Шпаргалка: Лекции по матану (III семестр) переходящие в шпоры

Шпаргалка: Лекции по матану (III семестр) переходящие в шпоры




💣 👉🏻👉🏻👉🏻 ВСЯ ИНФОРМАЦИЯ ДОСТУПНА ЗДЕСЬ ЖМИТЕ 👈🏻👈🏻👈🏻




























































Рассмотрим в плоскости Оху замкнутую область D, ограниченную линией Г, являющейся замкнутой непрерывной кривой. z = l(P) = f(x,y), P= (x,y) ÎD – произвольные ф-ции определенные и ограниченные на D. Диаметром области D наз. наибольшее расстояние между граничными точками. Область D разбивается на n частых областей D1…Dn конечным числом произв. кривых. Если S – площадь D, то DSi – площадь каждой частной области. Наибольший из диаметров областей обозн l. В каждой частной области Di возьмем произв. точку Pi (xi , Di) ÎDi, наз. промежуточной. Если диаметр разбиения Dl- 0 , то число n областей Di-¥. Вычислим зн-ие ф-ции в промежуточных точках и составим сумму:I = f(xi, Di)DSi (1), наз. интегральной суммой ф-ции. Ф-ция f(x,y) наз. интегрируемой в области D если существует конечный предел интегральной суммы.
Двойным интегралом ф-ии f(x,y) по области D наз. предел интегральной суммы при l- 0. Обозн:
Пусть задана бесконечная последовательность чисел u1, u2, u3…
Выражение u1+ u2+ u3…+ un (1) называется числовым рядом, а числа его составляющие- членами ряда.
Сумма конечно числа n первых членов ряда называется n-ной частичной суммой ряда: Sn = u1+..+un
Если сущ. конечный предел: , то его называют суммой ряда и говорят, что ряд сходится, если такого предела не существует, то говорят что ряд расходится и суммы не имеет.
Ф-ция f(x,y) интегрируема на замкнутой области D, ограничена на D.
1 достаточный признак существования: если ф-ция f(x,y) непрерывна на замкнутой, огр. области D, то она интегрируема на D.
2 достаточный признак существования: если ф-ция f(x,y) ограничена в замкнутой области D с какой-то границей и непрерывна в ней за исключением отдельных точек и гладки=х прямых в конечном числе где она может иметь разрыв, то она интегрируема на D.
Ряд состоящий из членов бесконечной геометрической прогрессии наз. геометрическим: или
a¹ 0 первый член q – знаменатель. Сумма ряда:
следовательно конечный предел последовательности частных сумм ряда зависит от величины q
т. е. ряд схд-ся и его сумма 2 |q|>1 и предел суммы так же равен бесконечности
3 при q = 1 получается ряд: а+а+…+а… Sn = n×a ряд расходится
4 при q¹1 ряд имеет вид: а-а+а … (-1) n
-1
aSn=0 при n четном, Sn=a при n нечетном предела частных суммы не существует. ряд расходится.
Рассмотрим ряд из бесконечных членов арифметической прогрессии: u – первый член, d – разность. Сумма ряда
при любых u1 и d одновременно ¹ 0 и ряд всегда расходится.
1. Двойной интеграл по области D = площади этой области.
2. Если область G содержится в Д, а ф-ция ограничена и интегрируема в Д, то она интегрируема и в G.
3. Аддитивное св-во. Если область Д при помощи кривой г разбивают на 2 области Д1 и Д2, не имеющих общих внутренних точек, то:
4. константы выносятся за знак интеграла, а сумму в ф-ции можно представить в виде суммы интегралов:
5. Если ф-ции f и g интегрируемы в Д, то их произведение также интегрируемо в Д. Если g(x,y) ¹ 0 то и f/g интегрируема в Д.
6. Если f(x,y) и g(x,y) интегрируемы в Д и всюду в этой области f(x,y) <= g(x,y), то:
7. Оценка абсолютной величины интеграла: если f(x,y) интегрируема в Д, то и |f(x,y)| интегрир. в Д причем
обратное утверждение неверно, итз интегрируемости |f| не следует интегрируемость f.
