Роль подземных вод в формировании и разрушении залежей нефти и газа - География и экономическая география реферат

Роль подземных вод в формировании и разрушении залежей нефти и газа - География и экономическая география реферат




































Главная

География и экономическая география
Роль подземных вод в формировании и разрушении залежей нефти и газа

Подземные воды нефтегазоносных бассейнов. Нефтегазоносный бассейн как часть пластовых вод. Гидрогеологические исследования в нефтегазопоисковых целях. Методы гидрогеологического опробования. Фактические материалы по газонасыщенности пластовых вод.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Кафедра общей и прикладной геофизики
Роль подземных вод в формировании и разрушении залежей нефти и газа
ГИДРОГЕОЛОГИЧЕСКИЕ СТРУКТУРЫ НЕФТЕГАЗОНОСНЫХ БАССЕЙНОВ
Подземные воды нефтегазоносных бассейнов различаются по условиям происхождения, залегания и движения. Весьма часто генезис подземных вод определяет их условия залегания, а условия залегания (морфология скопления вод) определяют их условия движения. Однако не менее часто условия происхождения, залегания и движения вод не зависят друг от друга.
Наиболее крупная гидрогеологическая структура -- гидрогеологический бассейн -- скопление подземных вод, приуроченное к крупным тектоническим элементам земной коры. И. К. Зайцев (1974 г.) гидрогеологические бассейны разделил на два класса: артезианские структуры и гидрогеологические массивы. Среди артезианских структур им выделены: 1) артезианские бассейны (различного рода впадины), 2) артезианские своды (антеклизы и своды), 3) адартезианские бассейны (близки к артезианским, но отличаются от них широким распространением пластово-трещинных и трещинно-жильных вод), 4) вулканогенные суббассейны (скопление преимущественно покрово-порово-трещинных вод). Среди гидрогеологических массивов выделены: 1) адмассипы, сложенные метаморфизованными осадочными и вулканогенными породами, и 2) вулканогенные супермассивы, образованные мощными толщами лав и их туфов, наложенных на другие гидрогеологические структуры (покрово-трещинно-поровые воды).
Крупным недостатком указанной схемы является отнесение к арте-зианским всех бассейнов подземных вод, приуроченных к осадочным отложениям различного рода впадин, без учета особенностей их гидродинамики и генезиса подземных вод. Это заставило нефтяников-гидрогеологов искать новые подходы к решению вопросов гидрогеологической систематики.
В нефтяной геологии в качестве основных единиц нефтегеологического районирования приняты нефтегазоносный бассейн и нефтегазоносные провинция, область. При выделении нефтегазоносных бассейнов основными являются условия генерации УВ, а при выделении провинций и областей -- единство условий нефтегазонакопления. Однако и в том и другом случае ведущий фактор при нефтегазогеологическом районировании -- тектонический. Выделение нефтегазоносных бассейнов и нефтегазоносных провинций -- это два различных, но не исключающих друг друга принципа нефтегеологического районирования. Выбор одного из этих принципов определяется конкретными задачами той или иной работы. При гидрогеологической систематизации «бассейновый» принцип предпочтителен, так как бассейны пластовых вод и нефтегазоносные бассейны приурочены к одним и тем же крупным, длительно развивающимся отрицательным элементам тектонических структур, заполненных осадоч-ными породами. Н. Б. Вассоевич (1970 г.) нефтегазоносный бассейн назвал нефтегазоносным осадочным бассейном, и это понятие было более узким, чем понятие «осадочно-породный бассейн», так как не всякий осадочно-породный бассейн может быть нефтегазоносным.
М.И. Суббота, А.Ф. Романюк и Я.А. Ходжакулиев выделили четыре типа гидрогеологических бассейнов: 1) осадочно-породные депрессионные (бассейны артезианские и нефтегазоносные), 2) осадочно-породные горно-складчатые, 3) глыбово-массивные (гидрогеологические структуры щитов) и 4) океанические. Гидрогеологические бассейны имеют разную площадь: от нескольких тысяч до нескольких миллионов квадратных километров. Естественно, гидрогеологическая характеристика и условия нефтегазоносности разных по размерам бассейнов не одинаковы. По площади бассейны подразделяются на следующие группы (млн. км 2 ):1-- гигантские (>1), 2-- крупные (0,3--1), 3--средние (0.05-0,3), 4-- мелкие (<0,05).
