжении киловольт. Исследовались разные частоты, в том числе и короткие импульсы с частотой 9,94 МГц. Эти условия Пухарича позволяли получать в 20 раз больше водорода, чем в обычном электролизере. Развитие идей Мейера на качественно новом уровне получено группой исследователей, которыми руководит Сергей Анатольевич Петров. Вырабатываемый при этом газ является побочным продуктом, который можно сжигать, либо вернуть в исходное состояние воды, применив известные топливные ячейки. Таким образом, электролиз воды из высокозатратного и дорогостоящего метода получения газа превращается в способ генерирования электроэнергии без внешнего источника питания, а также без расхода воды. Построен опытный образец, предлагается лицензия на данную технологию генерации электроэнергии или водорода. Технология Петрова позволяет получать это количество газа, затрачивая всего 10—20 ватт в час. У данной технологии есть большие перспективы коммерческого применения. При такой эффективности, в паре с топливной ячейкой, электролизер становится автономным источником электроэнергии, причем, вода не расходуется, циркулируя в данной системе. Отметим еще одну важную особенность схемы Мейера: В схемах с плоскими электродами создаются другие условия для диссоциации воды. Цилиндрически или полусферические электроды, уже за счет оптимальной пространственной структуры электрического поля, обеспечивают высокую эффективность. Такие электролизеры или нагреватели воды работают в условиях объемного резонатора среды, в котором могут создаваться стоячие волны. Автор не профессионал в электротехнике, он саксофонист. Его теория основана на представлениях автора о звуковых резонансах. Питер Дэви демонстрировал свое изобретение на конференции в году, когда ему было 92 года. Фаза подключается на центральный электрод, ноль — на внешний. Используется обычная частота 50 Гц сети переменного тока, расстояние между электродами 2—4 мм регулируется изоляционной шайбой, устанавливаемой между электродами на оси, для настройки по минимуму потребления тока. При эффективности 20 к 1, этот простой метод позволяет создать автономный режим даже на примитивной паровой машине с электрогенератором. Проверка в моей лаборатории была сделана на минимальном уровне затрат: Измерялись затраты электроэнергии и теплопроизводительность. Рассмотрим еще один пример: Фактически, устройство Канарева использует напряжение всего в 60 милливольт при силе тока 20 миллиампер. Отметим, что в лабораторных моделях электролизера Канарева также применяются конические и цилиндрические стальные электроды, как и в схеме Мейера. Ячейка низкоамперного электролизера представляет собой конденсатор, который заряжается при низком напряжении 1,5—2 Вольта, но при силе тока, значительно большей, чем 20 миллиампер. Затем, он постепенно разряжается под действием происходящих в нем электролитических процессов. В это время устройство потребляет очень мало энергии. Другой простой способ эффективного получения горючей смеси газов из воды путем электролиза заключается в использовании специальных материалов электродов, между которыми в воде создана электрическая дуга. Фактически, это электрохимический процесс, идущий с выделением тепла за счет сгорания расхода материала, из которого изготовлены электроды. Большое практическое применение получили системы с угольными электродами, между которыми зажигается дуга. При работе, в большом количестве, и с минимальными затратами электроэнергии, образуются сгораемые газы СО и водород, но при этом происходит постепенный расход самих угольных электродов. Преимущество в том, что на выходе электролизера, в данном случае, нет гремучего газа, поэтому опасность взрыва уменьшается. Применение данной технологии, в настоящее время, производится изобретателями в частном порядке, для модернизации разнообразной техники, от газонокосилки до трактора и грузовиков, водители которых всеми методами снижают расходы на топливо бензин и солярку. В одном из вариантов такой конструкции, вместо угольного электрода применяется алюминиевый электрод провод с постоянной автоматической подачей его в область сгорания. Образуемый оксид алюминия периодически надо удалять из реактора. Рассмотрим основы конструирования автономных электрогенераторов на базе стандартных двигателей внутреннего сгорания и электролизера. Важным условием безопасности таких систем является использование односторонних клапанов в