Роданид калия в спектрофотометрии - Химия курсовая работа

Роданид калия в спектрофотометрии - Химия курсовая работа




































Главная

Химия
Роданид калия в спектрофотометрии

Общие положения спектрофотометрического метода анализа. Отклонение от основного закона светопоглощения. Немонохроматичность и влияние рассеянного света. Приборы, применяемые в спектрофотомерии. Роданидные соединения в спектрофотометрическом анализе.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

спектрофотометрия роданид калий светопоглощение
Поглощение излучения в видимой и УФ-области.
Спектрофотомерия широко применяют для исследования органических и неорганических веществ, для качественного и количественного анализа различных объектов (в частности, природных), для контроля технологических процессов. Так, разработаны спектрофотометрические методы определения в растворах Сu и Rb (пределы обнаружения 310-6% по массе), Со (2,5 10 - 5 % по массе), Hf и Zr (0,5 мкг/мл); V (0,2 мкг/мл), гликозидов (0,05 мкг), белков (0,2 мкг/мл), тимола (1-2 мкг/мл); в атмосфере можно определить СО, оксиды азота, этилен, О3, NH3, CH4 с пределами обнаружения ~ 10-7% по массе.
Воспроизводимость . Случайные погрешности, обусловливающие воспроизводимость результатов фотометрических определений, вызваны следующими причинами: погрешностями при приготовлении анализируемых растворов; полнотой переведения определяемого компонента в фотометрируемое соединение; влиянием посторонних компонентов; погрешностями контрольного опыта; кюветной погрешностью, которая связана с различиями в толщине кювет, состоянием их рабочих граней, а также воспроизводимостью их положения в кюветодержателе; погрешностями установки нужной длины волны и настройки регистрирующей системы на 0 и 100% пропускания; нестабильностью работы источника освещения и приемно-усилительной системы.
Селективность . Важнейшим фактором, ограничивающим селективность в спектрофотометрии, является спектральная ширина молекулярных полос поглощения в растворах ( достигающая десятка нанометров) и связанная с этим высокая вероятность спектральных помех - перекрывание спектров компонентов, появление аддитивных систематических погрешностей. Кроме того, спектр поглощения комплекса часто обусловлен поглощением реагента.
Природные и антропогенные источники: Содержится в слюне (в среднем 0,01 %) и крови (13 мг/л) человека.
Энтальпия плавления ДH пл.: 10,5 кДж/моль.
7 . Определение ниобия при помощи роданида калия
Роданидная реакция впервые была применена для фотометрического определения ниобия Моньяковой и Федоровым [403]. Механизм реакции и влияние на нее различных факторов подробно изучены Алимариным и Подвальной [36]. В настоящее время роданидный метод стал классическим и широко используется на практике в качестве одного из наиболее специфических и чувствительных методов для определения ниобия в различных природных и технических объектах [305, 1241].
Роданидный комплекс ниобия экстрагируется органическими растворителями: диэгиловым эфиром, бутиловым и изоамило-вым спиртами, этилацетатом, амилацетатом, метилбутилкетоном, циклогексаноном, изоамилацетатом, диизопропиловым эфиром, В. В'-дихлордиэтиловым эфиром и сульфатом трибутиламина. Бензол, хлороформ и четыреххлористый углерод экстрагируют роданид ниобия незначительно [625, 944, 1153, 1198, 1470, 1526]. Показано [799], что при двухкратной экстракции эфиром роданид ниобия практически полностью (на 98-99%) переходит в органическую фазу. Препятствуют экстракции ниобия большие количества тантала, особенно при длительном стоянии растворов (ниобий и тантал переходят в коллоидное состояние); 100-кратные количества тантала не влияют на экстракцию роданида ниобия, если ее проводить сразу после растворения пиросульфатного плава в винной кислоте. Роданидные комплексы ниобия и тантала экстрагируются практически полностью из оксалатных растворов, содержащих 1 М H2S04 и 2 М NH4SCN, этилацетатом, изоамиловым спиртом, изоамилацетатом и другими растворителями; титан в аналогичных условиях экстрагируется значительно хуже [1153, 1469, 1471].