В рассмотренных классификациях гидрогеологических структур в качестве классификационного признака взята морфология скопления вод. Однако при разработке гидрогеологической таксономии следует учесть и другие важные характеристики гидрогеологических структур: морфологию скопления вод, т. е. форму их нахождения в литосфере, условия движения подземных под (гидродинамические условия или природа энергетического потенциала) и генетическую природу подземных вод.
При всем многообразии геологических форм нахождения подземных вод в литосфере гидрогеологические бассейны по условиям залегания (морфологии скопления вол) в принципе можно разделить на два основных типа: бассейны пластовых под и гидрогеологические массивы трещинных и жильно-трещинных вод.
Бассейны трещинных и жильно-трещинных вод располагаются и пределах кристаллических щитов и горно-складчатых областей. Трещинная водоносность наблюдается и в кристаллическом фундаменте бассейнов пластовых вод, особенно в древней коре выветривания фундамента. В покровных отложениях щитов нередко развиты порово-пластовые воды. Залежи нефти и газа ассоциируются с бассейнами пластовых вол, поэтому на характеристике последних остановимся более подробно. Правда, встречаются залежи УВ и в фундаменте таких бассейнов, в его верхней трещиноватой части, однако генетически они едины с пластовыми залежами.
Пол бассейном пластовых вод понимается скопление вод, приуроченное преимущественно к осадочным породам, заполняющим отрицательные тектонические элементы земной коры (синеклизы, впадины, прогибы). Бассейн пластовых вод состоит из проницаемых водоносных пластов, объединяемых в горизонты, комплексы и этажи с напорными водами, разделенных водоупорами. В верхней части разреза бассейн пластовых вод венчается суббассейном безнапорных грунтовых вод. Ложем бассейна служат породы фундамента. Трещинные подземные воды, приуроченные к верхней трещиноватой части фундамента, по генетической природе близки к контактирующим с ними пластовым водам.
В нефтегазовой гидрогеологии широко используется термин «природная водонапорная система». При всех терминологических различиях под природной водонапорной системой подразумевается водоносный пласт или совокупность водоносных (гидрогеологических) горизонтов или комплексов, содержащих напорные воды и приуроченных к определенным геологическим структурам. Так, природная водонапорная система может быть содержанием отдельного бассейна пластовых вод или системы бассейнов крупного сегмента земной коры. Например, водонапорная система Прикаспийской впадины или водонапорная система Восточно-Европейской платформы. В том и другом случае подразумеваются совокупности напорных горизонтов или комплексов подземных вод определенных тектонических элементов земной коры. Водонапорная система может характеризовать и стратиграфический интервал разреза. Например, водонапорная система мезозойско-кайнозойских отложений Прикаспийской впадины. Таким образом, природная водонапорная система может иметь разный объем -- от пласта до серии пластов, а по площади -- от гидрогеологического района до бассейна или группы сопряженных бассейнов. Поэтому при использовании термина «природная водонапорная система» необходима конкретизация объекта.
По условиям формирования гидродинамического потенциала при-родные водонапорные системы существенно различаются. Можно выделить две принципиально различные гидродинамические (геогидродинамические) системы: безнапорных (грунтовых) и напорных (преимущественно пластовых) вод. По природе энергетического потенциала геогидродинамические системы напорных вод подразделяются на инфильтрационные и эксфильтрационные.
В инфильтрационных водонапорных системах напор создается за счет инфильтрации атмосферных и поверхностных вод. Природа энергетического потенциала гидростатическая, и соответственно системы этого типа также называются гидростатическими. Для таких систем пластовое давление р определяется формулой где Н -- пьезометрический напор;г -- плотность жидкости; g -- ускорение силы тяжести.
В эксфильтрационных водонапорных системах напор в водоносных пластах создается за счет фильтрационного удаления жидкости из одних пластов (или их частей) в другие пласты (или их части) без пополнения запасов из внешних областей питания. Эксфильтрационные водонапорные системы подразделяются на элизионные лито-статические (геостатические), геодинамические и термогидродинамические (термогидратационные).
В элизионных литостатических водонапорных системах напор создается вследствие выжимания вод из уплотняющихся осадков и пород в коллекторы и частично за счет уплотнения самих коллекторов с выжиманием вод из одних частей в другие. В результате процесса уплотнения образуется избыточное количество жидкости Q изб . Приращение давления происходит в соответствии с законом , где ?р--приращение давления; в -- коэффициент сжимаемости жидкости; V 0 -- общий объем жидкости в водо-напорной системе.