газопроводах, а также хотя бы одной промежуточной емкости с какой-либо бензолосодержащей жидкостью бензол, ацетон, спирт и т. В зависимости от типа жидкости, находящейся в данной промежуточной емкости, снижается температура горения газа. Схема подготовки водно-газовой смеси показана на рис. В двигатель подается вода, в распыленном виде через форсунку , смешанная с воздухом и гремучим газом. Гремучий газ с выхода электролизера, должен пройти через клапан, а затем через распылитель аэратора на дне емкости с бензольной жидкостью. Мелкодисперсная распыленная вода, в сочетании с водородно-кислородной смесью, является отличным экологически чистым возобновляемым топливом. Распыление воды на рис. Такая воднотопливная смесь может гореть не только в двигателе внутреннего сгорания, но и в любой котельной, а также использоваться на топливных электростанциях вместо солярки. Теоретических препятствий для этого нет. В таком случае, рынок автономных источников энергии ждут большие позитивные изменения. Останавливают внедрение незнание технологии высокоэффективного резонансного электролиза, например, методов Мейера, а также сомнения по последствиям применения водно-топливной смеси для двигателей внутреннего сгорания ржавчина, коэффициент детонации и т. Все это требует практического изучения. Предложенные методы получения дешевого водорода из воды можно будет использовать для создания промышленных электролизеров, которые найдут применение в будущей водородной энергетике. Очевидно, что на базе эффективных электролизеров, сжигая полученный газ в двигателе внутреннего сгорания или в газотурбинном приводе электрогенератора, представляется возможным создание электростанций любой мощности, а также транспорта, работающего на обычной воде. Кстати, в Сочи начата программа по переводу всего городского транспорта на водород, а также строится водородная газотурбинная электростанция. В некоторых частных случаях, такое применение воды в роли топлива уже началось. Американская компания GreenHomeHeaters продает технологию изготовления котельных для домашнего использования, работающих на воде. В данном случае, система не автономная, так как электролизер требует наличия внешнего источника электроэнергии. Экономия примерно в 10 раз, так как, обычно, для такого помещения требуется использовать нагреватель мощностью 5 кВт. Необходимо отметить, что высокоэффективные методы разложения воды используют какой-либо секрет, то есть особенность технологии, существенный фактор… Например, всем известно, что вода кипит про градусах по Цельсию, при обычном давлении. При пониженном давлении, вода закипит при небольшом нагреве. Очевидно, что и электролиз воды будет происходить при различных условиях, если его организовать при пониженном или повышенном давлении. Для случая использования соленой или морской воды, было найдено еще одно интересное решение. Химики из Пенсильванского государственного университета в США подтвердили, что инженеру Джону Канзиусу действительно удалось создать аппарат, позволяющий сжигать соленую воду. В аппарате Канзиуса, соленая вода подвергается воздействию радиоволн, которые ослабляют связи между ее компонентами и высвобождают водород. Возможно, это воздействие аналогично методу Пухарича, но для частот около 10 МГц. Автор подчеркивает, что процесс высвобождения водорода не является формой электролиза, имеет место другое явление, связанное с высокочастотным возбуждением соленой воды. Воду, по методу Канзиуса, не надо подвергать никакой специальной очистке, годится любая соленая вода хотя разная соленость и разные дополнительно растворенные вещества влияют на температуру и окраску пламени , в том числе взятая непосредственно из моря. Это открывает большие перспективы. Соленая вода доступна почти в любом регионе Земли практически в неограниченном количестве, для окружающей среды аппарат безвреден: Автор подал заявку на патент по использованию соленой воды в качестве альтернативного топлива. Обычно, их применение в преобразователях энергии решает задачу получения электронов, например, в топливных элементах, подавая кислород и водород на вход, на выходе получают воду и электроэнергию. Проходя через мембраны, газ отдает свои электроны, и соединяется в воду. Представим себе погруженную в воду трубку, нижний конец которой закрыт. Давление воды на стенки трубки зависит от высоты столба воды. Несущим материалом для стенок трубки может