Если ф-ция f(x,y) интегр. в Д., то в этой области найдется такая точка (x, h) Î Д, что:
(2), где S – площадь фигуры Д. Значение f(x, h) опред по ф-ле (2) наз. средним значением ф-ции f по области Д.
Пусть даны два ряда: u1+u2+…un = (1) и v1+v2+…vn = (2)
Произведением ряда (1) на число lÎR наз ряд: lu1+lu2+…lun = (3)
(u1+v1)+(u2+v2)+…(un+vn) = (для разности там только - появица)
Если ряд (1) сходится и его сумма = S, то для любого числа l ряд =l× тоже сходится и его сумма S’ = S×l Если ряд (1) расходится и l¹ 0, то и ряд тоже расходится. Т. е. общий множитель не влияет на расходимости ряда.
Т2 Если ряды (1) и (2) сходятся, а их суммы = соотв S и S’, то и ряд: тоже сходится и если s его сумма, то s = S+S’. Т. е. сходящиеся ряды можно почленно складывать и вычитать. Если ряд (1) сходится, а ряд (2) расходится, то их сумма(или разность) тоже расходится. А вот если оба ряда расходятся. то ихняя сумма (или разность)может как расходится (если un=vn) так и сходиться (если un=¹vn)
Для ряда (1) ряд называется n – ным остатком ряда. Если нный остаток ряда сходится, то его сумму будем обозначать: r n
=
Т3 Если ряд сходится, то и любой его остаток сходится, если какой либо остаток ряда сходится, то сходится и сам ряд. Причем полная сумма = частичная сумма ряда Sn + r n

Изменение, а также отбрасывание или добавление конечного числа членов не влияет на сходимость (расходимость) ряда.
Пусть у1(х), у2(х) непрерывны на отрезке [a, b], у1(х)<= у2(х) на всем отрезке.
Отрезок [a,b] – проекция Д на ось ох. Для такой области людбая прямая, параллельная оу и проходящая через внутреннюю точку области Д пересекает границу области не более чем в 2 точках. Такая область наз. правильной в направлении оси оу.
Если фция f(x,y) задана на Д и при каждом х Î [a,b] непрерывна на у , на отрезке, [y1(x),y2(x)], то фц-ия F(x) = , наз. интегралом, зависящим от параметра I, а интеграл : , наз повторным интегралом от ф-ции f(x,y) на области Д. Итак, повторный интеграл вычисляется путем последовательного вычисления обычных определенных интегралов сначала по одной., а затем по другой переменной.
Если ряд сходится, то предел его общего члена равен нулю:
Сей признак является только необходимым, но не является достаточным., т. е. если предел общегоь члена и равен нулю совершенно необязательно чтобы ряд при этом сходился. Следовательно, вот сие условие при его невыполнении является зато достаточным условием расходимости ряда.
1 Замена переменных в двойном интеграле.
Общий случай криволинейных координат
Пусть существует ф-ция f(x,y) интегр на области Д, можно прямолинейные координаты x, y с помощью формул преобразования перейти к криволинейным: x = x(u,v), y=y(u,v), где эти ф-ции непрерывные вместе с частными производными первого порядка, устанавливают взаимно однозначное и в обе стороны непрерывное соответствие между точками плоской области Д и области Д’ и определитель преобразования, наз. Якобианом не обращается в 0: если это выполняется можно пользоваться ф-лой:
Т1


Пущай дан рядт (1), члены которого неотрицательны, и не возрастают: u1>=u2>=u3…>=un
Если существует ф-ция f(x) неотрицательная, непрерывная и не возрастающая на [1,+¥] такая, что f(n) = Un, "nÎN, то для сходимости ряда (1) необходимо унд достаточно, чтобы сходился несобственный интеграл: , а для расходимости достаточно и необходимо чтобы сей интеграл наоборот расходился (ВАУ!).
Применим сей признак для исследования ряда Дирихле: Вот он: , aÎR Сей ряд называют обобщенным гармоническим рядом, при a >0 общий член оного un=1/n a
-0 и убывает поэтому можно воспользоваться интегральным признаком, функцией здеся будет ф-ция f(x)=1/x a
(x>=1)сия ф-ция удовлетворяет условиям теоремы 1 поэтому сходимость (расходимости) ряда Дирихле равнозначна сходимости расходимости интеграла:
Переход к полярным координатам частный случай замены переменных.