Следовательно, в элизионной литостатической водонапорной системе .
Наибольшее количество жидкости отжимается из зон максимальной мощности осадков, т. е. из наиболее погруженных частей впадин. Системы эти закрытые: либо сообщения с земной поверхностью совсем нет, либо напор создается в зонах разгрузки. Вследствие этого в элизионных литостатических системах пластовое давление, как правило, выше условного гидростатического. И это превышение тем больше, чем больше степень закрытости системы.
В элизионных геодинамических водонапорных системах источником гидростатической энергии является геодинамическое давление; тектоническое сжатие приводит к возникновению высокой пластовой энергии. Такие системы встречаются преимущественно в областях интенсивной складчатости и повышенной сейсмичности. В складчатых областях и предгорных прогибах пластовое давление часто превышает условное гидростатическое в 1,8--2 раза.
В элизионных термогидродинамических водонапорных системах природа энергетического потенциала обусловлена высвобождением жидкости в процессе термической дегидратации минералов.
Природные "водонапорные системы гидрогеологических бассейнов различаются и по происхождению подземных вод: инфильтрационные природные водонапорные системы содержат инфильтрационные водные растворы, литостатические элизионные -- седиментогенные (талассогенные) водные растворы преимущественно морского генезиса, в термогидродинамических и геодинамических водонапорных системах значительную роль начинают играть литогенные и возрожденные водные растворы.
НЕФТЕГАЗОНОСНЫЙ БАССЕЙН КАК ЧАСТЬ БАССЕЙНА ПЛАСТОВЫХ ВОД
В бассейнах пластовых вод наблюдается сложное сочетание различных геогидродинамических систем с генетически разными классами подземных вод. Каждый бассейн пластовых вод венчается геогидродинамической системой безнапорных (грунтовых) вод. Глубже по разрезу бассейна пластовых вод довольно часто залегают безнапорные пластовые воды (со свободным зеркалом подземных вод). Наконец, среди напорных вод прослеживается сложное сочетание инфильтрационных и эксфильтрационных водонапорных систем. Вполне допустимо, что даже в пределах одного и того же гидрогеологического горизонта или комплекса во внутренних частях бассейна развита эксфильтрационная водонапорная система, а в обрамлениях бассейна -- инфильтрационная. Вследствие этого не так просто ограничить водонапорную систему нефтегазоносного бассейна в гидрогеологическом бассейне -- бассейне пластовых вод.
И.О. Брод и его последователи считали, что нефтегазоносный бассейн является частью артезианского бассейна. Они исключали из него краевые зоны бассейна и прежде всего области инфильтрационного питания и прилегающие зоны «активного водообмена», где условия для сохранения УВ неблагоприятны. Интуитивно чувствуя исключительную роль подземных вод в онтогенезе нефти и газа, И.О. Брод тем не менее не смог определить водонапорную систему нефтегазоносного бассейна -- к тому времени сведений о природных водонапорных системах было явно недостаточно для решения этого сложного вопроса.
Недостатком информации можно объяснить и появление впоследствии внутренне противоречивого понятия «нефтегазоносный артезианский бассейн». В классическом понимании артезианский бассейн представляет собой комплекс водоносных пластов, слагающих различного рода прогибы (впадины, синеклизы и т.д.) с внешней областью питания. Для таких бассейнов характерны воды инфильтрационного генезиса, а природа гидродинамического потенциала -- гидростатическая. По мере разбуривания нижних этажей нефтегазоносных бассейнов все чаще стали вскрывать эксфильтрационные водонапорные системы с иными природой гидродинамического потенциала и генезисом подземных вод (литостатические, геодинамические и термогидратационные элизионные водонапорные системы). Ряд гидрогеологов такие водонапорные системы стали относить также к артезианским бассейнам, тем самым существенно расширив понятие «артезианский бассейн».