быть пористый диэлектрик, покрытый тонким слоем пленкой металла, пропускающего водород. Известны металлы, обладающие сродством к водороду, например палладий, платина, а также, менее дорогие титан и никель. При определенных условиях, внутри трубки будет собираться водород, который можно извлекать для практических целей. Трубки можно собрать в пучки, и такая установка будет компактной, а главное, не требующей затрат на получение водорода из воды. К недостаткам данного метода относится постепенное загрязнение мембран примесями воды, поэтому необходимо снижать себестоимость их производства. Новые перспективы данной технологии открываются при использовании нанотрубок нужного диаметра. Отметим важный аспект внедрения топливных элементов: Эти химические элементы играют ключевую, стратегическую роль в развитии новой энергетики. Растет спрос — растет цена на сырье. Существует и такой перспективный метод диссоциации воды на кислород и водород, как каталитический фотосинтез. Примером данной технологии являются работы Дана Нокера Dan Nocera в американском университете MIT. Как и при органическом фотосинтезе в природе, в реакции Нокера используется солнечный свет, двуокись углерода и вода, но энергия реакции не запасается в виде сахаров, как в растениях, а получается свободный водород. Опытная установка Нокера уже демонстрируется, она производит 30 кВт в час, используя дистиллированную воду. Ирвин Ленгмюр, который в году занимался фундаментальными исследованиями по созданию надежных вольфрамовых нитей для ламп накаливания, обратил внимание на эффекты саморазогрева вольфрамовой спирали в атомарном водороде. Мы решили подробнее изучить данный вопрос, с целью получения избыточной тепловой энергии. Необходимо уточнить, что во всех электролизерах, в большей или меньшей степени, кроме молекулярного водорода, на выходе присутствует некоторый процент атомарного водорода. Этот газ стали называть по имени Юлия Брауна Yuli Brown , который исследовал факты избыточного тепловыделения при использовании такого газа в сварочных аппаратах или водородных резаках. При обсуждении технического задания, мной было предложено не сжигать атомарный водород, а организовать замкнутый цикл его диссоциации и рекомбинации. Низкозатратные методы диссоциации водорода включают импульсный нагрев, электрический разряд в газе, возбуждение внешним электромагнитным излучением и другие способы воздействия на молекулярные связи. Для оптимальной рекомбинации необходимо использовать катализатор, например вольфрамовую поверхность. Оптимальными катализаторами рекомбинации водорода считают специальные полупроводники. Теория процессов циклической диссоциации-рекомбинации учитывает вовлечение в процесс свободной энергии вакуума, то есть, участие эфирных частиц. При рекомбинации атомов в молекулу, эта энергия высвобождается, и может быть нами использована. Эффективность цикла определяется затратами, то есть инженерным методом, применяемым для диссоциации газа. Если Никола Тесла был прав, тогда и я прав в том, что энергия поступает из эфира. Виллиям Лайн, как и Николас Моллер, предлагали для экспериментов открытую схему сжигания атомарного водорода, в которой специальный теплообменник сможет поглощать избыточную тепловую энергию. Фактически, такая схема представляет собой водно-водородный резак металла, с теплообменником. Данный метод реализовать проще, чем метод замкнутого цикла, но в нем сложнее выполнить точные измерения получаемой тепловой энергии, с учетом всех тепловых потерь. Нами был построен экспериментальный измерительный стенд, рис. Особенность конструкции — вольфрамовое покрытие на внутренней поверхности анода лампы, которое служит катализатором реакции рекомбинации. Катод был рассчитан на рабочее напряжение 12 Вольт и ток Ампер, то есть примерно на мощность 1 кВт. Мы проводили исследования различных режимов, в том числе и импульсные режим нагрева полупериоды от сети 50Гц. Напряжение регулировалось с помощью мощного лабораторного трансформатора. В импульсе, катод выдерживал 14 Вольт. С помощью системы водяного принудительного охлаждения, включающей в себя насос, радиатор с вентилятором, и датчики температуры, мы получали точные значения генерируемой тепловой мощности. Большую помощь в работе по данному проекту оказал Игорь Анатольевич Погоняйло. Согласно Договора, после проведения экспериментов в Санкт-Петербурге, испытательный стенд был экспортирован