Луч, проходящий из произв точки О имеет на плоскости полярные координаты A(r, j) где r = |О A
| расстояние от О до А полярный радиус. j = угол между векторами ОА и ОР – полярный угол отсчитываемой от полярной оси против часовой стрелки. всегда 0<=r<=+¥, 0<=j <=2p .
Зависимость между прямоугольными и полярными координатами: x = r×cosj , y = r×sinj .
Якобиан преобразования будет равен:
Пущай и ряды с неотрицательными членами и для любого n выполняется нер-во:
1 Если ряд vn сходится, то сходится и ряд un
2 если ряд un расходится, то расходится и ряд vn. Т. е. говоря простыми русскими словами для простых русских людей (ну для дураков вроде тебя): Из сходимости ряда с большими членами следует сходимость ряда с меньшими, а из расходимости ряда с меньшими членами следует расходимости ряда с большими и не наоборот!!!
Причем можно требовать, чтобы неравенство (1) выполнялось не для всех номеров n, а начиная с некоторого n0, т. е. для некоторых номеров меньших n0 неравенство (1) может и не выполняться. При применении сего признака сравнения удобно в качестве ряда сравнения брать ряд Дирихле или геометрический ряд, с которыми и так уже все ясно.
Если сущ вышеописанные неотр. ряды, то если сущ предел:
(0=0; Д2, f(x,y)<=0, тогда:
2 Знакочередующиеся ряды. Признак Лейбница.
Ряд называется знакочередующимся если каждая пара соседних членов имеет разные знаки (один ♀, другой ♂), если считать каждый член сего ряда положительным то его можно записать в виде:
Если для знакочередующегося ряды выполняются условия:
то ряд сходится, а его сумма и остаток rn удовлетворяют неравенствам: 0<=S<=un и |r n
|<=un+1
Ряд удовлетворяющий условиям теоремы наз. рядом Лейбница.
Если условие чередования знаков выполняется не с первого члена, а с какого-нибудь исчо, то при существовании равного 0 предела ряд будет также сходится.
Пусть дана кривая поверхность Р, заданная ур-ями z = f(x,y) и имеющая границу Г, проецирующуюся на плоскость оху в область Д. Если в этой области ф-ция f×(x,y) непрерывна и имеет непрерывные частные производные: тогда площадь поверхности Р вычисляется:
для ф-ций вида x = m (y,z) или y = j(x,z) там будут тока букыв в частных производных менятца ну и dxdy.
Ряд называют знакопеременным, если его членами являются действительные числа, а знаки его членов могут меняться как кому в голову взбредет. Пусть дан ряд:
u1+u2…+un= (1), где un – может быть как положительным, так и отрицательным. Рассмотрим ряд состоящий из абсолютных значений этого ряда:
Если сходится ряд (2), то ряд (1) называют абсолютно сходящимся, а вот если ряд (1) сходится, а ряд (2) расходится. то ряд (1) наз сходящимся условно.
Если знакочередующийся ряд сходится условно. то он и просто так сходится, при этом:
т. к. 0<=|un|+un<=2|un|, то по признаку сравнения сходится ряд |un|+un, тогда сходится ряд: (|un|+un)-|un|=un. Далее, т. к. по св-ву абсолютной величины |Sn|=|u1+u2+…+un|<=|un| "nÎN, то переходя к пределу получим:
Т2 Если ряд (1) абсолютно сходится, то и любой ряд составленный из тех же членов, но в любом другом порядке тоже абсолютно сходится и его сумма равна сумме ряда un – Sn. А вот с условно сходящимися рядами все гораздо запущенней.
Если знакопеременный ряд с действительными членами сходится условно, то каким бы ни было дейст. число S можно так переставить члены ряда, что его сумма станет равна S, т. е. сумма неабсолютно сходящегося ряда зависит от порядка слагаемых
Масса плоской пластины вычисляется по ф-ле:
, где r(х, у) – поверхностная плотность.