Условия определения ниобия. Оптическая плотность раствора роданидного комплекса ниобия сильно зависит от природы и концентрации кислот ы и роданида калия в растворе. Наиболее пригодна для выполнения реакции соляная кислота, концентрация которой в растворе должна быть 3,75-4,25н., при более высокой концентрации НС1 происходит полимеризация HSCN, и оптическая плотность раствора увеличивается. При больших концентрациях серной, щавелевой, фосфорной и мышьяковой кислот, фторидов и бромидов роданидный комплекс ниобия обесцвечивается. Допускается 30-кратный избыток фторидов и 100-кратный избыток щавелевой кислоты по отношению к ниобию. Винная и лимонная кислоты задерживают развитие окраски; хлорная кислота разрушает роданидный комплекс ниобия с образованием Nb2О5·xH2O. Концентрация роданида калия не должна превышать 20-25%. Максимум оптической плотности достигается через 25-27 мин. Окраска эфирных и водно-ацетоновых растворов роданидного комплекса стабильна. в течение 2 час. я 1 часа, соответственно; температура в интервале 20 - 32° С не влияет на интенсивность окраски. Чувствительность реакции значительно повышается в водно-органической среде вследствие уменьшения диссоциации [NbO (SCN) 4] ?. Например, оптическая плотность водно-ацетонового раствора роданидного комплекса ниобия, содержащего 0,0711 мг Nb в 50 мл, при 385 ммк равна 0,344; водно-диоксанового раствора - 0,230; 3 смеси метилцеллозольва и воды - 0,141; водного раствора - 0, 72 [. Максимальная концентрация органического растворителя составляет 20% по объему.
Влияние сопутствующих элементов. Многие Элементы образуют с роданидом калия окрашенные соединения, максимум светопоглащения которых находится в той же области, что и максимум комплексного роданида ниобия: Ti (IV) - 417 ммк, W (V) - 420 ммк, U (VI) - 375 ммк, Re (V) - 432 ммк, Pb - 320 ммк, Ni - 340, 400 ммк. Mo, Со, Pt и другие элементы. Все они по-разному влияют на определение виобия. Например, Сг (Ш), Та и Со не мешают определению Ниобия, если их концентрация ниже, чем концентрация ниобия. Определить 20 мкг ниобия можно в присутствии 1000 мкг V, 100 мкг Fe (III), Mo или W, 200 мкг Та и 500 мкг Bi. В водно-ацетоновой среде 0,125 мг Nb2О5 с удовлетворительной точностью определяли при 385 ммк в присутствии равных количеств окислов Та, Fe, Ti, Zr, Mo, W, Cr, U, Co, Th и V. Десятикратные количества Zr, Cr, Co, Fe и Th вызывают уже значительную ошибку.
Помехи, обусловленные присутствием других элементов, могут оыть уменьшены или совершенно устранены различными способами. Например, в случае экстракции роданида ниобия эфиром его определению не мешают: U (VI), Cr (III), Си, Re (V), Pb и Ni, роданиды которых не экстрагируются. Влияние некоторых элементов можно уменьшить, используя то, что оптическая плотность раствора роданида ниобия в пределах длин волн 300-420 ммк не сильно отклоняется от максимальной оптической плотности при 385 ммк: на 10-20% при 345 или 405 ммк и на 13% при 400 ммк. Оптическая плотность водно-ацетонового раствора роданида ниобия при 365 ммк больше, чем при 405 ммк; в эфирных же растворах наблюдается обратное явление. Если определять ниобий при 420 ммк, то почти полностью устраняется влияние тантала, а при 405 ммк в водно-ацетоновой смеси можно определить ниобий в присутствии ряда элементов.