во Францию. Проекты Моллера по данной теме, которые он проводил позже во Франции, называются MAHG Moller Atomic Hydrogen Generator , они описаны в интернет, в частности на сайте Жана Луи Нода Jean Louis Naudin http: Были изготовлены другие реакторы, которые затем были экспортированы в Австралию, Кристоферу Бремнеру Christopher Bremner , для проверки обнаруженных нами результатов специалистами лаборатории в Сиднее. Необходимо отметить, что критика профессионалов из Австралии в наш адрес по методике измерений мощности на входе, при импульсном питании катода, была конструктивной. В то же время, заявления Жана Луиса Нода по эффективности преобразования энергии в его экспериментах, на мой взгляд, не были корректны. Его результаты несколько завышены. В любом случае, этот этап исследований касался только одного метода получения атомарного водорода, а именно, метода импульсного нагрева катода. Поведение смеси водорода и других газов в молекулярном реакторе, также не изучали. Эти планы хотелось бы реализовать. Исследования года по данной теме показали, что при рекомбинации атомов водорода в молекулу, возможно получение избыточного тепла, даже в режиме термической диссоциации, то есть при получении атомарного водорода методом нагрева вольфрамовой спирали. Измерения были сделаны с достаточно высокой точностью, хотя давление газа 0,1—0,2 атмосферы не давало нам возможности получать большую мощность. В будущих проектах, целесообразно работать при давлениях водорода в несколько атмосфер, хотя это требует разработки специального надежного корпуса реактора. Несколько слов по теории процесса. Начнем с того, что вычислим тепловую энергию рекомбинации одной молекулы. Из работ Ленгмюра и Вуда, известно, что реакция рекомбинации дает КилоДжоулей тепла на грам-молекулу. Зная число Авогадро, можно найти количество тепла, выделяемое при рекомбинации одной молекулы водорода, равное, примерно, 10 в минус 18 степени Джоуля. Тепловая диссоциация водорода требует сообщить молекуле такое же количество энергии, иначе она не диссоциирует. Нить накала катода, в наших экспериментах, нагревалась до — градусов Кельвина. Найдем энергию тепловых колебаний кинетическую энергию атомов вольфрама нити накаливания, имеющей такую температуру. В данном диапазоне температур, она равна примерно 10 в минус 20 степени Джоуля, то есть в раз меньше, чем необходимый уровень энергии диссоциации. Только для градусов Кельвина температура фантастически высокая , мы получаем энергию на уровне 10 в минус 19 степени Джоуля, но все равно, это примерно в 10 раз меньше, чем уровень энергии, необходимый для начала диссоциации молекулы водорода. Эти расчеты заставили меня задуматься о природе передачи кинетической энергии от атомов горячей вольфрамовой спирали молекулам водорода. Было сделано допущение о наличии в эксперименте некоторой доли паров вольфрама, которые всегда образуются в таких случаях, так как водород при заполнении колбы имел некоторую примесь паров воды точка росы применяемого в данной лампе водорода была около минус 60 градусов Цельсия. Данный анализ физической ситуации, в которой участвуют пары вольфрама и молекулы водорода, при учете измерений тепловыделения в режиме импульсного нагрева катода, привел к открытию эффекта, суть которого заключается в следующем:. Во-первых, отметим, что массы молекул вольфрама и водорода значительно отличаются. В этом случае, мы можем указать на особые условия упругого столкновения двух тел различной массы открытие Профессора Е. В соответствии с этим открытием, тело маленькой массы получает избыточную энергию в результате упругого столкновения с телом большой массы. Упрощенно, эксперимент Александрова состоял в том, что стальной шарик, сбрасываемый с некоторой высоты на массивную стальную плиту, отскакивал, и поднимался против силы тяжести на высоту, большую, чем его начальная высота. Позже выяснилось, что причиной явления служит потенциальная энергия в виде упругих сжатий, которые возникли при изготовлении шарика. Они высвобождаются при нескольких первых соударениях, но постепенно эффект уменьшается до нуля. Тем не менее, этот эксперимент дал импульс к развитию следующей концепции. Из двух фундаментальных законов сохранения энергии и сохранения импульса будем полагать первичным закон сохранения импульса. При упругом столкновении, передача импульса от тела большой массы телу малой массы происходит таким образом, что