Так как и бассейны пластовых вод и нефтегазоносные бассейны приурочены к осадочно-породным бассейнам, последние являются для них родовым понятием. Для нефтегазоносного бассейна основной характеристикой служит онтогенез нефти и газа -- генерация УВ, формирование и консервация их залежей. Практически все осадочные толщи содержат рассеянное ОВ, которое в благоприятных условиях генерирует УВ. Эти благоприятные условия сохраняются там, где осадочные породы хорошо изолированы от воздействия поверхностных факторов, иначе говоря, в зоне распространения эксфильтрационных водонапорных систем. Очевидно, формирующийся осадочно-породный бассейн будет полностью соответствовать нефтегазоносному с эксфильтрационной водонапорной системой. Если процесс осадконакопления прерван и осадочно-породный бассейн выведен на дневную поверхность, то в краевых его частях и в покровных отложениях начнут формироваться инфильтрационные водонапорные системы, которые неблагоприятны для онтогенеза нефти и газа. Следовательно, границами нефтегазоносного бассейна следует считать границу между эксфильтрационными и инфильтрационными режимами в пределах водонапорных систем бассейна.
Однако в последнее время получены данные, что и к водонапорным системам с инфильтрационным режимом могут быть приурочены залежи УВ. что позволяет расширить объем нефтегазоносных бассейнов в пределах пластовых водонапорных систем.
ГИДРОГЕОЛОГИЧЕСКАЯ СТАДИЙНОСТЬ РАЗВИТИЯ НЕФТЕГАЗОНОСНЫХ БАССЕЙНОВ
Бассейн пластовых вод с эксфильтрационной водонапорной системой первоначально начинает развиваться в пределах бассейна седиментации. Па этом этапе границы бассейна пластовых вод с эксфильтрационной водонапорной системой и нефтегазоносного бассейна. совпадают. Н эпохи перерывов в осадконакоплении при наступлении континентального режима в краевых частях и в верхних горизонтах осадочно-породного бассейна начинает формироваться инфильтрационная водонапорная система. В небольших по площади и маломощных осадочно-породных бассейнах инфильтрационный режим достаточно быстро распространяется на всю площадь и глубину бассейна пластовых вод, в крупных бассейнах эксфильтрационный режим сохраняется длительное время.
Глубина и скорость проникновения инфильтрационных вод в недра осадочно-породного бассейна определяются фациальными особенностями пластов-коллекторов, гипсометрическим положением областей инфильтрационного питания, степенью тектонической нарушенности слагающих бассейн пород и другими геологическими условиями. Глубоким разведочным бурением во внутренних частях почти всех нефтегазоносных бассейнов Российской Федерации установлены древние седиментогенные воды с той или иной долей литогенных вод, а сами водонапорные системы находятся на эксфильтрационных этапах развития. Глобальная направлен-ность развития гидрогеологических структур осадочных бассейнов от эксфильтрационных к инфильтрационным системам неизбежна для любых тектонических элементов земной коры. Различна лишь интенсивность процесса: чем крупнее и глубже осадочный бассейн, тем длительнее процесс перестройки его водонапорной системы.
В направленном развитии водонапорной системы нефтегазоносного бассейна выделяют три этапа.
Первый этап -- зарождение гидрогеологической структуры. Огромное геохимическое разнообразие глубинных подземных вод в осадочных породах закладывается в бассейне осадконакопления на стадии седиментогенеза, а их дальнейший облик определяется особенностями литогенеза пород. Так, воды, захороняемые вместе с осадками в пресноводных бассейнах, как правило, характеризуются невысокой минерализацией. Наоборот, для солеродных бассейнов характерны высокоминерализованные растворы. Взаимосвязь между особенностями геохимического облика глубинных подземных вод и пород в процессе литогенеза прослеживается во всех литогенетических зонах. Поэтому продуктом литогенеза являются не только нефть и газ, но и глубинные подземные воды. На стадии седиментогенеза еще в донных илах начинается преобразование седиментационных вод, илов, ОВ и эмиграция продуктов их преобразования.
Второй этап -- дифференциация твердой и жидкой фаз, миграция флюидов и формирование залежей УВ. Если в донных илах содержание воды достигает 90%, то в метаморфических сланцах оно снижается до 1%. Следовательно, процессы литогенеза связаны пре-имущественно с удалением флюидной фазы -- воды, нефти и газа. Поистине доминантой литогенеза является дифференциация жидкой и твердой фаз. В процессе этой дифференциации твердая (породы) и флюидная (вода, нефть, газ) фазы постоянно изменяются, воздействуя друг на друга.