Для уменьшения влияния титана рекомендуют брать небольшую концентрацию роданида калия (0,3 М), так как при больших концентрациях KSCN (0,9 М) роданидный комплекс титана имеет два максимума на кривой светопоглащения при 320 и 410 ммк (рис.9), что мешает определению ниобия. По-разному влияет на светопоглащение растворов роданида ниобия ацетон: при увеличении его концентрации в 2 раза оптическая плотность растворов роданидного комплекса ниобия возрастает также в 2 раза, оптическая плотность растворов роданида титана при 365 и 405 ммк увеличивается в 6 и 60 раз соответственно. Если увеличить концентрацию ацетона от 10 до 22% (по объему) (5 и 11 мл ацетона на 50 мл раствора соответственно), то оптическая плотность раствора роданида ниобия увеличивается больше, чем для со ответствующего комплекса титана; при увеличении количества ацетона до 20 мл оптическая плотность раствора комплекса титана увеличивается немного больше, чем раствора комплекса ниобия. Это используют для определения ниобия в присутствии титана. Поступают следующим образом. Оптические плотности стандартных и исследуемых растворов роданидных комплексов этих элементов, содержащих 0,3 М KSCN, измеряют при 360 и 400 ммк.
Предложен высокочувствительный фотометрический метод определения ниобия в виде тройного комплекса ниобия, роданида и N-бензоилфенилгидроксиламина. Молярный коэффициент погашения при 360 ммк равен 46 500, при 380 ммк - 30 700 в при 420 ммк - 18 000. Соединение экстрагируется хлороформом. Закон Бера соблюдается при содержании 5-30 мке Nb в 5 мл хлороформа.
Определение ниобия в водно-ацетоновом растворе. Навеску 5-50 мг пятиокиси ниобия и тантала-сплавляют с бисульфатом калия, плав растворяют в 200 мл 1,2 М раствора винной кислоты и разбавляют водой до 500 мл. В мерную колбу емк.50 мл вводят 10 мл конц. НС1, 1 мл 2 н. раствора SnCb2 и 10 мл ацетона, перемешивают и охлаждают 15 мин. до 20° С. Затем вводят 10 мл 3 М раствора KSCN (свежеприготовленного) и 10 мл анализируемого раствора, снова охлаждают 5 мин., после чего разбавляют до метки и через 15 мин. измеряют светопоглощение при 385 ммк. Стандартный раствор (0,1-1 мг Nb в 50 мл) готовят в аналогичных условиях. В раствор сравнения вносят все реактивы в тех же концентрациях, что и в исследуемый раствор, за исключением ниобия.
Экстракционно-фотометрическое определение ниобия. Метод без применения винной кислоты. К солянокислому раствору, содержащему 1-60 мкг Nb, приливают 3 мл 15% -ного раствора SnС12 в 4н. НС1 и добавляют HCI (конечная концентрация кислоты в 14 мл раствора 4±0,25 N) и 5 мл 20% -ного раствора KSCN. Через 5 мин. прибавляют 7 мл эфира, не содержащего перекиси водорода, и встряхивают. Для извлечения 25 мкг Nb необходимо провести три экстракции. Оптическую плотность экстракта измеряют при 385 ммк. Стандартные растворы готовят растворением чистой пятиокиси ниобия в конц. НС1. Содержание ниобия можно определять методом стандартных серий. В качестве стандартов используют эфирные экстракты или же растворы хромата калия (30,8 мг К2СгО4 соответствуют 1 мг Nb2O5).
Методе применением винной кислоты. Навеску пятиокиси сплавляют с 50-кратным количеством пиросульфата калия и растворяют в I М растворе винной кислоты. К раствору, содержащему 1-65 мкг Xb, приливают 15 мл раствора SnCl2, 5 мл раствора 9 М НС1 и 1 М раствора винной кислоты и 5 мл 20% -ного раствора KSCN и дважды экстрагируют эфиром. Оптическую плотность измеряют при 385 ммк.