Координаты центра масс выч по ф-ле:
если пластина однородная, т. е. r(х, у) – const, то ф-лы упрощаются:
Статические моменты плоскостей фигуры Д относит осей оу и ох
Момент инерции плоской пластины относительно осей ох, оу, начала координат:
если пластина однородная, то ро вышвыривается на фиг и считается равной 1.
2 Сходимость функциональных последовательностей и рядов
Функциональной последовательностью заданной на множестве Е, наз. последовательность ф-ций {fn(x)} (1)определенных на Е и принимающих числовые действительные значения.
Пусть задана поледовательность числовых ф-ций {un(x)} Формальнг написанную сумму: (2) называют функциональным рядом на множестве Е, а ф-цию un(x) – его членами. Аналогично случаю числовых рядов сумма: Sn(x) = u1(x)+u2(x)+…+un(x) называется частичной суммой ряда n порядка, а ряд: un+1? un+2… - его n-ным остатком. при каждом фиксированном х = х0 Î Е получим из (1) числовую последовательность {fn(x0)}, а из (2) – числовой ряд , которые могут сходится или расходится. если кто-нибудь из оных сходится, то сходится и функциональная посл (1) в т х0, и сия точка наз. точкой сходимости.
Если посл(1) сход на м-ж Е, то ф-ция f, определенная при "xÎEf(x) = назывется пределом посл (1), если ряд(2) сходится на м-ж Е, то ф-ция S(x) определенная при "xÎ Е равенством
Остаток ряда сходится только когда на этом же м-ж сходится сам ряд., если обозначить сумму остатка ряда через r n
(ч), то S(x) = Sn(x)+r n
(x)
Если ряд (2) сходится абсолютно, то он наз абсолютно сходящимся на м-ж Е. Множество всех точек сходимости функционального ряда наз областью сходимости. Для определения области сходимости можно использовать признак Даламбера и Коши. С ихнею помашшю ф-ц ряд исследуется на абсолютную сходимость Например, если существует
, то ряд (2) абсолютно сходится при k(x)<1 и расходится при k(x)>1.
Пусть на некоторой ограниченной замкнутой области V трехмерного пространства задана ограниченная ф-ция f (x,y,z). Разобьем область V на n произвольных частичных областей, не имеющих общих внутренних точек, с объемами DV1… DVn В каждой частичной области возбмем произв. точку М с кооорд Mi(xi,hi,ci) составим сумму: f(xi,hi,ci)×DVi, кот наз интегральной суммой для ф-ции f(x,y,z). Обозначим за l максимальный диаметр частичной области. Если интегральная сумма при l- 0 имеет конечный предел, то сей предел и называется тройным интегралом от ф-ции f(x,y,z) по области V И обозначается:
Ф-циональную последовательность {fn)x)} xÎE наз. равномерно сходящейся ф-цией f на м-ж Е, если для Îe >0, сущ номер N, такой, что для " т х ÎE и "n >N выполняется ¹-во: |fn(x)-f(x)|=0 сходится и для "xÎE и "n = 1,2… если выполняется нер-во |un(x)|<=an(8), ряд (9) наз абсолютно и равномерно сходящимся на м-ж Е.
Абсолютная сходимость в каждой т. х следует из неравенства (8) и сходимости ряда (7). Пусть S(x) – сумма ряда (9), а Sn(x) – его частичная сумма.
Зафиксируем произвольное e >0 В силу сходимости ряда (7) сущ. номера N, "n >N и вып. нерво
Это означает, что Sn(x) -S(x) что означает равномерную сходимость ряда..
Если ограниченная замкнутая область пространства V = f(x,y,z) взаимно однозначно отображается на область V’ пространства = (u,v,w) Если непрерывно дифференцируемы функции: x=x(u,v,w), y=y(u,v,w), z=z(u,v,w) и существует якобиан
При переходе к цилиндрическим координатам, с вязанными с x,y,z формулами: x=rcosj, y=rsinj, z=z (0<=r<=+¥, 0<=j <= 2p, -¥<=z<=+¥)
И поэтому в цилиндрических координатах переход осуществляется так:
При переходе к сферическим координатам: r? jq, связанными с z,y,z формулами x=rsinq×cosj,
Итак, в сферических координатах сие будет:
Т1 Если ф-ция un(x), где х Î Е непрерывна в т. х0 ÎE и ряд (1) равномерно сходится на Е, то его сумма S(x) = также непрерывна в т. х0.