Второй этап распадается на три подэтапа. На первом подэтапе происходит эмиграция седиментационных вод (на стадии диагенеза в интервале глубин до 600--800 м осадок теряет до 75% воды) и генерация биогенных газов -- формируются месторождения биогенных природных газов. Второй подэтап характеризуется «рождением» литогенных, органогенных, возрожденных вод и вод отжатия, генерацией жир-ных газов и нефтей, формированием преимущественно нефтяных и газоконденсатных месторождений. Второй подэтап приурочен к глуби-нам 1--6 км и температурному интервалу 85 -- 125° С. В этих условиях набухающие глинистые минералы превращаются в ненабухающие, что сопровождается высвобождением воды в объеме 14--15% от общего объема породы. Все это приводит к изменению химического состава глубинных подземных вод и к инверсии в гидрохимическом разрезе подземной гидросферы. На третьем подэтапе формируются преимущественно литогенные и возрожденные воды, но объем вновь образовавшихся вод незначителен. Из УВ генерируется преимущественно метан, и формируются метановые месторождения нижней газовой зоны.
Рассмотренные подэтапы дифференциации твердой и жидкой фаз связаны со стадиями литогенеза: первый подэтап приходится на стадии диагенеза, раннего и среднего протокатагенеза, второй -- на стадии позднего протокатагенеза и мезокатагенеза, третий -- на стадии позднего мезокатагенеза и апокатагенеза.
Третий этап -- инфильтрационное развитие гидрогеологической структуры, переформирование и разрушение залежей УВ.
ГИДРОГЕОЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ В НЕФТЕГАЗОПОИСКОВЫХ ЦЕЛЯХ
МЕТОДЫ ГИДРОГЕОЛОГИЧЕСКОГО ОПРОБОВАНИЯ
При подготовке для гидрогеологического опробования скважина основной объект исследований подземных вод нефтегазоносных районов -- должна быть обсажена колонной, интервалы, подлежащие опробованию, перфорированы. Затем снижением в колонне уровня жидкости, заполняющей се перед перфорацией до устья, вызывают приток пластовых флюидов. Скважина считается подготовленной к исследованиям, если технические воды призабойной зоны и колонны заменены пластовыми. Для объективной оценки анализа фактического материала необходимо дать характеристику проведенных работ по подготовке скважины к исследованиям, указать объем откачанной жидкости, изменение плотности, представить сведения о восстановлении уровня воды, указать период нахождения скважины в покое после освоения.
Уровень воды в скважинах замеряют от поверхности земли, плоскости ротора или верха фланца кондуктора. При высоких газовых факторах необходимо привести данные по газонасыщенности вод в связи с возможным выделением свободной газовой фазы в виде пузырьков.
Плотность пластовых вод входит во многие формулы при гидрогеологических расчетах. Особенно большое значение плотность имеет при расчетах приведенного давления и установлении гидродинамической составляющей перепада напоров. В практике гидрогеологических работ плотность воды устанавливают в полевых условиях ареометрами, а более точно в лабораторных условиях -- пикнометрами. Весьма важно указать температуру воды, при которой определялась плотность. Приближенно плотность можно определить по минерализации поды.
Отбор глубинных проб воды занимает важное место при гидрогеологическом опробовании. Изучение газонасыщенности подземных вод в пластовых условиях возможно лишь посредством отбора проб специальными глубинными пробоотборникам. Последние герметично закрываются на нужной глубине в момент отбора проб, т.е. при давлении, близком к пластовому. На дневной поверхности газ выделяется в свободную фазу и переводится в специальные емкости. Для более глубокой дегазации, особенно при малой газонасыщенности, пробоотборник подогревают. Однако этот способ малоэффективен при высокой концентрации в воде кислых газов (сероводорода, углекислоты), основная часть которых остается в растворенном состоянии в воде глубинной пробы. Эти недостатки обычного метода отбора глубинных проб устраняют применением других методик и специальных приборов. В камерах последних определяемый кислый компонент пластовых вод химически связывается насыщенными растворами углекислого кадмия (для сероводорода) и гидроксидом бария (для углекислого газа).
Наряду с методом отбора глубинных проб, обычно применяемых при высокой газонасыщенности пластовых вод, существуют и другие методы извлечения растворенных газов из слабогазонасыщенных вод. В этих случаях применяют термодегазаторы различной конструкции.
Отбор проб на химический анализ наиболее целесообразно производить глубинными пробоотборниками либо с устья скважины в условиях интенсивного самоизлива.