Метод применен для определения малых количеств ниобия; его чувствительность приблизительно в 2,5 раза выше чувствительности метода определения в водно-ацетоновом растворе.
Определение ниобия в присутствии титана. Пробу (0,1-0,5 г) сплавляют с 8 г пиросульфата калия, плав растворяют в НС1 (1: 4). Нерастворившийся остаток выпаривают досуха со смесью HF и H2SO4, прокаливают, сплавляют с небольшим количеством пиросульфата калия; плав растворяют и присоединяют к основному раствору. Затем приливают избыток раствора NH4OH и кипятят в течение 5 мин. Выпавший осадок отфильтровывают, промывают раствором NH4NO3, растворяют при 50-60° С в 13% -ном растворе винной кислоты, охлаждают и разбавляют до 200 мл. Отбирают аликвотную часть 2-5 мл, разбавляют 0,5 М раствором винной кислоты до 10 мл, прибавляют последовательно 20 мл HCI (1:
1), 10 мл ацетона и 2 мл 1М раствора SnCl2 в HCI (1:
1). По охлаждении приливают 5 мл ЗМ раствора KSCN, доводят водой до метки (50 мл) и через 30 мин. измеряют оптическую плотность при 360 и 400 ммк.
8 . Определение молибдена в виде роданидных соединений без экстракции .
Выполнено большое число исследований для нахождения оптимальных условий фотометрического определения молибдена роданидным методом. Различные авторы указывают на самые различные оптимальные условия. Изучалось влияние природы и концентрации кислоты, концентрации и последовательности прибавления реагентов и других факторов на величину оптической плотности и ее постоянство. О влиянии отдельных факторов имеется множество взаимоисключающих утверждений.
В результате систематического изучения влияния концентрации соляной кислоты, роданида калия, хлорида двух - и четырехвалентного олова, серной кислоты на интенсивность окрашивания роданидных соединений молибдена рекомендуются следующие оптимальные условия: 5% НС1, 0,6% KSCN, >0,1% SnCl2. При указанных условиях получается максимальная и наиболее устойчивая окраска. Все же, видимо, только часть молибдена находится в форме окрашенного соединения, а устойчивость окрашивания остается недостаточно большой.
При фотометрическом определении молибдена роданидным' методом необходимо контролировать концентрацию кислоты в растворе. Оптимальная концентрация соляной кислоты составляет 1,2-2 мол/л. По другим данным, при концентрации серной или соляной кислот в пределах разбавления от 1: 5 до 1: 7 окрашивание от роданидных соединений пятивалентного молибдена вполне устойчиво (заметно не изменяется 30 мин. и более).
Устойчивая окраска растворов роданидных соединений пятивалентного молибдена развивается быстро в среде хлорной и серной кислот при использовании в качестве восстановителя SnCl2, если концентрация серной кислоты равна 10-15%. При более низкой и более высокой концентрации серной кислоты постоянная оптическая плотность достигается очень медленно. В среде одной хлорной кислоты постоянная величина оптической плотности достигается быстро, если ее концентрация не ниже 17%. Концентрация серной или хлорной кислот влияет на величину оптической плотности растворов.
Соединения пятивалентного молибдена с роданидом устойчивы и в присутствии азотной (но не азотистой) кислоты. Однако многие исследователи подчеркивают необходимость полного удаления азотной кислоты до получения роданидных соединений молибдена.
В водных растворах, особенно при низких концентрациях роданида, образующиеся соединения молибдена сравнительно быстро разлагаются, что препятствует достаточно точному измерению оптической плотности и получению надежных результатов: Экстракция роданидных соединений не смешивающимися с водой органическими растворителями (диэтиловый эфир, сложные эфиры, высшие спирты) повышает их устойчивость.
В среде 2-3н. H2SО4 максимум светопоглащения роданидного комплекса молибдена меняется с изменением концентрации-роданида и не зависит от природы восстановителя. При отношении в растворе Mo: SCN=1: 5 в среде 3,5 н. H2SО4 (восстановитель KJ) максимум на кривой светопоглощения находится при 505 ммк, а при концентрации роданида ?0,2 М - при.460 ммк.
