STELLAR MAGNETIC FIELD
https://search.aepiot.ro/search.html?q=STELLAR%20MAGNETIC%20FIELDMultiSearch Tag Explorer
aéPiot
Go

X-ray astronomy is an observational branch of astronomy which deals with the study of X-ray observation and detection from astronomical objects. X-radiation is absorbed by the Earth's atmosphere, so instruments to detect X-rays must be taken to high altitude by balloons, sounding rockets, and satellites. X-ray astronomy uses a type of space telescope that can see x-ray radiation which standard optical telescopes, such as the Mauna Kea Observatories, cannot. X-ray emission is expected from astronomical objects that contain extremely hot gases at temperatures from about a million kelvin (K) to hundreds of millions of kelvin (MK). Moreover, the maintenance of the E-layer of ionized gas high in the Earth's thermosphere also suggested a strong extraterrestrial source of X-rays. Although theory predicted that the Sun and the stars would be prominent X-ray sources, there was no way to verify this because Earth's atmosphere blocks most extraterrestrial X-rays. It was not until ways of sending instrument packages to high altitudes were developed that these X-ray sources could be studied. The existence of solar X-rays was confirmed early in the mid-twentieth century by V-2s converted to sounding rockets, and the detection of extra-terrestrial X-rays has been the primary or secondary mission of multiple satellites since 1958. The first cosmic (beyond the Solar System) X-ray source was discovered by a sounding rocket in 1962. Called Scorpius X-1 (Sco X-1) (the first X-ray source found in the constellation Scorpius), the X-ray emission of Scorpius X-1 is 10,000 times greater than its visual emission, whereas that of the Sun is about a million times less. In addition, the energy output in X-rays is 100,000 times greater than the total emission of the Sun in all wavelengths. Many thousands of X-ray sources have since been discovered. In addition, the intergalactic space in galaxy clusters is filled with a hot, but very dilute gas at a temperature between 100 and 1000 megakelvins (MK). The total amount of hot gas is five to ten times the total mass in the visible galaxies.
In connection with: X-ray astronomy
Title combos: ray astronomy
Description combos: the packages energy altitude maintenance ray source ray extraterrestrial

The interstellar medium (ISM) is the matter and radiation that exists in the space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as dust and cosmic rays. It fills interstellar space and blends smoothly into the surrounding intergalactic medium. The energy that occupies the same volume, in the form of electromagnetic radiation, is the interstellar radiation field. Although the density of atoms in the ISM is usually far below that in the best laboratory vacuums, the mean free path between collisions is short compared to typical interstellar lengths, so on these scales the ISM behaves as a gas (more precisely, as a plasma: it is everywhere at least slightly ionized), responding to pressure forces, and not as a collection of non-interacting particles. The interstellar medium is composed of multiple phases distinguished by whether matter is ionic, atomic, or molecular, and the temperature and density of the matter. The interstellar medium is composed primarily of hydrogen, followed by helium with trace amounts of carbon, oxygen, and nitrogen. The thermal pressures of these phases are in rough equilibrium with one another. Magnetic fields and turbulent motions also provide pressure in the ISM, and are typically more important, dynamically, than the thermal pressure. In the interstellar medium, matter is primarily in molecular form and reaches number densities of 1012 molecules per m3 (1 trillion molecules per m3). In hot, diffuse regions, gas is highly ionized, and the density may be as low as 100 ions per m3. Compare this with a number density of roughly 1025 molecules per m3 for air at sea level, and 1016 molecules per m3 (10 quadrillion molecules per m3) for a laboratory high-vacuum chamber. Within our galaxy, by mass, 99% of the ISM is gas in any form, and 1% is dust. Of the gas in the ISM, by number 91% of atoms are hydrogen and 8.9% are helium, with 0.1% being atoms of elements heavier than hydrogen or helium, known as "metals" in astronomical parlance. By mass this amounts to 70% hydrogen, 28% helium, and 1.5% heavier elements. The hydrogen and helium are primarily a result of primordial nucleosynthesis, while the heavier elements in the ISM are mostly a result of enrichment (due to stellar nucleosynthesis) in the process of stellar evolution. The ISM plays a crucial role in astrophysics precisely because of its intermediate role between stellar and galactic scales. Stars form within the densest regions of the ISM, which ultimately contributes to molecular clouds and replenishes the ISM with matter and energy through planetary nebulae, stellar winds, and supernovae. This interplay between stars and the ISM helps determine the rate at which a galaxy depletes its gaseous content, and therefore its lifespan of active star formation. Voyager 1 reached the ISM on August 25, 2012, making it the first artificial object from Earth to do so. Interstellar plasma and dust will be studied until the estimated mission end date of 2025. Its twin Voyager 2 entered the ISM on November 5, 2018.
In connection with: Interstellar medium
Title combos: Interstellar medium
Description combos: Of medium important energy ISM temperature interstellar responding interstellar
Magnetic field (disambiguation)
A magnetic field is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. Magnetic field or Magnetic Fields may also refer to:
In connection with: Magnetic field (disambiguation)
Title combos: disambiguation field disambiguation field Magnetic
Description combos: physical the that charges currents that charges refer materials

A stellar magnetic field is a magnetic field generated by the motion of conductive plasma inside a star. This motion is created through convection, which is a form of energy transport involving the physical movement of material. A localized magnetic field exerts a force on the plasma, effectively increasing the pressure without a comparable gain in density. As a result, the magnetized region rises relative to the remainder of the plasma, until it reaches the star's photosphere. This creates starspots on the surface, and the related phenomenon of coronal loops.
In connection with: Stellar magnetic field
Title combos: Stellar magnetic Stellar magnetic field
Description combos: motion region by magnetic motion motion conductive on exerts

Stellar rotation is the angular motion of a star about its axis. The rate of rotation can be measured from the spectrum of the star, or by timing the movements of active features on the surface. The rotation of a star produces an equatorial bulge due to centrifugal force. As stars are not solid bodies, they can also undergo differential rotation. Thus the equator of the star can rotate at a different angular velocity than the higher latitudes. These differences in the rate of rotation within a star may have a significant role in the generation of a stellar magnetic field. In its turn, the magnetic field of a star interacts with the stellar wind. As the wind moves away from the star its angular speed decreases. The magnetic field of the star interacts with the wind, which applies a drag to the stellar rotation. As a result, angular momentum is transferred from the star to the wind, and over time this gradually slows the star's rate of rotation.
In connection with: Stellar rotation
Title combos: rotation Stellar
Description combos: is star have of rate have an from wind

Magnetic braking is a theory explaining the loss of stellar angular momentum due to material getting captured by the stellar magnetic field and thrown out at great distance from the surface of the star. It plays an important role in the evolution of binary star systems.
In connection with: Magnetic braking (astronomy)
Title combos: astronomy braking braking Magnetic astronomy
Description combos: explaining of getting is role star field by due
Fossil stellar magnetic fields or fossil fields are proposed as possible interstellar magnetic fields that became locked into certain stars.
In connection with: Fossil stellar magnetic field
Title combos: field Fossil magnetic stellar field Fossil stellar field magnetic
Description combos: locked fields magnetic fields into proposed are certain fields
Quick Access
Tag Explorer
Discover Fresh Ideas in the Universe of aéPiot
MultiSearch | Search | Tag Explorer
SHEET MUSIC | DIGITAL DOWNLOADS
© aéPiot - MultiSearch Tag Explorer. All rights reserved.
Hosted by HOSTGATE