Т2 (Об поюленном интегрировании ряда)
Пусть сущ. ф-ция un(x) ÎR и непрерывная на отр. [a,b] и ряд (3) равномерно сходится на этом отрезке, тогда какова бы ни была т. х0 Î [a, b] (4) тоже равномерно сходится на [a,b]. В частности: при x0 = a, х = b: т. е. ряд (3) можно почленно интегрировать.
Т3 (о почленном дифференцировании ряда)
Пусть сущ. ф-ция un(x) ÎR и непрерывная на отр. [a,b] и ряд её производных (6) равномерно сходящийся на отр [a,b] тогда, если ряд сходится хотя бы в одной точке x0 Î [a,b] то он сходится равномерно на всем отрезке [a,b], его сумма S(x) = является непрерывно дифференцируемой ф-цией и
В силу ф-л ы (8) последнее равенство можно записать:
So ряд (7) можно почленно дифференцировать
Масса тела: , где r(М) = r(x,y,z) - плотность.
Моменты инерции тела относительно осей координат:
Момент инерции относительно начала координат:
Интегралы, стоящие в числителях выражают статические моменты тела: Myz, Mxz, Mxy относит коорд плоскостей oyz, oxz, oxy. Если тело однородное: r(М) = const, то из формул она убирается и оне упрощаются как в 2ных интегралах.
Степенным рядом наз функциональный ряд вида: a 0
+a 1
x+a 2
x 2
+… + a n
x n
= (1) xÎR членами которого являются степенные ф-ции. Числа anÎR, наз коэффициентами ряда(1). Степенным рядом наз также ряд:
a 0
+a 1
(x-x0)+a 2
(x-x0) 2
… + a n
(x-x0) n
= (2)
Степенной ряд (1) сходится абсолютно по крайней мере в т. х = 0, а ряд (2) в т х = х0, т .е в этих случаях все лены кроме 1 равны 0. Ряд (2) сводится к ряду (1) по ф-ле у = х-х0.
1Если степенной ряд (1) сходится в т. х0 ¹ 0, то он сходится абсолютно при любом х, для которого |x|<|x0|.
2Если степеннгой ряд (1) расходится в т. х0, то он расходится в любой т. х, для которой |x|>|x0|
Криволинейный интеграл по длине дуги (1 рода)
Пусть ф-ция f(x,y) определена и непрерывна в точках дуги АВ гладкой кривой К. Произвольно разобъем дугу на n элементарных дуг точками t0..tn пусть Dlk длина k частной дуги. Возьмем на каждой элементарной дуге произвольную точку N(xk,hk) и умножив сию точку на соотв. длину дуги составим три интегральную суммы:
гдеDхk = x k
-x k-1
, Dyk = y k
-y k-1

Криволинейным интегралом 1 рода по длине дуги будет называться предел интегральной суммы d1 при условии, что max(Dlk) - 0
Если предел интегральной суммы d2 или d3 при l- 0, то этот предел наз. криволинейным интегралом 2 рода, функции P(x,y) или Q(x,y) по кривой l = AB и обозначается:
сумму: + принято называть общим криволинейным интегралом 2 рода и обозначать символом:
в этом случае ф-ции f(x,y), P(x,y), Q(x,y) – называются интегрируемыми вдоль кривой l = AB. Сама кривая l наз контуром или путем интегрирования А – начальной, В – конечной точками интегрирования, dl – дифференциал длины дуги, поэтому криволинейный интеграл 1 рода наз. криволинейным интегралом по дуге кривой, а второго рода – по функции..