Максимум абсорбции водных растворов роданидных соединений пятивалентного молибдена (в отсутствие ацетона) при высокой концентрации ионов роданида находится при 460 ммк, кажущийся молярный коэффициент погашения комплекса янтарного цвета равен 12 300 в присутствии железа ('22° С, 0,60 М KSCN, 1 М НС1). В отсутствие железа кажущийся молярный коэффициент погашения равен 6300 в 0,123 М KSCN.
При фотометрическом определении молибдена в форме роданидных соединений в качестве восстановителя был успешно применен иодид калия (взятый в избытке) при добавлении сульфита натрия, что позволило избежать восстановления молибдена до валентности ниже пяти. Окраска получаемых растворов более устойчива и развивается быстрее, чем при использовании SnCl2, чувствительность метода сохраняется прежней. Растворы подчиняются закону Бера в интервале 0,2-20 мг/мл Мо. Оптимальная оптическая плотность растворов роданидных соединений молибдена наблюдается при концентрации иодида калия, равной 1%, и не изменяется в случае дальнейшего увеличения его концентрации до 3-4%. Оптическая плотность сохраняется без изменения в течение нескольких часов. Необходимая концентрация иодида калия зависит от количества присутствующего трехвалентного железа. Стократные количества железа не мешают восстановлению молибдена иодидом калия.
Для восстановления шестивалентного молибдена до пятивалентного состояния иодидом калия большое значение имеет концентрация НС1 в растворе. Л.Б. Гинзбург и Ю.Ю. Лурье проводили восстановление в среде 3-4 М НС1. Хоу рекомендует проводить восстановление в среде 2 М НCI. Такая концентрация НCI оптимальна для развития окраски, вызванной роданидными соединениями пятивалентного молибдена. Максимальная окраска развивается через 20 мин. - , сохраняется 1 час, затем начинает уменьшаться. В среде 3 М НCI оптимальная окраска появляется уже через ~2 мин., но затем она начинает уменьшаться. В 1 М НCI окраска развивается медленно, достигая наибольшего, но не максимально возможного значения через 40 мин *.
При восстановлении шестивалентного молибдена иодидом калия в среде 2 М НС1 добавление капли 0,1 М раствора Cu2Cl2 (CuCl2) или FeSO4 [Fe2 (SO4) 3] в концентрированной НО (до прибавления KJ и NH4SCN) в каждом случае увеличивает скорость развития окраски, но не влияет на конечную величину оптической плотности. Медь влияет на скорость развития окраски более сильно, чем железо.
Кроутамел и Джонсон восстанавливали шестивалентный молибден до пятивалентного состояния при помощи Сu2С12. Если молибден определяют в водно-ацетоновой среде, то восстанавливают двухвалентную медь (а также трехвалентное железо) добавлением небольших количеств раствора SnCl2. Если роданидные соединения пятивалентного молибдена экстрагируют диэтиловым эфиром, то двухвалентную медь не восстанавливают. Восстановление шестивалентного молибдена при помощи Сu2С12 обеспечивает возможность определения молибдена в присутствии вольфрама, который остается в шестивалентном состоянии.
Капрон и Хехман показали, что некоторые растворимые в воде малолетучие органические растворители (гликолевые эфиры) увеличивают стабильность и устойчивость окрашивания растворов роданидных соединений пятивалентного молибдена. Из изученных гликолевых эфиров - целлосольва, диэтилцелло-сольва, бугилцеллосольва, карбитола, метилкарбитола и бутил-карбитола - наиболее пригодны бутилкарбитол (монобутиловый эфир диэтиленгликоля) и бутилцеллосольв (монобутиловый эфир этиленгликоля). Получаемое в присутствии последних двух растворителей окрашивание в первые 5 мин. немного уменьшается, а затем остается постоянным в течение 24 час. Максимум абсорбции находится при 470 ммк. Одинаково точные результаты получают при добавлении органического растворителя до или после прибавления роданида калия. Если органический растворитель прибавляют после введения хлорида двухвалентного олова, то получают низкие для молибдена результаты.