после взаимодействия скорость тела с малой массой будет намного больше скорости тела с большой массой. На такой скорости, кинетическая энергия молекулы водорода может достигать 10 в минус 18 степени Джоуля, что намного больше той энергии, которая необходима для диссоциации молекулы водорода на атомы. Важно учесть, что кинетическая энергия имеет квадратичную зависимость от величины скорости движения или колебаний молекулы. Поэтому, преобразование кинетической энергии может быть несимметричным. Итак, был получен вывод: Осциллирующие тяжелые атомы паров вольфрама или вольфрама в нити накала обеспечивают огромную скорость легким молекулам водорода после столкновения. Эта кинетическая энергия обуславливает диссоциацию водорода и выделение тепла при последующей рекомбинации. Таким образом, затратив Ватт электроэнергии на накал, можно ожидать получить более Ватт тепла. В плане развития проекта, Кристофер Бремнер Christopher Bremner предложил использовать в экспериментах по данной теме смесь газов криптона и водорода. Возможны различные варианты смеси газов. Например, всем известна высокая эффективность ксеноновых ламп. В связи с тем, что молекула ксенона состоит из 11 атомов, а каждый имеет вес, равный весу 54 атомов водорода, предлагается использовать в будущих экспериментах смесь ксенона и водорода. В данном случае, разница массы молекулы ксенона и молекулы водорода составляет раз, что обеспечит условия эффективной диссоциации водорода. Возбуждение молекул ксенона можно производить импульсным электрическим разрядом или облучением светом на резонансной длине волны. Рекомбинацию атомарного водорода, в данной схеме, целесообразно проводить в отдельном реакторе с катализатором вольфрамовое напыление и теплообменником. Приглашаются партнеры для развития и коммерциализации данного метода получения избыточной тепловой энергии. Аналогичная ситуация складывается для случая паров ртути и водорода, а также других вариантов. Возбуждение смеси газов ртути и водорода, как пишет Бонгефер, должно производиться светом внешней ртутной лампы с длинной волны нм. Этот свет возбуждает колебания тяжелых атомов ртути в другой колбе, где в смеси газов возникают соударения молекул ртути с молекулами водорода. Схема показана на рис. Теперь мы понимаем, что именно благодаря разнице масс соударяющихся молекул, молекулы водорода, которые в 40 раз легче молекул паров ртути, приобретают огромную скорость после столкновения, и диссоциируют на атомы. Отметим, что данный метод применялся давно, но без объяснения эффекта. Объяснение этого явления связано с концепцией эфира, так как движение молекулы с большой скоростью происходит не в пустом месте, а в окружающем ее эфире. Это две разных физических системы, и в них даже время идет с разной скоростью, что и воспринимается нами, как закон сохранения импульса при их столкновении. Косвенно, это может проявляться как некоторые темпоральные и гравитационные эффекты, перспективные для создания космических движителей нового поколения. При этом, предполагалось, что столкновение молекул является абсолютно упругим, что очевидно при электромагнитных эфирных явлениях. Стальной шарик, в эксперименте Александрова, при повторениях соударений, постепенно терял упругость, и эффект пропадал. Молекулы и атомы такими недостатками, как известно, не обладают, поэтому предлагаемые циклы диссоциации-рекомбинации молекул являются перспективным направлением развития автономных теплогенераторов замкнутого цикла, не расходующих водород. Почти все об альтернативной электроэнергетике и энергосбережении. Все материалы на сайте предоставлены исключительно в ознакомительных и образовательных целях, администрация сайта не претендует на их авторство и не несёт ответственности за их содержание.

Высокоэффективная энергетическая установка

Инструкции по охране труда для автоэлектриков

Лечение перелома бедра у детей

Электролиз ВОДЫ

Проблемы бенгальских кошек

Планируемый результат занятия

Детская поликлиника на кошкина расписание врачей

Кд мид россии

Генератор водорода путем ослабления межатомных связей высокой температурой

Текст приглашения на свадьбу на казахском языке

Кармир резорт спа кемер карта

Спицы схемы вязания новинки 2016 скатерти

Дешевый водород и топливо из воды капилярным электроосмосом

Фантастическая любовьи гдеее найти torrent

Корм для собак now состав

Работа с таблицами в word 2010

Report Page