Из определения криволинейных интегралов следует, что интегралы 1 рода не зависят от того в каком направлении от А и В или от В и А пробегается кривая l. Криволинейный интеграл 1 рода по АВ:
, для криволинейных интегралов 2 рода изменение направления пробегания кривой ведет к изменению знака:
В случае, когда l – замкнутая кривая т. е. т. В совпадает с т. А, то из двух возможных направлений обхода замкнутого контура l называют положительным то направление, при котором область лежащая внутри контура остается слева по отношению к ??? совершающей обход, т. е. направление движения против часовой стрелки. Противоположное направление обхода наз – отрицательным. Криволинейный интеграл АВ по замкнутому контуру l пробегаемому в положит направлении будем обозначать символом:
Для пространственной кривой аналогично вводятся 1 интеграл 1 рода:
сумму трех последних интегралов наз. общим криволинейным интегралом 2 рода.
2 Радиус сходимости и интервал сходимости степенного ряда.

(1) Число (конечное или бесконечное) R>=0 наз радиусом сходимости ряда (1) если для любого х такого, что |x|R ряд расходится Интервал на числовой оси состоящий из т. х для которых |x|0, то на любом отрезке действительной оси вида |x|<=r, 00, то для всех xÎ (x0-h, x0+h) имеет место ф-ла Тейлора:
где остаток r n
(x) можно записать:
(9) Формула (8) наз остаточным членом ф-лы Тейлора в интегральной форме. Ф-ла (9) – формулой Лагранжа.
Преобразуя ф-лу Тейлора при х0 = 0 получаем ф-лу Маклорена.
Т3 Если ф-ция f(x) имеет в окрестности т х0 производные любого порядка и все они ограниченны одним и тем же числом С, т е "xÎU(x0) |f (
n
)
(x)|<=C, то ряд Тейлора этой ф-ции сходится в ф-ции f(x) для всех х из этой окрестности.
Сия очень полезная в сельском хозяйстве формула устанавливает связь между криволинейными и двойными интегралами.
Пусть имеется некоторая правильная замкнутая область Д, ограниченная контуром L и пущая ф-ции P(x,y) и Q(x,y) непрерывны вместе со своими частными производными: в данной области. тогда имеет место ф-ла:
И вот вся эта фигулина и есть формула Грина.
Контур L определяющий область д может быть задан показательными уравнениями х = х1(у), х=х2(у) с<=y<=dx1(y)<=x2(y) или
y = y1(x), y=y2(x) a<=x<=b y1(x)<=y2(x).
Рассмотрим область Д ограниченную неравенствами: a<=x<=b и y1(x)<=y2(x). и преобразуем двойной интеграл к криволинейным для чего сведем его к повторному и ф-ле Невтона-Лыебница выполним интегрирование по у и получим:
каждый из 2 определенных интегралов в правой части последнего равенства = криволинейному интегралу 2 рода взятому по соответствующей кривой а именно:
Формула Грина остается справедливой для всякой замкнутой области Д, которую можно разбить проведением дополнительных линий на конечной число правильных замкнутых областей.
2 Разложение элементарных ф-ций в ряд Тейлора (Маклорена)
R=¥ следовательно ряд абсолютно сходится на всей числовой прямой.
2Разложение sinx и cosx В степенной ряд Маклорена
Наз. биномиальный ряд с показателем a Различают 2 случая:
1- aÎN, тогда при любом х все члены ф-лы исчезают, начиная с (a +2) поэтому ряд Маклорена содержит конечное число членов и сходится при всех х. Получается формула Бинома Невтона: , где биномиальный коэффициент.
2- aÎR>N (a¹ 0 х ¹ 0) и ряд сходится абсолютно при |x|>1
5 Разложение arctgx в степенной ряд Маклорена
1 Некоторые приложения криволинейных интегралов 1 рода
.
2.Механический смысл интеграла 1 рода.
Если f(x,y) = r(x,y) – линейная плотность материальной дуги, то ее масса:
для пространственной там буква зю добавляется.
3.Координаты центра масс материальной дуги:
4. Момент инерции дуги лежащей в плоскости оху относительно начала координат и осей вращения ох, оу:
5. Геометрический смысл интеграла 1 рода
Пусть ф-ция z = f(x,y) – имеет размерность длины f(x,y)>=0 во всех точках материальной дуги лежащей в плоскости оху тогда:
, где S – площадь цилиндрической поверхности, кот состоит из перпендикуляров плоскости оху, восст в точках М(x,y) кривой АВ.
2 Геометрические и арифметические ряды.
1 Некоторые приложения криволинейных интегралов 2 рода.