Дифференциальный фотометрический анализ и понятие о производной спектрофотометрии концентраций. Аппаратура, применяемая для спектрофотометрического анализа, её чувствительность для исследований спектрофотометрами Cary, СФ-2000, СФ-2000-01, СФ-2000-02. курсовая работа [235,4 K], добавлен 27.12.2009
Проверка аддитивности светопоглощения компонентов в искусственных смесях. Одновременное экстракционно-фотометрическое определение элементов Ni, Co, Fe, Cu с ПАН. Применение поверхностно-активных веществ в многокомпонентном спектрофотометрическом анализе. курсовая работа [339,7 K], добавлен 25.06.2011
Переходные металлы - элементы побочных подгрупп периодической системы химических элементов. Элементы VIIB и VIIIB группы: химические и физические свойства. Соединения марганца. Применение перманганата калия. Соединения кобальта и никеля и их свойства. презентация [73,6 K], добавлен 02.05.2013
Основные сферы использования метода УФ-спектрофотометрии в фармацевтической практике. Использование химических и физико-химических методов для определения вещества, анализа и контроля качества лекарственных форм. Основные виды УФ-спектрофотометров. курсовая работа [950,7 K], добавлен 12.07.2011
Сущность и методика фотометрического определения железа с сульфосалициловой кислотой. Происхождение молекулярных спектров поглощения. Изучение основного закона светопоглощения. Аппаратура и техника фотометрических измерений, оборудование и реактивы. курсовая работа [422,1 K], добавлен 14.06.2014
Понятие и классификация оптических методов анализа. Определение концентрации вещества по среднему значению молярного коэффициента светопоглощения. Проведение фотоэлектроколориметрии двухкомпонентных систем. Виды фотоколориметров и правила работы на них. курсовая работа [2,6 M], добавлен 30.11.2014
Спектрофотометрический и фотоколориметрический методы анализа пищевых продуктов, их сущностная характеристика. Закон светопоглощения. Приборы и оптимальные условия для фотометрии. Пример определения цветного числа масел и содержания диоксида серы. презентация [4,2 M], добавлен 19.03.2015
Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д. PPT, PPTX и PDF-файлы представлены только в архивах. Рекомендуем скачать работу .

© 2000 — 2021



Роданид калия в спектрофотометрии курсовая работа. Химия.
Статьи Для Магистерской Диссертации Количество
1093 1113 Историческое Сочинение
Реферат по теме HTML в Internet
Доклад: Скорая медицинская помощь
Сочинение На Тему Мой Питомец 5 Класс
Контрольная работа по теме Справочные правовые системы
Реферат: Таблица Развитие психологии в рамках философии
Реферат по теме Ж.П. Сартр и его учение Экзистенциализм
Реферат: Общая задача принятия решений
Моя Мечта Прыгнуть С Парашютом Сочинение
Язык Моей Специальности Эссе
Курсовая работа: Формирование цен на импортные товары
Каким Должен Быть Папа Сочинение
Реферат: Международные инструменты защиты прав национальных меньшинств. Скачать бесплатно и без регистрации
Реферат по теме Концепция В2В
Курсовая работа по теме Расчет и принцип работы распылительной сушилки
Реферат: Государственный долг России: проблемы и решения
Проблема Крепостного Права В Комедии Недоросль Сочинение
Реферат: МЦ-125 ружье для генсека. Скачать бесплатно и без регистрации
Контрольная работа по теме Цели, задачи и структура маркетинговых исследований и система маркетинговой информации
Учет, анализ и аудит денежных средств на примере ФХКГУП "Крайдорпредприятие ДСУ-4" - Бухгалтерский учет и аудит дипломная работа
Инфаркт-пневмония - Медицина презентация
Особенности исследования индивидуальных качеств и поведения человека - Психология статья


Report Page