Измерения температуры в скважинах чаще всего проводят ртутными максимальными термометрами, выдерживаемыми 30 мин. Реже применяют электрические термометры. Однако довольно часто абсолютные величины температур, замеренные электрическими термометрами в большом диапазоне глубин (2--5 км), заметно расходятся с результатами замеров ртутными максимальными термометрами: расхождения в интервале указанных глубин достигают 10--20° С. Геотермические исследования в скважинах предусматривают достижение в них температурного равновесия между колонной, заполненной водой или глинистым раствором, и породами заколонного пространства. Такое равновесие устанавливается за 10--20 дней.
Вязкость пластовых вод определяют в лабораторных условиях. Для итого необходимо отобрать специальные глубинные пробы пластовых вод с указанием их температуры, минерализации, пластового давления, содержания в них растворенных газов и их состава.
Характеристика географического положения и природно-климатических условий Восточной Сибири. Особенности тектонического строения, геологии, рельефа, мощности основных нефтегазоносных бассейнов России. Резервы эффективного использования углеводородов. дипломная работа [7,1 M], добавлен 25.12.2015
Географическое положение и история исследования материка. Рельеф и полезные ископаемые. Климат и внутренние воды. Природные зоны Северной Америки. Крайние точки материка. Нефтегазоносный бассейн Мексиканского залива. Океанические течения и температура. презентация [415,4 K], добавлен 01.03.2013
Круговорот воды в природе. Географическое распределение осадков. Временные циклы доступности воды. Основные подземные и поверхностные источники. Потребление воды, ее качество. Использование воды в сельском хозяйстве. Дефицит воды и его преодоление. реферат [28,2 K], добавлен 13.04.2010
Печорский угольный бассейн как один из крупнейших угольных бассейнов России, его геологическое открытие и начало промышленного освоения. Характеристика сырьевой базы бассейна, схема расположения месторождений и проявлений угля на его территории. контрольная работа [1,2 M], добавлен 19.11.2010
История развития нефтяной промышленности в России. Описание деятельности Волго-Уральской, Тимано-Печорской и Западно-Сибирской нефтегазоносных провинций. Структура газодобывающей отрасли РФ. Перспективы развития топливно-энергетического комплекса страны. контрольная работа [41,7 K], добавлен 04.09.2014
Обь — река в Западной Сибири, образуется на Алтае при слиянии Бии и Катуни. Происхождение названия, значение реки, экологические проблемы. Основные порты и пристани Обского бассейна. Запасы газа, нефти, торфа и гидроэнергетические ресурсы. Отдых на реке. презентация [4,1 M], добавлен 04.04.2014
Основные этапы изучения и освоения нефтегазоносных регионов и становления добычи нефти. Формирование геологоразведочной подотрасли. Нефтеперерабатывающие заводы в Казахстане. Транспортные узлы по транспортировке нефти. Состояние экономики Казахстана. курсовая работа [154,7 K], добавлен 01.12.2010
Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д. PPT, PPTX и PDF-файлы представлены только в архивах. Рекомендуем скачать работу .

© 2000 — 2021



Роль подземных вод в формировании и разрушении залежей нефти и газа реферат. География и экономическая география.
Реферат по теме Сюжет и композиция комедии Н. В. Гоголя «Ревизор»
Сочинение По По Пугалу Общественное Мнение
Реферат: Подробный финансовый анализ
Курсовая работа по теме Демократия и государство
Доклад по теме Крепость Орешек
Реферат по теме Легион, когорта и их боевой порядок во времена Цезаря
Реферат по теме Биография Василия Поленова
Декабрьское Сочинение Какие Произведения Читать
Практическая Квалификационная Работа Помощник Воспитателя
Контрольная работа по теме Зимнее содержание участка автомобильной дороги
Реферат На Тему Курская Битва По Истории
Дипломная работа: Оценка адаптивности Курского филиала сети аптек ЗАО "Фармакор"
Курсовая Работа На Тему Соотношение Сознания И Бессознательного В Общей Психологии
Реферат: Индикаторы бюджетных показателей: порядок формирования и анализ исполнения
Дипломная работа по теме Оценка эффективности расходов бюджета Гомельской области
Контрольная работа по теме Радянський період образотворчого мистецтва України
Контрольная работа: Социология в России конец 19 начало 20 века
Реферат: Участие Казахстана в интеграционных процессах
Сөз Мәдениеті Эссе Әдеби Тілдің
Анализ Крови Реферат Заключение
Основы биологии - Биология и естествознание тест
Основы биологических знаний - Биология и естествознание курсовая работа
Роль военных комиссариатов в исполнении военно-транспортной обязанности гражданами и организациями - Военное дело и гражданская оборона статья


Report Page