Вычисление площади плоской области Д с границей L
2.Работа силы. Пусть материальная т очка под действием силы перемещается вдоль непрерывной плоской кривой ВС, направясь от В к С, работа этой силы:
при пространственной кривой там исчо третья функция появитца для буквы зю.
1 Условия независимости криволинейного интеграла 2 рода от пути интегрирования.
Плоская область W наз односвязной если не имеет дыр. т. е. однородная.
Пусть ф-ция P(x,y) и Q(x,y)вместе со своими частными производными непрерывны в некоторой замкнутой, односвязной области W тогда следующие 4 условия эквиваленты, т. е. выполнение какого либо из них влечет остальные 3.
1. Для " замкнутой кусочногладкой кривой L в W значение криволинейного интеграла:
2. Для все т. А и т. В области W значение интеграла
не зависит от выбора пути интегрирования, целиком лежащего в W.
3. Выражение Pdx+Qdy представляет собой полный дифференциал некоторых функций определенных в W существует ф-ция E=c(х,у) опред в W такая, что dE = Pdx+Pdy
Отседова следовает, что условие 3 является необходимым и достаточным условием при котором интегралы 2 рода не зависят от выбора пути интегрирования.
2 Интегральный признак сходимости ряда. Ряд Дирихле.
1 Интегрирование в полных дифференциалах
Пущай ф-ция P(x,y) и Q(x,y) - непрерывны в замкнутой области W и выражение P(x,y) + Q(x,y) есть полный дифееренциал некоторой ф-ции F(x,y) в W , что равносильно условию: , тогда dF=Pdx+Qdy.
Для интегралов независящих от пути интегрирования часто применяют обозначение:
где (х0,у0) – фиксированная точка Îl, (x,y) – произвольная точка Îl , с – const. и дает возможность определить все ф-ции, имеющие в подинтегральном выражении свои полные дифференциалы. Тк. интеграл не зависит от пути интегрирования, за путь инт. удобно взять ломаную звень которой параллельны осям координат. тогда формула преобразуется к виду.
1 Сведение 2-ного интеграла к повторному
Пусть у1(х), у2(х) непрерывны на отрезке [a, b], у1(х)<= у2(х) на всем отрезке.
Отрезок [a,b] – проекция Д на ось ох. Для такой области людбая прямая, параллельная оу и проходящая через внутреннюю точку области Д пересекает границу области не более чем в 2 точках. Такая область наз. правильной в направлении оси оу.
Если фция f(x,y) задана на Д и при каждом х Î [a,b] непрерывна на у , на отрезке, [y1(x),y2(x)], то фц-ия F(x) = , наз. интегралом, зависящим от параметра I, а интеграл : , наз повторным интегралом от ф-ции f(x,y) на области Д. Итак, повторный интеграл вычисляется путем последовательного вычисления обычных определенных интегралов сначала по одной., а затем по другой переменной.
Переход к полярным координатам частный случай замены переменных.
Луч, проходящий из произв точки О имеет на плоскости полярные координаты A(r, j) где r = |О A
| расстояние от О до А полярный радиус. j = угол между векторами ОА и ОР – полярный угол отсчитываемой от полярной оси против часовой стрелки. всегда 0<=r<=+¥, 0<=j <=2p .
Зависимость между прямоугольными и полярными координатами: x = r×cosj , y = r×sinj .
Якобиан преобразования будет равен:
2 Знакочередующиеся ряды признак Лейбница
Если ограниченная замкнутая область пространства V = f(x,y,z) взаимно однозначно отображается на область V’ пространства = (u,v,w) Если непрерывно дифференцируемы функции: x=x(u,v,w), y=y(u,v,w), z=z(u,v,w) и существует якобиан
При переходе к цилиндрическим координатам, с вязанными с x,y,z формулами: x=rcosj, y=rsinj, z=z (0<=r<=+¥, 0<=j <= 2p, -¥<=z<=+¥)
И поэтому в цилитндрических координатах переход осуществляется так:
При переходе к сферическим координатам: r? jq, связанными с z,y,z формулами x=rsinq×cosj,
Итак, в сферических координатах сие будет:
2 Радиус сходимости и интервал сходимости степенного ряда
существования и вычисления криволинейных интегралов
Кривая L наз. гладкой, если ф-ции j(t), y(t) из определяющих её параметрических уравнений:
имет на отрезке [a,b] непрерывные производные: j’(t), y’(t).Точки кривой L наз особыми точками, если они соответствуют значению параметра tÎ [a,b] для которых (j’(t)) 2
+(y’(t)) 2
= 0 т. е. обе производные обращаются в 0. Те точки для которых сие условие не выполняется наз. обычными (ВАУ!).
Если кривая L=AB задана ф-лами (1), является гладкой и нет имеет обычных точек, а ф-ции f(x,y), P(x,y), Q(x,y) непрерывны вдоль этой кривой, то криволинейные интегралы всех видов существуют (можно даже ихние формулы нарисовать для наглядности) и могут быть вычислены по следующим формулам сводящим эти интегралы к обычным:
В частности, если кривая АВ задана уравнением y = y(x), a<=x<=b , где у(х) непрерывно дифференцируемая ф-ция, то принимая х за параметр t получим:
ну и наоборот тожжа так будит, если х = х(у)
Если АВ задана в криволинейных координатах a <= j <= b где ф-ция r(j) непрерывно дифференцируема на отрезке [a, b] то имеет место частный случай, где в качестве параметра выступает полярный угол j. x = r(j)×cos(j),
Прямая L наз кусочно гладкой, если она непрерывна и распадается на конечное число не имеющих общих внутренних точек кусков, каждый из которых представляет собой гладкую кривую. В этом случает криволинейные интегралы по этой кривое определяются как сумма криволинейных интегралов по гладким кривым составляющим сию кусочно-гладкую кривую.
все выше сказанное справедливо и для пространственной кривой (с буквой зю).
2 Разложение элементарных ф-ций в ряд Тейлора (Маклорена).

Название: Лекции по матану (III семестр) переходящие в шпоры
Раздел: Рефераты по математике
Тип: шпаргалка
Добавлен 16:24:01 29 июля 2005 Похожие работы
Просмотров: 3220
Комментариев: 15
Оценило: 10 человек
Средний балл: 4.5
Оценка: 5   Скачать

Срочная помощь учащимся в написании различных работ. Бесплатные корректировки! Круглосуточная поддержка! Узнай стоимость твоей работы на сайте 64362.ru
Привет студентам) если возникают трудности с любой работой (от реферата и контрольных до диплома), можете обратиться на FAST-REFERAT.RU , я там обычно заказываю, все качественно и в срок) в любом случае попробуйте, за спрос денег не берут)
Да, но только в случае крайней необходимости.

Шпаргалка: Лекции по матану (III семестр) переходящие в шпоры
Краткое Сочинение На Тему Дубровский И Троекуров
Отчет по практике по теме Характеристика филиала банка ОАО 'Сбербанк'
Реферат по теме Процессы самоорганизации
Реферат по теме Учение софистов
Курсовая работа: Диагностика мотивации межличностных отношений в группе
Курсовая работа по теме Индивидуальное предпринимательство
Реферат по теме Системы контроля и управления доступом
Эссе Айлтс
Курсовая работа: Технологический расчет участка дизельной топливной аппаратуры для АТП, состоящего из 50 автомобилей КамАЗ-53215 с фактическим пробегом с начала эксплуатации 165 тыс. км
Реферат по теме Применение информационных технологий в управлении
Реферат по теме Структурные и семантические меры социально – правовой информации
Курсовая работа по теме Совершенствование управления себестоимостью продукции на примере ГОЛХУ 'Речицкий опытный лесхоз'
Контрольная работа по теме Построение уравнения множественной регрессии
Практическая Работа По Техническому Обслуживанию
Контрольная работа: Имущество и бухгалтерский баланс организации
Производство Серы На Нпз Реферат
Реферат по теме Особенности требований к профессионализму аудиторов
Сочинение На Тему Большие Города
Курсовая Работа На Тему Разработка Субд "Записная Книжка Руководителя"
Дипломная Работа На Тему Лингвистика На Заказ
Доклад: Особенности клинического течения инфаркта миокарда
Реферат: Билеты по межкультурной коммуникации
Доклад: И (долг)

Report Page